Assignment 2/MATH 318/Fall 2007 Due: Friday, September 28

[1] (i) Let $A = \{1, 2, 3, 4, 5\}$, and $R = \{(1,2), (1,4), (2,3), (2,5), (4,5)\}$. List the Hasse diagrams all irreflexive orders *S* on the set *A* for which $R \subseteq S$. Give a systematic listing, and give arguments for your list being complete.

[Instructions: Give a list of all the pairs of elements that are incomparable in \mathbb{R}^{tr} . Any *S* as in the question will be determined by deciding of each pair in the list whether it is comparable in *S*, and if yes, in which way. This will give you an immediate upper estimate on how many *S*'s there are. However, as expected, those decisions are not independent of each other. To obtain a complete listing, proceed in the form of a "decision tree", starting with the three possibilities for the first pair (if $\{a, b\}$ is the pair, the three possibilities are: 1st: aSb, 2nd: bSa, 3rd: neither aSb, nor bSa), and branching from each to possible decisions on the second pair, etc. Finally, draw the Hasse diagrams. This is also helpful in eliminating impossible answers: when attempting to draw the Hasse diagram, you find that the proposed relation is not an irreflexive order. I note that there are exactly 14 different *S*'s (note that $S=R^{tr}$ is one of them).]

(ii) Which ones of the Hasse diagrams obtained in (i) are Hasse diagrams of lattices? Justify your answers.

[2] (i) Verify example L2 in section 3.1, p. 83; that is, prove that the order $(\mathbb{N}, |)$ is a lattice, with lattice operations given in example L2.

(ii) Let *n* be a positive integer. Let $A_n = \{d \in \mathbb{N} : d \mid n\}$. Using (i), prove that $L_n = (A_n; \mid \mid A)$ is a lattice. Identify the operations \top, \bot, \land and \lor in the lattice L_n . $(\mid \mid A_n \text{ is the relation of divisibility restricted to the set } A_n)$

(iii) Draw the Hasse diagram of the lattices L_6 and L_{60} .

(iv) Prove that the lattice L_{210} and the subset lattice $\mathcal{P}(\{1, 2, 3, 4\}, \subseteq)$ are isomorphic to each other.

(v) Prove that for any $n \in \mathbb{N} - \{0\}$, the following two conditions are equivalent: (a) there is a (finite) set B such that L_{η} is isomorphic to the subset lattice

 $(\mathcal{P}(B), \subseteq)$

(**b**) *n* is square-free: $p^2 | n$ implies that p=1.

[3] (i) Prove the assertions made in example L4, section 3.2 (p. 84). That is, prove that $(\operatorname{Sub}(V), \subseteq)$, the (partially) ordered set of all subspaces of a vector space V, is a lattice, and the lattice operations are as specified in the Notes.

(ii) Let (u_1, u_2, u_3) be a basis of $V = \mathbb{R}^3$, and let $u_4 \in V$ be a vector that is linearly independent from both (u_1, u_2) and (u_1, u_3) . Let $U_1 = \operatorname{span}(u_1, u_2)$,

 $U_2 = \operatorname{span}(u_1, u_3)$ and $U_3 = \operatorname{span}(u_4)$. Determine the Hasse diagram of the sublattice $\langle U_1, U_2, U_3 \rangle$ of $(\operatorname{Sub}(V), \subseteq)$ generated by U_1, U_2, U_3 . Justify your answer.

[This example needs a bit of linear algebra. A numerical example is $u_1 = e_1 = (1, 0, 0)$, $u_2 = e_2 = (0, 1, 0)$, $u_3 = e_3 = (0, 0, 1)$, and $u_4 = (1, 1, 1)$.]

[4] We let $B = \{i \in \mathbb{N} : 1 \le i \le 8\}$, and

 $\begin{array}{l} x_1 = \{1\} \;,\; x_2 = \emptyset \;,\; x_3 = \{1,\; 2,\; 3,\; 8\} \;,\; x_4 = \{1,\; 2,\; 3,\; 4,\; 5,\; 6,\; 7,\; 8\} \;, \\ x_5 = \{1,\; 2,\; 4,\; 5,\; 6,\; 8\} \;,\; x_6 = \{4,\; 8\} \;,\; x_7 = \{1,\; 2,\; 8\} \;,\; x_8 = \{8\} \;,\; x_9 = \{1,\; 5\} \;. \end{array}$

Let $A = \{X_k : 1 \le k \le 9\}$, and let the order *R* be defined on *A* by:

 $(X_k, X_\ell) \in \mathbb{R} \iff X_k \subseteq X_\ell$

(that is, R is just the subset relation restricted to the sets in A).

(i) Draw the Hasse diagram of the order (A, R).

(ii) Verify that (A, R) is a lattice, by giving $x \wedge y$ and $x \vee y$ for all $x, y \in A$; to save writing, disregard the pairs (x, y) for which xRy; also, do not list both (x, y) and (y, x).

(iii) Find some particular $x, y, z \in A$ for which $(x \lor y) \land z \neq (x \land z) \lor (y \land z)$.

(iv) Find some particular $x, y, z \in A$ for which

 $(x \lor y) \land z = (x \land z) \lor (y \land z)$, and $z \leq x$, $z \leq y$.

(v) Are there $x, y \in A$ for which $x \land y \neq x \cap y$?

(vi) Are there $x, y \in A$ for which $x \lor y \neq x \lor y$?

(vii) Find three elements that together generate the lattice (A, R).

(viii) Give a reason why, in this case, fewer than three elements cannot generate the lattice.

[5] (i) Let $(A; \leq)$ be a reflexive *total* order. Which of the lattice operations \top, \bot, \land and \lor are fully defined, and which may not be defined, in the order $(A; \leq)$? Give reasons for all your answers.

[Note: in any order $(A; \leq)$, if x and y are comparable, that is, either $x \leq y$ or $y \leq x$ (or both), we use the notation $\max(x, y)$ for the *greater* one of x and y, and $\min(x, y)$ for the *smaller* one of x and y. If x=y, then $\max(x, y) = \min(x, y) = x=y$. If, however, x and y are incomparable (not comparable), then $\max(x, y) , \min(x, y)$ are not defined.]

(ii) Let $L_1 = (A; R)$ and $L_2 = (B:S)$ be lattices. We define another lattice $L_1 \times L_2$, the *product* of lattices L_1 , L_2 , as follows. $L_1 \times L_2 = (C; U)$ where $C = A \times B$, and the relation U is defined by

 $(a_1, b_1)U(a_2, b_2) \stackrel{\text{def}}{\longleftrightarrow} a_1Ra_2 \& b_1Sb_2.$

Prove that $L_1 \times L_2$, that is, the relation (C; U), is indeed a lattice.

(iii) Let L=(A; R) where $A=\{1, 2, 3\}$, and R the ordinary \leq on numbers restricted to A. Draw the Hasse diagram of the lattice $L \times L$.

[6] Let B be any set, and $f: B \to B$ a function. We say of a subset X of B that it is closed under f if, whenever $x \in X$, we also have $f(x) \in X$. Let A be the set of all subsets of B that are closed under f:

$$A_{\operatorname{def}} \{ X \subseteq B : \forall x (x \in X \longrightarrow f(x) \in X) \} .$$

(i) Consider the case when

 $B = \{1, 2, 3, 4, 5, 6\} \text{ and } f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 2 & 1 & 6 & 6 \end{pmatrix} .$

Draw the Hasse diagram of the order (A, \subseteq) (= $(A, \subseteq \upharpoonright A)$.

(ii) In the general case, prove that (A, \subseteq) is a sublattice of $(\mathcal{P}(B); \subseteq)$.

Also do: Exercise 3 (p. 79) and Exercise 5 (p. 81).