Answer sAssnmt6/MATH 318/Fall, 2007
[1] PA F [x.x=0 v [y.x=y+1

Induction (on X ):
Basis: x=0. P(0) : 0=0v ... : TRUE

Induction step:
Induction hypothesis: x=0 v y.x=y+1
to show: Sx=0 v Oy.Sx=y+1 (1)~

Theorem of PA: x+1=Sx (L4) .
Therefore, (1) holds "with y=x". o

Formal: Abbreviate: P(x) :=: x=0 v [y.x=y+1.

1 0=0 E
P(0) 2 0=0 v Oy.0=y+1 T:1

3 P(x) P

4 Sx=x+1 Theorem (of PA)

5 Ly.Sx=y+1 EG:4
P(Sx) 6 Sx=0 v [y.Sx=y+1 T:5

7 P(x) — P(Sx) T:6
Ind.Step 8 0x.P(X) — P(Sx) uG:7

9 P(0) A Ox.P(x)— P(Sx). T:2,8

10 [P(O) A Ox.P(X)—> P(Sx).] —— OxP(x) Thm
(M1;AxXSCh)

|11 OxP(x) T:2,8,11

[2] OxOyOu.(X+u=y+u—> X=y)

Induction on u : induction statement: P(u) :=: xtu=y+u—>x=y ("fixed" X,y )
Basis. u=0 : x+O:y+O—?e X=y . O.

Axl— ”
Xy
Induction step:
Ind. hyp.: x+u=y+u—s x=y
to show X+SU=y+Su—s> x=y ?
assume x+Su=y+Su. By Ax2 , we get S(x+u)=S(yll u) . By Ax 7, we
get x+u=y+u . By ind. hyp., we get x=y o.
Formal: Abbreviate: P(u) :=: xtu=y+u—sx=y .
1 [P(0) A Ou(P(u)— P(Su))] —— OuP(u)
2 Ux.X+0=x Thm (Ax1)
3 X+0=X usS:2
4 y+0=y Us.2
5 X=y —> X=y T
P(0) 6 X+0=y+0—> x=y E (x2): 34,5
Ind.Hyp:
P(u) :
7 X+u=y+u— X=y P
8 8 X+Su=y+Su P




9 OxOy(x+Sy = S(x+y) Thm (Ax2)
10 x+Su = §(x+u) us;9
11 y+Su = §(y+u) us;9

8 12 S(x+u) = §(y+u) E:8,10,11
13 OxOy(Sx=Sy—> x=y) Thm (AX7)
14  S(x+u) = §y+u) — X+u=y+u US:13

7,8 15 x=y E+T:8,10,11,14,7

P(Su):

16 x+Su=y+SuU — x=y D:15
18 P(u)— P(Su) D:16
19 Ou(P(u)— P(Su)) uG:18
20 [OuP(u) T:1,6,19
21  DxOyOuP(u) UG:20

[3] u+tv=0 — u=0 A v=0.

Assume u+v=0, to prove vzo. By [1], if v#0,then v=Sy for some y . But then
u+v=u+Sy=S(u+y)z0 by Ax6. Therefore, v=0 must hold. Then, u=u+0=u+v=0, and u=0
too.

Formal: omitted.

[4] We prove

< isreflexive,

< istrangtive,

< isantisymmetric,
< is dichotomous.

N

ApwWbhE

1 XEX 1 XEX §et [u.x+u=x ; but RHS is true, with u=0 (Ax1)

see Ax8
I)

2. XY A ySZ='> X<z . Assume x<y & y<z.Thatis(Ax8), wehave u and v such
that x+tu=y & y+v=z. It followsthat (x+u)+v=z,and by Thmil, that x+(u+v)=z , Therefore,
w=u+v witnesses that [w.x+w=z , that is, X<z .o

?
3. XSY A YSX = X=y .Assume X<y and y<x, that is, the existenceof u and v

such that x+u=y and y+v=x.But then (x+u)+v=x, and (Thml), x+(u+v)=x=x+0. By
cancellation, u+v=0. By [3], u=v=0 ; y=x+u=x+0=x . O

?
4, X<y v y<x . Inductionon x .

2

Basis: x=0: 0<y v y<0.Yes, since 0<y; thisisbecause 0<y < [.0+u=y , for which
u=y works, since 0+y=y+0=y (see Thm2, Ax1).
Induction step: Assume x<y or y<x (induction hypothesis), to show

SXLY v ySX Q) ?



Case 1: x<y . Thereis u: y=x+u.Weapply [1] tOo u.

Case 11 u=0. Now y=x, and y=x<Sx=x+1 (see L4); 2nd alternative holdsin
1)

Case 1.2 u=Sv=v+1; now, y=x+u=x+(v+1)=x+(1+v)=(x+1)+v=Sx+v ; which
means that Sx<y : 1st alternative in (1).

Case 2. y<x, Then y<x<Sx(=x+1) , and by trangitivity of <, y<Sx: 2nd aternativein (1).
O

[5] XSy+1l & X<y v x=y+1 2
1. = : Assume x<y+1 . y+1=Sy=x+u for some u.Use[1] onu . Either u=1, or
u=v+1 (sOme v). In the first case, y+1=x, thus @nd alternative in (2) holds. In the second

case, y+1=x+v+l, thus Sy=S(x+v) , and y=x+v by Ax2, that is, x<y : 1st alternative in (2).
O

We abbreviate X<y A xzy by x<y.

[6] (1) WOP: On[Ck(k<n— P(k)) — P(n)]—— OnP(n)
(i) LNP: (ExPx) —— [u(Pu A Ov(Pv—u<v))
(ii1) GNP: ON[(CKP(k) A Ok(P(k)— k<N))— (ChP(n) A Ok(P(k)— k<n)) .

[7] (i) WOP proved in PA (informally): We have PN given, and we assume that
On[Ok(k<n— P(k)) — P(n)] *)
to prove
OnP(n) .
In order to do this, we show
Lemma Under the assumption (*), we have
On(k<n— P(k)) . ?

Once we have done the Lemma, we apply it to Sn in place of n, and since n<Sn, we will
have P(n) as desired. Therefore, it is enough to prove the Lemma.

Proof of the Lemma: by ordinary induction (MI).
Basis. n=0: The assertion is [n(k<0— P(k)) . Vacuoudly true, since k<O isaways

false.
Induction step. Assume
On(k<n— P(Kk)) , 3
to prove
On(k<Sn— P(k)) . Yds

To do so, assume k<Sn(=n+1) , to prove
PK) . ?7??

k<Sn says k<Sn and k#Sn. By [5] , thisimplies k<n . But then either k<n (Casel), or
k=n (Case2) (since < isthe reflexive verson of <). Inthe first case, by (3), we have P(K) .



Having done "Case 1", we have proved that
Ok(k<n— P(K)) .

The initial assumption (*) above now saysthat P(n) follows. That is, P(k) istruein Case 2
(k=n) too. Thus, ???,??,? areadl proved (in that order), and we are done.

(i) LNP: proof isin the brackets|[...] on p. 187 (Section 6.2)
(iif) GNP: proof is, essentially, in the Section 6.2; starts on last line, p. 187.
[8] XZ20—— (Y | X—> y<X) *)

Lemma. yz0— x<x [y . Proof of lemma: Assume y#0. By [1], y=Su, some u.
X Y=x [Bu=x [u+x=x+x [ ; this shows that x<x [y (Ax8). oLemma.

T i)
Ax4  Thm2
To prove (*), assume x#0 ; to prove y|[Xx— y<x, assume y|x, to prove y<x.By y|x,

we have x=y [, some u. Since x#£0, we have uz0 . Therefore, by Lemma, y<y[l=x as
desired.

[9] | isareflexive order.
| isreflexive: x|x since x=x[1 (L5Thmb).

?

y z,toshow X | z . The assumptions give (Ax9) y=x[l and
xQuby) ; z=x0v for w=ulV/; x|z (Ax9)

Ro

| istransitive: assume X |y
z=y [V , hence, z=(x [u) [¥

>— |l

T

>

m

2
| isantisymmetric: xgy & y|x == x=y.Assume x|y & y|x . Case 1 x=0. Then, by
X|y,y=x (some u), and so y=0[U=0 (L3), and x=y=0 as desired. Case 2: x£0 .
Therefore, also y#0 (since otherwise y|x, x=y [V, gives x=0). By x|y and x#0, we
have x<y by [8] . Smilarly, since x and y play symmetric roles in the theorem to be
proved, we can show y<x . By the fact that < isareflexive order, hence antisymmetric, we
conclude that x=y . o

[10] (X |y A x[(y+1))—x=1.

Assume x|y and x|(y+1) . Wehave u and v for which y=x[l and y+1=x[V . Thus
X WH1=x V¥ = x ¥ + 0. Q)

We have either usv (Case1l) or v<u (Case2) (see[4]).

But Case 2 isimpossible: it would mean u=v+w ,

X [+l = x [{v+w)+1 = (X D+x [W)+1 = x [V+(x [v+1)



which, together with (1), and [2] (cancellation) with Thm2 (commutativity), would give
x [(W+1=0, false by (L4 and) Ax®6.

Case 1 remains the only possibility; v=u+w some w . From (1),
X [u+1=x [{u+w)=x fu+x (W ; by [2] and Thm2, 1=x [W . By [8], since x#0, we get x<1,

1=x+s; and by [1], x=Sz=z+1, some z. Thus, 1=z+1+s; by Thml, Thm2, [2], z+s=0; by [3],
z=s=0. Thus, x=z+1=1. Done.

[11] (y#0 A y£1)—— [z(Pr(2) A z|y) . Assume yz0 and y#1.We apply the LNP (see
[6] above),

(IXPx) — u(Pu A Ov(Pv— u<v)) (1)
to the statement

P(x) :=: X|y A x£L.

op 7 opd [XP(x) : indeed, x=y workssince y|y ([9]) and y#1 (assumption). By (1), we
have some u suchthat Pu and

Ov(Pv— USV) . )
Since Pu,wehave u|y and u#l.Weclaim
u isaprime = Pr(u) = Ov(v|u— v=1v v=u) 3)(?
To prove (2), assume Vv |u, to show v=1 v v=u (??); that is, assuming v#1, wewant v=u
(??77).Butby v|u|y,wehave v|y ([9]), and together with v#1, Pv.By (2) and Pv, we
have usv . Since v|u and uz0 (because u|y#0 (!)), by [8], we have v=<u . usv&v<u
gives ([2]) u=v asdesired.

In conclusion: we found u suchthat u|y and Pr(u) .o

[12] OxOy(y#0 A Ou((usx A u£0)—u|y))
By induction on X .

Basis. x=0.y=1=S0 now workssince (usx a uz0)= . (conditionon y is
vacuous).

Induction step: Suppose, with x arbitrary, that
Cy(y#0 A Ou((usx A u£0)— u|y))
(induction hypothesis). Let y be such that
yZ0 A Ou((usx A uz0)—u|y) . Q)
Let z=y[(SX), | claim that z isappropriate for

z£0 A Ou((usSx A uz0)—u|2) (?



z=y [{SX) # 0 since y20 and Sx#0 (Ax6) [there should be a Lemma that says
uz0&v£0 = ulvz0 ]

Assume usSx A u#£0. By [5], usSx implies usx (Case 1), or u=Sx (Case 2). In Casel, by
(1), u|y,andsince y|z, by definition of z, wehave u|z asrequired for (?). In Case 2,
again, u|z. o
[13] [OxOz(Pr(z) Ax<2z)
Let x beany number. By [12], thereis y suchthat y#0 A DOu((usx A uz0)—u|y) . By
[11], let z besuchthat Pr(z) A z|(y+1) . Since z|(y+1),and Pr(z) (andthus z#1), by
[10], we have that -(z|y) . But for all u suchthat usx A u#z0, we have u|y . Therefore,
a(z=x A z#£0) . We dso know that z#0 since Pr(z) . Therefore, -(z<x) , and thus, by [4], we
have x<z.We have both Pr(z) and x<z . Done.
[14] Oalb(0<b— [rg(a=q [b+r A r<b)
Proof. Assume O<b . By induction on a, we prove

[(r(g(a=q [b+r A r<b) .
Basis: a=0: now, g=r=0 work ( 0<b).
Induction step: assume we have r and q such that

a=q[b+r A r<b (1)
(induction hypothesis). to show the existence of Q and R such that

at1=Q[+R A R<b. 2 ?
Of course, from (1), we have

atl=q[b+(r+l) . 3

Thus, if we have r+1<b (Case 1), then we are done: Q=g and R=r+1. It remainsto
consider the possibility that -(r+1<b) (Case 2).

In Case 2: we know that r<b, which meansthat b=r+s, and s£0 (otherwise we would have
b=r). Thus, s=t+1, some t. b=r+t+1=r+1+t. If here t£0, then r+1<b, which we assumed
not to be the case. Therefore, t=0, and we conclude b=r+1 . (In the last couple of lines, we
inferred from r<b and -(r+1<b) that r+1=b, which looks afairly obvious step ...)

From (3) and b=r+1, we conclude that at+1=q[b+b=(gq+1) [b . But then, (2) holds with Q=q
and R=0 (O<b!).o

[15] Oalbd.GCD(a,b,d)

Proof: By the WOP (see [6] above). More precisely, we prove the following statement by the
WOP on the variable a:

P(a) = Ob(b<a—s [d.GCD(ab,d)) . (1)



We note that this will be enough. Namely, if b=a, then GCD(a,aa) , asiseasly seen, that is
d=a works. If, on the other hand, b>a, then GCD(ab,d) iff GCD(b,a,d) asiseasly seen,
and thus we are back in the case " a<b".
Reminder: the WOP says
Oa] Ok(k<a— P(k)) — P(a)]—— 0aP(a) 2

For our P in (1), we prove

Ok(k<a— P(k)))— P(a) ?
("induction step according to the WOP"). Thus, we assume

Ok(k<a— P(k))) , (3)
to prove

P(a) . (?7?)
Therefore, we let b<a, and try to show that thereis d with GCD(ab,d) . If b=0, thereis
no problem: GCD(a,0,0) asiseasly seen. Assume O<b . But then we have
(gCr(a=q [b+r A r<b) ; take such g and r ( r=amodb ).
Lemma Od(GCD(ab,d) < GCD(b,r,d))
Proof of Lemma: use Ax13 (definition of GCD(-,-) ); the proof is easy.
We have that b<a, and so, by (3), we have P(b) , Since r<b, we have some d such that

GCD(b,r,d) . By the last lemma, GCD(a,b,d) . We have thus proved (??), and therefore also
(?). By (2), we have [aP(a) ; and as we noted before, this suffices.

[16] OalbCulvOuCV. ged(a,b)+u (a+v [b=ua+v (b .

Proof: similar to that of [15]; in fact, it is an extension of the proof of [15]. The statement is
the same as

DalbCulvOulv Cd GCD(ab,d) A d+U Ca+v [h=uCa+v [b .
Instead of proving

P(@ = Ob(b<a— [1d.GCD(a,b,d))
by WOP, we prove

Q@) = Ob(b<a—s [d.(GCD(a,b,d) A CulvOUOV(d+U Ca+v [b=u Cat+v [b)) .

The details are omitted.



[17]  OpOalb((Pr(p) A p|atb) — (plav p|b).
"Standard" algebra proof, using [16]. Assume Pr(p) A p|alb) , to prove
plav plb. D

Let d=gcd(p,b) . Since d|p, we must have either d=1 or d=p . If the second alternative
holds, then d=p|b, and (1) isdone. In the first case, using [16] , we have

1+U [b+v [p=ub+v [p .

Multiplying with a, we get

a+U [alb+v [ap=u [alb+v [&p . )
Lemma If a+rpli=p[s,then p|a .
In effect, we used essentially thisin [10]; | omit the easy proof.

The Lemma applies to (1), since, by assumption p|alb, the LHSin (1) isof the form
atp I, and the RHS is of the form p[$. We conclude that p|a, and (1) is proved again.



