Answers/Assnmt6/MATH 318/Fall, 2007

[1] PA⊢	∀xx=	$0 \lor \exists y.x=y+1$	
Induction (on Basis: 2 Induction	x): x=0 . l on stej Induc to sho	P(0): $0=0 \lor$: TRUE p: tion hypothesis: $x=0 \lor \exists y.x=y+1$ w: $Sx=0 \lor \exists y.Sx=y+1$ (1)? Theorem of PA: $x+1=Sx$ (<i>L</i> 4). Therefore, (1) holds "with $y=x$ ". \Box	
Formal: Abbre	viate:	$P(x) :=: x=0 \lor \exists y.x=y+1$.	F
P(0)	$\frac{1}{2}$	$0=0$ $\vee \exists v 0=v+1$	Т:1
3	3	$P(\mathbf{x})$	P
-	4	Sx = x + 1	Theorem (of PA)
	5	$\exists y.Sx=y+1$	EG:4
P(Sx)	6	$Sx=0 \lor \exists y.Sx=y+1$	T:5
	7	$P(x) \longrightarrow P(Sx)$	T:6
Ind.Step	8	$\forall x.P(x) \longrightarrow P(Sx)$	UG:7
	9	$\mathbf{P}(0) \land \forall \mathbf{x}.\mathbf{P}(\mathbf{x}) \longrightarrow \mathbf{P}(\mathbf{S}\mathbf{x}).$	T:2,8
	10	$[P(0) \land \forall x.P(x) \longrightarrow P(Sx).] \longrightarrow \forall xP(x)$	Thm
(MI;AxSc5)	1.4.4		T A 0 11
		$\forall \mathbf{x} \mathbf{P}(\mathbf{x})$	1:2,8,11
[2] $\forall x \forall y \forall u.(x)$	+u=y+	$-u \longrightarrow x = y$)	
•		•	

Ind. hyp.: $x+u=y+u \longrightarrow x=y$ to show $x+Su=y+Su \longrightarrow x=y$? assume x+Su=y+Su. By Ax2, we get S(x+u)=S(y||u). By Ax 7, we get x+u=y+u. By ind. hyp., we get x=y \Box .

Formal: Abbreviate:		$\mathbf{P}(\mathbf{u}) :=: \mathbf{x} + \mathbf{u} = \mathbf{y} + \mathbf{u} \longrightarrow \mathbf{x} = \mathbf{y} \ .$		
P(0) Ind.Hyp:	1 2 3 4 5 6	$ \begin{array}{l} [P(0) \land \forall u(P(u) \longrightarrow P(Su))] \longrightarrow \forall uP(u) \\ \forall x.x+0=x \\ x+0=x \\ y+0=y \\ x=y \longrightarrow x=y \\ x+0=y+0 \longrightarrow x=y \end{array} $	Thm (Ax1) US:2 Us:2 T E (×2): 3,4,5	
P(u) : 7 8	7 8	$\begin{array}{l} x+u=y+u\longrightarrow x=y\\ x+Su=y+Su \end{array}$	P P	

		9	$\forall \mathbf{x} \forall \mathbf{y} (\mathbf{x} + \mathbf{S}\mathbf{y} = \mathbf{S}(\mathbf{x} + \mathbf{y})$	Thm (Ax2)
		10	x+Su = S(x+u)	US;9
		11	y+Su = S(y+u)	US;9
	8	12	$\mathbf{S}(\mathbf{x}+\mathbf{u}) = \mathbf{S}(\mathbf{y}+\mathbf{u})$	E:8,10,11
		13	$\forall x \forall y (Sx = Sy \longrightarrow x = y)$	Thm (Ax7)
		14	$S(x+u) = S(y+u) \longrightarrow x+u=y+u$	US:13
	7,8	15	x=y	E+T:8,10,11,14,7
P(Su):		,		
	7	16	$x+Su=y+Su \longrightarrow x=y$	D:15
		18	$P(u) \longrightarrow P(Su)$	D:16
		19	$\forall u(P(u) \longrightarrow P(Su))$	UG:18
		20	$\forall u P(u)$	T:1,6,19
		21	$\forall x \forall y \forall u P(u)$	UG:20
			• · · · ·	

 $[3] \qquad u+v=0 \longrightarrow u=0 \land v=0 .$

Assume u+v=0, to prove $v \stackrel{?}{=} 0$. By [1], if $v \neq 0$, then v=Sy for some y. But then $u+v=u+Sy=S(u+y)\neq 0$ by Ax6. Therefore, v=0 must hold. Then, u=u+0=u+v=0, and u=0 too.

Formal: omitted.

[4] We prove

- $1. \leq$ is reflexive,
- $2. \leq$ is transitive,
- $3. \leq$ is antisymmetric,
- $4. \leq$ is dichotomous.

1. $x \le x : x \le x \xrightarrow{def} \exists u.x + u = x ; but RHS is true, with u=0 (Ax1)$

2. $x \le y \land y \le z \implies x \le z$. Assume $x \le y \And y \le z$. That is (Ax8), we have u and v such that $x+u=y \And y+v=z$. It follows that (x+u)+v=z, and by Thm1, that x+(u+v)=z, Therefore, w=u+v witnesses that $\exists w.x+w=z$, that is, $x \le z . \Box$

3. $x \le y \land y \le x \Longrightarrow x=y$. Assume $x \le y$ and $y \le x$, that is, the existence of u and v such that x+u=y and y+v=x. But then (x+u)+v=x, and (Thm1), x+(u+v)=x=x+0. By cancellation, u+v=0. By [3], u=v=0; y=x+u=x+0=x. \Box

4. $x \le y \lor y \le x$. Induction on x.

Basis: $x=0: 0 \le y \lor y \le 0$. Yes, since $0 \le y$; this is because $0 \le y \iff \exists u.0+u=y$, for which u=y works, since 0+y=y+0=y (see Thm2, Ax1).

Induction step: Assume $x \le y$ or $y \le x$ (induction hypothesis), to show

 $Sx \le y \lor y \le Sx \tag{1}$

Case 1: $x \le y$. There is u : y=x+u. We apply [1] to u. Case 1.1 u=0. Now y=x, and $y=x\le Sx=x+1$ (see L4); 2nd alternative holds in (1) Case 1.2 u=Sv=v+1; now, y=x+u=x+(v+1)=x+(1+v)=(x+1)+v=Sx+v; which means that $Sx\le y$: 1st alternative in (1). Case 2. $y\le x$, Then $y\le x\le Sx(=x+1)$, and by transitivity of \le , $y\le Sx$: 2nd alternative in (1).

$$[5] \qquad x \le y+1 \iff x \le y \lor x = y+1$$

(2)

 $\begin{array}{l} 1. \Longrightarrow : Assume \ x \leq y+1 \ . \ y+1 = Sy = x+u \ \ for \ some \ u \ . \ Use \ [1] \ on \ u \ . \ Either \ u=1 \ , \ or \\ u=v+1 \ (s0me \ v). \ In \ the \ first \ case, \ y+1 = x, \ thus \ @nd \ alternative \ in \ (2) \ holds. \ In \ the \ second \ case, \ y+1 = x+v+1, \ thus \ Sy=S(x+v) \ , \ and \ y=x+v \ \ by \ Ax2, \ that \ is, \ x \leq y \ : \ 1st \ alternative \ in \ (2). \\ \Box$

We abbreviate $x \le y \land x \ne y$ by x < y.

[6]	(i) WOP:	$\forall n [\forall k (k < n \rightarrow P(k)) \longrightarrow P(n)] \longrightarrow \forall n P(n)$
	(ii) LNP:	$(\exists x P x) \longrightarrow \exists u (P u \land \forall v (P v \longrightarrow u \le v))$
(iii) GNP:		$\forall N[(\exists kP(k) \land \forall k(P(k) \rightarrow k < N)) \rightarrow (\exists nP(n) \land \forall k(P(k) \rightarrow k \le n)) .$

[7] (i) WOP proved in PA (informally): We have $P \subseteq \mathbb{N}$ given, and we assume that

$$\forall n [\forall k (k < n \rightarrow P(k)) \longrightarrow P(n)]$$

to prove

 $\forall nP(n)$.

In order to do this, we show

Lemma Under the assumption (*), we have

 $\forall n(k < n \rightarrow P(k))$.

?

(*)

(3)

??

Once we have done the Lemma, we apply it to Sn in place of n, and since n < Sn, we will have P(n) as desired. Therefore, it is enough to prove the Lemma.

Proof of the Lemma: by ordinary induction (MI).

Basis: n=0 : The assertion is $\forall n(k < 0 \rightarrow P(k))$. Vacuously true, since k<0 is always false.

Induction step. Assume $\forall n(k < n \rightarrow P(k))$,

to prove

 $\forall n(k < Sn \rightarrow P(k))$.

To do so, assume k < Sn(=n+1), to prove

P(k) . ???

k<Sn says k≤Sn and k≠Sn. By [5], this implies k≤n. But then either k<n (Case 1), or k=n (Case2) (since ≤ is the reflexive version of <). In the first case, by (3), we have P(k).

Having done "Case 1", we have proved that

 $\forall k(k < n \rightarrow P(k))$.

The initial assumption (*) above now says that P(n) follows. That is, P(k) is true in Case 2 (k=n) too. Thus, ???, ??, ?? are all proved (in that order), and we are done.

- (ii) LNP: proof is in the brackets [...] on p. 187 (Section 6.2)
- (iii) GNP: proof is, essentially, in the Section 6.2; starts on last line, p. 187.

$$[8] \qquad x \neq 0 \longrightarrow (y \mid x \longrightarrow y \leq x) \tag{(*)}$$

Lemma. $y \neq 0 \longrightarrow x \leq x \cdot y$. Proof of lemma: Assume $y \neq 0$. By [1], y=Su, some u. $x \cdot y=x \cdot Su=x \cdot u+x=x+x \cdot u$; this shows that $x \leq x \cdot y$ (Ax8). \Box Lemma. Ax4 Thm2

To prove (*), assume $x \neq 0$; to prove $y | x \longrightarrow y \leq x$, assume y | x, to prove $y \leq x$. By y | x, we have $x=y \cdot u$, some u. Since $x\neq 0$, we have $u\neq 0$. Therefore, by Lemma, $y\leq y \cdot u=x$ as desired.

[9] is a reflexive order.

is reflexive: $x \mid x \text{ since } x=x \cdot 1 \text{ (L5,Thm5)}.$

| is transitive: assume $x \mid y \And y \mid z$, to show $x \mid z$. The assumptions give (Ax9) $y=x \cdot u$ and $z=y \cdot v$, hence, $z=(x \cdot u) \cdot v = x \cdot (u \cdot v)$; $z=x \cdot w$ for $w=u \cdot v$; $x \mid z$ (Ax9)

Thm4

? | is antisymmetric: $x | y \& y | x \implies x=y$. Assume x | y & y | x. **Case 1** x=0. Then, by $x | y, y=x \cdot u$ (some u), and so $y=0 \cdot u=0$ (L3), and x=y=0 as desired. Case 2: $x\neq 0$. Therefore, also $y\neq 0$ (since otherwise $y | x, x=y \cdot v$, gives x=0). By x | y and $x\neq 0$, we have $x \leq y$ by [8]. Similarly, since x and y play symmetric roles in the theorem to be proved, we can show $y \leq x$. By the fact that \leq is a reflexive order, hence antisymmetric, we conclude that x=y. \Box

[10] $(x | y \land x | (y+1)) \longrightarrow x=1$.

Assume x | y and x | (y+1). We have u and v for which $y=x \cdot u$ and $y+1=x \cdot v$. Thus

$$\mathbf{x} \cdot \mathbf{u} + 1 = \mathbf{x} \cdot \mathbf{v} = \mathbf{x} \cdot \mathbf{v} + \mathbf{0}. \tag{1}$$

We have either $u \le v$ (Case 1) or $v \le u$ (Case 2) (see [4]).

But Case 2 is impossible: it would mean u=v+w,

 $x \cdot u + 1 = x \cdot (v + w) + 1 = (x \cdot v + x \cdot w) + 1 = x \cdot v + (x \cdot w + 1)$

which, together with (1), and [2] (cancellation) with Thm2 (commutativity), would give $x \cdot w+1=0$, false by (L4 and) Ax6.

Case 1 remains the only possibility; v=u+w some w. From (1), $x \cdot u+1=x \cdot (u+w)=x \cdot u+x \cdot w$; by [2] and Thm2, $1=x \cdot w$. By [8], since $x\neq 0$, we get $x\leq 1$, 1=x+s; and by [1], x=Sz=z+1, some z. Thus, 1=z+1+s; by Thm1, Thm2, [2], z+s=0; by [3], z=s=0. Thus, x=z+1=1. Done.

[11] $(y \neq 0 \land y \neq 1) \longrightarrow \exists z(Pr(z) \land z \mid y)$. Assume $y \neq 0$ and $y \neq 1$. We apply the LNP (see [6] above),

$$(\exists x P x) \longrightarrow \exists u (P u \land \forall v (P v \to u \le v))$$
(1)

to the statement

$$P(x) :=: x | y \land x \neq 1.$$

 $\Box \phi \land \circ \varrho \phi \exists x P(x) :$ indeed, x=y works since y | y ([9]) and y \neq 1 (assumption). By (1), we have some u such that Pu and

$$\forall v(Pv \to u \le v) . \tag{2}$$

Since Pu, we have $u \mid y$ and $u \neq 1$. We claim

u is a prime
$$\equiv$$
 Pr(u) $\equiv \forall v(v | u \longrightarrow v=1 \lor v=u)$ (3)(?)

To prove (2), assume v | u, to show $v=1 \lor v=u$ (??); that is, assuming $v \ne 1$, we want v=u (???). But by v | u | y, we have v | y ([9]), and together with $v \ne 1$, Pv. By (2) and Pv, we have $u \le v$. Since v | u and $u \ne 0$ (because $u | y \ne 0$ (!)), by [8], we have $v \le u \le v \& v \le u$ gives ([2]) u=v as desired.

In conclusion: we found u such that $u \mid y$ and $Pr(u) . \Box$

$$[12] \quad \forall x \exists y (y \neq 0 \land \forall u ((u \leq x \land u \neq 0) \longrightarrow u \mid y))$$

By induction on x.

Basis: x=0. y=1=S0 now works since $(u \le x \land u \ne 0) \Longrightarrow \bot$ (condition on y is vacuous).

Induction step: Suppose, with x arbitrary, that

 $\exists y(y \neq 0 \land \forall u((u \leq x \land u \neq 0) \longrightarrow u \mid y))$

(*induction hypothesis*). Let y be such that

$$y \neq 0 \land \forall u((u \leq x \land u \neq 0) \longrightarrow u \mid y) . \tag{1}$$

Let $z=y \cdot (Sx)$, I claim that z is appropriate for

$$z \neq 0 \land \forall u((u \leq Sx \land u \neq 0) \longrightarrow u \mid z)$$
(?)

 $z=y \cdot (Sx) \neq 0$ since $y\neq 0$ and $Sx\neq 0$ (Ax6) [there should be a Lemma that says $u\neq 0 \& v\neq 0 \Longrightarrow u \cdot v\neq 0$]

Assume $u \le Sx \land u \ne 0$. By [5], $u \le Sx$ implies $u \le x$ (Case 1), or u=Sx (Case 2). In Case 1, by (1), $u \mid y$, and since $y \mid z$, by definition of z, we have $u \mid z$ as required for (?). In Case 2, again, $u \mid z$. \Box

[13] $\forall x \exists z (\Pr(z) \land x \leq z)$

Let x be any number. By [12], there is y such that $y\neq 0 \land \forall u((u\leq x \land u\neq 0) \longrightarrow u \mid y)$. By [11], let z be such that $Pr(z) \land z \mid (y+1)$. Since $z \mid (y+1)$, and Pr(z) (and thus $z\neq 1$), by [10], we have that $\neg(z \mid y)$. But for all u such that $u\leq x \land u\neq 0$, we have $u \mid y$. Therefore, $\neg(z\leq x \land z\neq 0)$. We also know that $z\neq 0$ since Pr(z). Therefore, $\neg(z\leq x)$, and thus, by [4], we have $x\leq z$. We have both Pr(z) and $x\leq z$. Done.

[14] $\forall a \forall b (0 < b \rightarrow \exists r \exists q (a = q \cdot b + r \land r < b))$

Proof. Assume 0<b . By induction on a , we prove

 $\exists r \exists q(a=q \cdot b+r \land r < b)$.

Basis: a=0 : now, q=r=0 work (0 < b).

Induction step: assume we have r and q such that

 $a=q \cdot b+r \wedge r < b \tag{1}$

(induction hypothesis). to show the existence of Q and R such that

$$a+1=Q \cdot b+R \wedge R < b . \tag{2} (?)$$

Of course, from (1), we have

$$a+1=q \cdot b+(r+1)$$
. (3)

Thus, if we have r+1 < b (Case 1), then we are done: Q=q and R=r+1. It remains to consider the possibility that $\neg(r+1 < b)$ (Case 2).

In Case 2: we know that r
b, which means that b=r+s, and s≠0 (otherwise we would have b=r). Thus, s=t+1, some t. b=r+t+1=r+1+t. If here t≠0, then r+1
b, which we assumed not to be the case. Therefore, t=0, and we conclude b=r+1. (In the last couple of lines, we inferred from r
b and \neg (r+1
b) that r+1=b, which looks a fairly obvious step ...)

From (3) and b=r+1, we conclude that $a+1=q \cdot b+b=(q+1) \cdot b$. But then, (2) holds with Q=q and R=0 (0 < b !). \Box

[15] $\forall a \forall b \exists d. GCD(a, b, d)$

Proof: By the WOP (see [6] above). More precisely, we prove the following statement by the WOP on the variable a :

$$P(a) \equiv \forall b(b < a \longrightarrow \exists d.GCD(a,b,d)) \quad . \tag{1}$$

We note that this will be enough. Namely, if b=a, then GCD(a,a,a), as is easily seen, that is d=a works. If, on the other hand, b>a, then GCD(a,b,d) iff GCD(b,a,d) as is easily seen, and thus we are back in the case " a < b ".

Reminder: the WOP says

$$\forall a [\forall k (k < a \rightarrow P(k)) \longrightarrow P(a)] \longrightarrow \forall a P(a) \tag{2}$$

For our P in (1), we prove

$$\forall k(k < a \rightarrow P(k))) \longrightarrow P(a) \tag{?}$$

("induction step according to the WOP"). Thus, we assume

$$\forall k(k < a \rightarrow P(k))), \qquad (3)$$

to prove

$$P(a)$$
. (??)

Therefore, we let b < a, and try to show that there is d with GCD(a,b,d). If b=0, there is no problem: GCD(a,0,0) as is easily seen. Assume 0 < b. But then we have $\exists q \exists r(a=q \cdot b+r \land r < b)$; take such q and r (r=amodb).

Lemma $\forall d(GCD(a,b,d) \iff GCD(b,r,d))$

Proof of Lemma: use Ax13 (definition of GCD(-,-)); the proof is easy.

We have that b < a, and so, by (3), we have P(b), Since r < b, we have some d such that GCD(b,r,d). By the last lemma, GCD(a,b,d). We have thus proved (??), and therefore also (?). By (2), we have $\forall aP(a)$; and as we noted before, this suffices.

[16] $\forall a \forall b \exists u \exists v \exists \hat{u} \exists \hat{v}. gcd(a,b) + \hat{u} \cdot a + \hat{v} \cdot b = u \cdot a + v \cdot b$.

Proof: similar to that of [15]; in fact, it is an extension of the proof of [15]. The statement is the same as

 $\forall a \forall b \exists u \exists v \exists \hat{u} \exists \hat{v} \exists d \ GCD(a,b,d) \land d + \hat{u} \cdot a + \hat{v} \cdot b = u \cdot a + v \cdot b \ .$

Instead of proving

 $P(a) \equiv \forall b(b < a \longrightarrow \exists d.GCD(a,b,d))$

by WOP, we prove

 $Q(a) \equiv \forall b(b < a \longrightarrow \exists d. (GCD(a, b, d) \land \exists u \exists v \exists \hat{u} \exists \hat{v}(d + \hat{u} \cdot a + \hat{v} \cdot b = u \cdot a + v \cdot b)) .$

The details are omitted.

[17] $\forall p \forall a \forall b ((\Pr(p) \land p \mid a \cdot b) \longrightarrow (p \mid a \lor p \mid b) .$

"Standard" algebra proof, using [16]. Assume $Pr(p) \wedge p \mid a \cdot b$, to prove

$$\mathbf{p} \mid \mathbf{a} \lor \mathbf{p} \mid \mathbf{b} \,. \tag{1}$$

Let d=gcd(p,b). Since $d \mid p$, we must have either d=1 or d=p. If the second alternative holds, then $d=p \mid b$, and (1) is done. In the first case, using [16], we have

$$1 + \hat{u} \cdot b + \hat{v} \cdot p = u \cdot b + v \cdot p$$
.

Multiplying with a, we get

$$a + \hat{u} \cdot a \cdot b + \hat{v} \cdot ap = u \cdot a \cdot b + v \cdot ap$$
. (2)

Lemma If $a+p \cdot r=p \cdot s$, then $p \mid a$.

In effect, we used essentially this in [10]; I omit the easy proof.

The Lemma applies to (1), since, by assumption $p | a \cdot b$, the LHS in (1) is of the form $a+p \cdot r$, and the RHS is of the form $p \cdot s$. We conclude that p | a, and (1) is proved again.