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[1] PA
�

∀x..x=0 � ∃y.x=y+1

Induction (on x ):
Basis: x=0 . P(0) : 0=0 � ... : TRUE
Induction step:

Induction hypothesis: x=0 � ∃y.x=y+1
to show: Sx=0 � ∃y.Sx=y+1 (1)?

Theorem of PA: x+1=Sx (L4) .
Therefore, (1) holds "with y=x ". �

Formal: Abbreviate: P(x) :=: x=0 � ∃y.x=y+1 .�
1 0=0 E

P(0)
�
2 0=0 � ∃y.0=y+1 T:1

3
�
3 P(x) P�
4 Sx=x+1 Theorem (of PA)�
5 ∃y.Sx=y+1 EG:4

P(Sx)
�
6 Sx=0 � ∃y.Sx=y+1 T:5�
7 P(x) ����� P(Sx) T:6

Ind.Step
�
8 ∀x.P(x) ����� P(Sx) UG:7�
9 P(0) 	 ∀x.P(x) ����� P(Sx). T:2,8�
10 [P(0) 	 ∀x.P(x) ����� P(Sx).] ������� ∀xP(x) Thm

(MI;AxSc5) �
11 ∀xP(x) T:2,8,11

[2] ∀x∀y∀u.(x+u=y+u ����� x=y)

Induction on u : induction statement: P(u) :=: x+u=y+u ����� x=y ("fixed" x,y )
?Basis: u=0 : x+0=y+0 ����� x=y . � .
 


Ax1 ��� 
 


x y

Induction step:
Ind. hyp.: x+u=y+u ����� x=y

to show x+Su=y+Su ����� x=y ?
assume x+Su=y+Su . By Ax2 , we get S(x+u)=S(y � u) . By Ax 7, we

get x+u=y+u . By ind. hyp., we get x=y � .

Formal: Abbreviate: P(u) :=: x+u=y+u ����� x=y .
�
1 [P(0) 	 ∀u(P(u) ����� P(Su))] ������� ∀uP(u)�
2 ∀x.x+0=x Thm (Ax1)�
3 x+0=x US:2�
4 y+0=y Us:2�
5 x=y ����� x=y T

P(0)
�
6 x+0=y+0 ����� x=y E (×2): 3,4,5

Ind.Hyp:
P(u) :

7
�
7 x+u=y+u ����� x=y P

8
�
8 x+Su=y+Su P
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�
9 ∀x∀y(x+Sy = S(x+y) Thm (Ax2)�
10 x+Su = S(x+u) US;9�
11 y+Su = S(y+u) US;9

8
�
12 S(x+u) = S(y+u) E:8,10,11�
13 ∀x∀y(Sx=Sy ����� x=y) Thm (Ax7)�
14 S(x+u) = S(y+u) ����� x+u=y+u US:13

7,8
�
15 x=y E+T:8,10,11,14,7

P(Su):
7

�
16 x+Su=y+Su ����� x=y D:15�
18 P(u) ����� P(Su) D:16�
19 ∀u(P(u) ����� P(Su)) UG:18�
20 ∀uP(u) T:1,6,19�
21 ∀x∀y∀uP(u) UG:20

[3] u+v=0 ����� u=0 	 v=0 .

?Assume u+v=0 , to prove v=0 . By [1], if v≠0 , then v=Sy for some y . But then
u+v=u+Sy=S(u+y)≠0 by Ax6. Therefore, v=0 must hold. Then, u=u+0=u+v=0 , and u=0
too.

Formal: omitted.

[4] We prove
1. ≤ is reflexive,
2. ≤ is transitive,
3. ≤ is antisymmetric,
4. ≤ is dichotomous.

?
1. x≤x : x≤x ����� ∃u.x+u=x ; but RHS is true, with u=0 (Ax1)de f

see Ax8
?

2. x≤y 	 y≤z ����� x≤z . Assume x≤y & y≤z . That is (Ax8), we have u and v such
that x+u=y & y+v=z . It follows that (x+u)+v=z , and by Thm1, that x+(u+v)=z , Therefore,
w=u+v witnesses that ∃w.x+w=z , that is, x≤z . �

?
3. x≤y 	 y≤x ����� x=y . Assume x≤y and y≤x , that is, the existence of u and v
such that x+u=y and y+v=x . But then (x+u)+v=x , and (Thm1), x+(u+v)=x=x+0 . By
cancellation, u+v=0 . By [3], u=v=0 ; y=x+u=x+0=x . �

?
4. x≤y � y≤x . Induction on x .

?�����������������
Basis: x=0 : 0≤y � y≤0 . Yes, since 0≤y; this is because 0≤y ����� ∃u.0+u=y , for which
u=y works, since 0+y=y+0=y (see Thm2, Ax1).

Induction step: Assume x≤y or y≤x (induction hypothesis), to show

Sx≤y � y≤Sx (1) ?
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Case 1: x≤y . There is u : y=x+u . We apply [1] to u .
Case 1.1 u=0 . Now y=x , and y=x≤Sx=x+1 (see L4); 2nd alternative holds in

(1)
Case 1.2 u=Sv=v+1 ; now, y=x+u=x+(v+1)=x+(1+v)=(x+1)+v=Sx+v ; which

means that Sx≤y : 1st alternative in (1).
Case 2. y≤x , Then y≤x≤Sx(=x+1) , and by transitivity of ≤ , y≤Sx : 2nd alternative in (1).

�

[5] x≤y+1 ����� x≤y � x=y+1 (2)

1. ����� : Assume x≤y+1 . y+1=Sy=x+u for some u . Use [1] on u . Either u=1 , or
u=v+1 (s0me v). In the first case, y+1=x, thus @nd alternative in (2) holds. In the second
case, y+1=x+v+1, thus Sy=S(x+v) , and y=x+v by Ax2, that is, x≤y : 1st alternative in (2).

�

We abbreviate x≤y 	 x≠y by x<y .

[6] (i) WOP: ∀n[∀k(k<n ��� P(k)) ����� P(n)] ������� ∀nP(n)
(ii) LNP: (∃xPx) ������� ∃u(Pu 	 ∀v(Pv ��� u≤v))
(iii) GNP: ∀N[(∃kP(k) 	 ∀k(P(k) ��� k<N)) ����� (∃nP(n) 	 ∀k(P(k) ��� k≤n)) .

[7] (i) WOP proved in PA (informally): We have P⊆ � given, and we assume that

∀n[∀k(k<n ��� P(k)) ����� P(n)] (*)

to prove

∀nP(n) .

In order to do this, we show

Lemma Under the assumption (*), we have

∀n(k<n ��� P(k)) . ?

Once we have done the Lemma, we apply it to Sn in place of n , and since n<Sn , we will
have P(n) as desired. Therefore, it is enough to prove the Lemma.

Proof of the Lemma: by ordinary induction (MI).
Basis: n=0 : The assertion is ∀n(k<0 ��� P(k)) . Vacuously true, since k<0 is always

false.
Induction step. Assume

∀n(k<n ��� P(k)) , (3)
to prove

∀n(k<Sn ��� P(k)) . ??

To do so, assume k<Sn(=n+1) , to prove

P(k) . ???

k<Sn says k≤Sn and k≠Sn . By [5] , this implies k≤n . But then either k<n (Case 1), or
k=n (Case2) (since ≤ is the reflexive version of < ). In the first case, by (3), we have P(k) .
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Having done "Case 1", we have proved that

∀k(k<n ��� P(k)) .

The initial assumption (*) above now says that P(n) follows. That is, P(k) is true in Case 2
(k=n) too. Thus, ??? , ?? , ? are all proved (in that order), and we are done.

(ii) LNP: proof is in the brackets [...] on p. 187 (Section 6.2)
(iii) GNP: proof is, essentially, in the Section 6.2; starts on last line, p. 187.

[8] x≠0 ������� (y
�
x ����� y≤x) (*)

Lemma. y≠0 ����� x≤x ⋅ y . Proof of lemma: Assume y≠0 . By [1], y=Su , some u .
x ⋅ y=x ⋅ Su =x ⋅ u+x= x +x ⋅ u ; this shows that x≤x ⋅ y (Ax8). � Lemma.� �

Ax4 Thm2

To prove (*), assume x≠0 ; to prove y
�
x ����� y≤x , assume y � x , to prove y≤x . By y � x ,

we have x=y ⋅ u , some u . Since x≠0 , we have u≠0 . Therefore, by Lemma, y≤y ⋅ u=x as
desired.

[9]
�

is a reflexive order.
�

is reflexive: x
�
x since x=x ⋅ 1 (L5,Thm5).

?�
is transitive: assume x

�
y & y

�
z , to show x

�
z . The assumptions give (Ax9) y=x ⋅ u and

z=y ⋅ v , hence, z=(x ⋅ u) ⋅ v = x ⋅ (u ⋅ v) ; z=x ⋅ w for w=u ⋅ v ; x
�
z (Ax9)�

Thm4

?�
is antisymmetric: x � y & y � x ������� x=y . Assume x � y & y � x . Case 1 x=0 . Then, by

x
�
y , y=x ⋅ u (some u ), and so y=0 ⋅ u=0 (L3), and x=y=0 as desired. Case 2: x≠0 .

Therefore, also y≠0 (since otherwise y � x , x=y ⋅ v , gives x=0 ). By x � y and x≠0 , we
have x≤y by [8] . Similarly, since x and y play symmetric roles in the theorem to be
proved, we can show y≤x . By the fact that ≤ is a reflexive order, hence antisymmetric, we
conclude that x=y . �

[10] (x
�
y 	 x

�
(y+1)) ����� x=1 .

Assume x
�
y and x

�
(y+1) . We have u and v for which y=x ⋅ u and y+1=x ⋅ v . Thus

x ⋅ u+1=x ⋅ v = x ⋅ v + 0. (1)

We have either u≤v (Case 1) or v≤u (Case 2) (see [4]).

But Case 2 is impossible: it would mean u=v+w ,

x ⋅ u+1 = x ⋅ (v+w)+1 = (x ⋅ v+x ⋅ w)+1 = x ⋅ v+(x ⋅ w+1)
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which, together with (1), and [2] (cancellation) with Thm2 (commutativity), would give
x ⋅ w+1=0 , false by (L4 and) Ax6.

Case 1 remains the only possibility; v=u+w some w . From (1),
x ⋅ u+1=x ⋅ (u+w)=x ⋅ u+x ⋅ w ; by [2] and Thm2, 1=x ⋅ w . By [8], since x≠0 , we get x≤1 ,
1=x+s ; and by [1], x=Sz=z+1 , some z . Thus, 1=z+1+s ; by Thm1, Thm2, [2], z+s=0; by [3],
z=s=0 . Thus, x=z+1=1 . Done.

[11] (y≠0 	 y≠1) ������� ∃z(Pr(z) 	 z
�
y) . Assume y≠0 and y≠1 . We apply the LNP (see

[6] above),

(∃xPx) ������� ∃u(Pu 	 ∀v(Pv ��� u≤v)) (1)

to the statement

P(x) :=: x � y 	 x≠1 .

����������� ∃xP(x) : indeed, x=y works since y � y ([9]) and y≠1 (assumption). By (1), we
have some u such that Pu and

∀v(Pv ��� u≤v) . (2)

Since Pu , we have u � y and u≠1 . We claim

u is a prime ≡ Pr(u) ≡ ∀v(v � u ����� v=1 � v=u) (3)(?)

To prove (2), assume v � u , to show v=1 � v=u (??); that is, assuming v≠1 , we want v=u
(???). But by v � u � y , we have v � y ([9]), and together with v≠1 , Pv . By (2) and Pv , we
have u≤v . Since v � u and u≠0 (because u � y≠0 (!)), by [8], we have v≤u . u≤v&v≤u
gives ([2]) u=v as desired.

In conclusion: we found u such that u � y and Pr(u) . �

[12] ∀x∃y(y≠0 	 ∀u((u≤x 	 u≠0) ����� u
�
y))

By induction on x .

Basis: x=0 . y=1=S0 now works since (u≤x 	 u≠0) ���
	 (condition on y is
vacuous).

Induction step: Suppose, with x arbitrary, that

∃y(y≠0 	 ∀u((u≤x 	 u≠0) ����� u
�
y))

(induction hypothesis). Let y be such that

y≠0 	 ∀u((u≤x 	 u≠0) ����� u
�
y) . (1)

Let z=y ⋅ (Sx) , I claim that z is appropriate for

z≠0 	 ∀u((u≤Sx 	 u≠0) ����� u
�
z) (?)
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z=y ⋅ (Sx) ≠ 0 since y≠0 and Sx≠0 (Ax6) [there should be a Lemma that says
u≠0&v≠0 ��� u ⋅ v≠0 ]

Assume u≤Sx 	 u≠0 . By [5], u≤Sx implies u≤x (Case 1), or u=Sx (Case 2). In Case1, by
(1), u � y , and since y � z , by definition of z , we have u � z as required for (?). In Case 2,
again, u � z . �

[13] ∀x∃z(Pr(z) 	 x≤z)

Let x be any number. By [12], there is y such that y≠0 	 ∀u((u≤x 	 u≠0) ����� u
�
y) . By

[11], let z be such that Pr(z) 	 z
�
(y+1) . Since z

�
(y+1) , and Pr(z) (and thus z≠1 ), by

[10], we have that ¬(z � y) . But for all u such that u≤x 	 u≠0 , we have u � y . Therefore,
¬(z≤x 	 z≠0) . We also know that z≠0 since Pr(z) . Therefore, ¬(z≤x) , and thus, by [4], we
have x≤z . We have both Pr(z) and x≤z . Done.

[14] ∀a∀b(0<b ����� ∃r∃q(a=q ⋅ b+r 	 r<b)

Proof. Assume 0<b . By induction on a , we prove

∃r∃q(a=q ⋅ b+r 	 r<b) .

Basis: a=0 : now, q=r=0 work ( 0<b ).

Induction step: assume we have r and q such that

a=q ⋅ b+r 	 r<b (1)

(induction hypothesis). to show the existence of Q and R such that

a+1=Q ⋅ b+R 	 R<b . (2) (?)

Of course, from (1), we have

a+1=q ⋅ b+(r+1) . (3)

Thus, if we have r+1<b (Case 1), then we are done: Q=q and R=r+1 . It remains to
consider the possibility that ¬(r+1<b) (Case 2).

In Case 2: we know that r<b , which means that b=r+s , and s≠0 (otherwise we would have
b=r ). Thus, s=t+1 , some t . b=r+t+1=r+1+t . If here t≠0 , then r+1<b , which we assumed
not to be the case. Therefore, t=0 , and we conclude b=r+1 . (In the last couple of lines, we
inferred from r<b and ¬(r+1<b) that r+1=b , which looks a fairly obvious step ...)

From (3) and b=r+1 , we conclude that a+1=q ⋅ b+b=(q+1) ⋅ b . But then, (2) holds with Q=q
and R=0 ( 0<b !). �

[15] ∀a∀b∃d.GCD(a,b,d)

Proof: By the WOP (see [6] above). More precisely, we prove the following statement by the
WOP on the variable a :

P(a) ≡ ∀b(b<a ����� ∃d.GCD(a,b,d)) . (1)

6



We note that this will be enough. Namely, if b=a , then GCD(a,a,a) , as is easily seen, that is
d=a works. If, on the other hand, b>a , then GCD(a,b,d) iff GCD(b,a,d) as is easily seen,
and thus we are back in the case " a<b ".

Reminder: the WOP says

∀a[∀k(k<a ��� P(k)) ����� P(a)] ������� ∀aP(a) (2)

For our P in (1), we prove

∀k(k<a ��� P(k))) ����� P(a) (?)

("induction step according to the WOP"). Thus, we assume

∀k(k<a ��� P(k))) , (3)

to prove

P(a) . (??)

Therefore, we let b<a , and try to show that there is d with GCD(a,b,d) . If b=0 , there is
no problem: GCD(a,0,0) as is easily seen. Assume 0<b . But then we have
∃q∃r(a=q ⋅ b+r 	 r<b) ; take such q and r ( r=amodb ).

Lemma ∀d(GCD(a,b,d) ����� GCD(b,r,d))

Proof of Lemma: use Ax13 (definition of GCD(-,-) ); the proof is easy.

We have that b<a , and so, by (3), we have P(b) , Since r<b , we have some d such that
GCD(b,r,d) . By the last lemma, GCD(a,b,d) . We have thus proved (??), and therefore also
(?). By (2), we have ∀aP(a) ; and as we noted before, this suffices.

��� � �

[16] ∀a∀b∃u∃v∃u∃v. gcd(a,b)+u ⋅ a+v ⋅ b=u ⋅ a+v ⋅ b .

Proof: similar to that of [15]; in fact, it is an extension of the proof of [15]. The statement is
the same as

��� � �

∀a∀b∃u∃v∃u∃v∃d GCD(a,b,d) 	 d+u ⋅ a+v ⋅ b=u ⋅ a+v ⋅ b .

Instead of proving

P(a) ≡ ∀b(b<a ����� ∃d.GCD(a,b,d))

by WOP, we prove

��� � �

Q(a) ≡ ∀b(b<a ����� ∃d.(GCD(a,b,d) 	 ∃u∃v∃u∃v(d+u ⋅ a+v ⋅ b=u ⋅ a+v ⋅ b)) .

The details are omitted.
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[17] ∀p∀a∀b((Pr(p) 	 p � a ⋅ b) ����� (p
�
a � p

�
b) .

"Standard" algebra proof, using [16]. Assume Pr(p) 	 p � a ⋅ b) , to prove

p
�

a � p
�
b . (1)

Let d=gcd(p,b) . Since d � p , we must have either d=1 or d=p . If the second alternative
holds, then d=p � b , and (1) is done. In the first case, using [16] , we have

� �

1+u ⋅ b+v ⋅ p=u ⋅ b+v ⋅ p .

Multiplying with a , we get

� �

a+u ⋅ a ⋅ b+v ⋅ ap=u ⋅ a ⋅ b+v ⋅ ap . (2)

Lemma If a+p ⋅ r=p ⋅ s , then p � a .

In effect, we used essentially this in [10]; I omit the easy proof.

The Lemma applies to (1), since, by assumption p � a ⋅ b , the LHS in (1) is of the form
a+p ⋅ r , and the RHS is of the form p ⋅ s . We conclude that p � a , and (1) is proved again.
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