Section 6.3 Counting

Counting means assigning consecutive natural numbers to the elements of a set in a one-to-one
fashion. Let us formulate counting in a mathematical style.

With n anatural number, let [ n) denote the set

[n) = {keN|k<n}={0,1, ..., n-2 n-1};
def

[ n) isthe primordial set with exactly n elements. If n=0, [n) =0, the empty set;
[1) ={0} ,[2) ={0, 1} ,etc.

We say that the cardinality of the set X is n, or that the number of elementsof X is n , if

thereisabijection f: [ n) QX ; the function f provides the counting of X.

The question arises if one could have a bijection f: [ n) &X and another

g:[m QX with the same set X, but with different n and m; if so, the notion of

cardinality would not be well-defined. The answer to the question is "no"; the described
situation is impossible. Namely, if we had that situation, h = g~ 1of [n) ——[m

def
would be a bijection (see Chapter 1, p.25, where it is stated that the composite of two

bijections is a bijection), and we would have a bijection between two different sets of the form
[ n) , contrary to the third of the following propositions:

If h:[n) ——[m isaninjection, n <m;
if h:[n) ——[m isasurjection, n=m;
if h:[n) ——[m isabijection, n=m.

The proof of these assertions use induction; of course, the last part is a consequence of the two
previous parts.

Wecall aset A finiteif there exists n €N such that the cardinality of A is n. Thatis, A
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isfinite if there exists a bijection of the form [ n) QA , with n ¢ N . The cardinality of the

set A isdenotedby | Al ; | Al isdefined justincase A isfinite (in set theory, one talks
about the cardinality of infinite sets too; we will not do so here). Thus, e.g.,

I[n) | =n (nelN)
(exemplified by the identity function 1[ n) :[n) —[n)).
A frequently applied method of finding out the cardinality of aset X isto find another set Y
the cardinality of which is known, and to establish a bijection of X and Y ; in this case we

know that the cardinality of X isthe same asthat of Y . The principleis

0

If 1Y =n and f:Y >X, then Xl =n.

Thisis obvious, since, under the assumptions here, we have some g: [ n) —D>Y , and then

fog:[n) X,
One smple law concerning finiteness is that

any subset of a finite set is finite; moreover, a proper subset of a finite set has a strictly
smaller cardinality.

The rigorous proof is by an induction: one proves by induction on the natural number n that
any subset of a set of cardinality n isfinite, in fact, of cardinality <n .
The three propositions stated above immediately generalize in the following forms:

If h: A~——~B isaninjection, Al <|B/;

<
if h: A—B isasaurjection, |[Al=|B]I;
if h: A—B isabijection, [Al=1B].
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The third proposition expresses the fundamental fact of life according to which if we count a
pile of pebbles on two occasions, and in the meantime, no pebble was added or taken away,
then the numbers arrived at must be the same.

The first proposition is equivalent to the so-called pigeon-hole principle, according to which

if we have put n thingsinto lessthan n holes, then in at least one hole, we have put
at least two things.

Namely, let the set of the thingsbe A andthesetof holes B; |Al=n and |B|l<n; let
the function f: A——>B map every thingin A tothe holeitisputinto; since |A|l>|B]|,
f cannot be an injection, that is, there are a, #a, in A for which f(al) :f(az) ,l.e,
a, and a, are put into the same hole.

E.g., among thirteen people, there must always be at least two who were born in the same
month. Among thirteen integers, there always are two distinct ones whose difference is
divisble by 12 : there are two that give the same remainder when divided by 12 , and their
difference isdivisbleby 12 .

If f: A——A isaninjective function of a finite set A into itself, then f isa
bijection; if f: A——>A isa surjective function of a finite set A into itself, then f isa
bijection.

To see the first assertion, assume that f: A——>A isinjective. Suppose f isnot surjective, to
derive a contradiction. There is some alJA suchthat allrange(f) . Then the same
function f can be considered a function from A to A-{a} ;thatis f: A——>A-{a} ; f

so construed is still injective. But then we would have |A [< |A-{a} | , contradicting the
fact that A-{a} isaproper subset of A. This contradiction provesthat f must be
surjective.
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The other half of the proposition is proved similarly; now, we take away an element from the
domain, rather than from the codomain.

An application of the last-stated principle is the important proposition that

the congruence ax =b (nod n) issolvable for the unknown x provided
gcd(a, n)=1.

(For congruences, see section 2.2 in Chapter 2.)

To see this, first of all, recall that we denoted the set of all equivalence classes of the
congruence nod n by 7/ n, andthat we proved that 7/ n hasexactly n elements; in
particular, it is a finite set. Now, consider the mapping f: N/ n——>N/ n that takes [ x] to
[ ax] .Is f well-defined? For this, we need that if [ x] =[y] , then [ ax] =[ ay] . But
thisistrue: see Exercise 2 on page 45 of Chapter 2.

Under the assumption that gcd(a, n) =1, f isaninjective map:if [ ax] =[ ay] , then
ax=ay (nod n) , thatis, n|ax-ay=a(x-y) ; andsince gcd(a, n)=1,thatis, a and
n have no common prime factor, we must have that n|x-y , which means x=y (nod n) ,
andso [x]=[y] .

By our last stated principle, f issurjective. Thisiswhat we want: the surjectivity of f
means that for any [ b] O0Z/ n there exists [ x] OZ/ n suchthat f ([ x])=[b] ,thatis,
[ ax] =[ b] , that is, thereis xOZ suchthat ax=b (nod n) .

The basic laws of counting connect operations on sets with operations on numbers. Here are
the most important ones; the sets A, B, etc. are assumed to be finite.

IAUB| = |AI+|B] (1)

providked AhnB=0 ( A and B aredigoint),
IAxB| = |AIOB/, (2
B =B A . (3)
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These laws contain the information that the operations of union, Cartesian product, and
exponentiation, when applied to finite sets, result in finite sets again. The laws can be proved
by appropriate inductions; e.g., the last one by inductionon | A | . Let us see how this proof
goes.

Basis Step. | A1 =0 . Inthiscase, A isempty, and there is exactly one function from

A=0 to(any set) B. Therefore, | BA | =1 . Also, by the definition of exponentiation of
numbers, | B \' Al | B \O =1 . This shows that the desired equality holds in this case.

Induction Step. Al =n + 1, thatis, thereisabijection f:[n+l) ——>A . Let
a=f(n), andlet A =A- {a} . Thefunction f restricted to the subset [ n) of its
domain, g =f [ n) , isnow abijection from [n) to A" ;inparticular, |A | =n.
Now, we set up a bijection

g: BY xB 55 pA

asfollows: to any pair (s, b) O BA x B where s isafunction s: A —B and b(B,

g assignsthe function t: A—B for which

s(x) if x#a (hence, x eA)
t(x) =
b if x=a

It is easy to check that g isindeed a bijection. It follows that

BA=18Y xB - 18" oB by (2))
=BI"OB] (by the induction hypothesis,
BN 1=1B", snce IA 1=n)
= | BIn+1 (by the laws mlzm,

nPM =nl Dm[ for exponentiation of numbers)

=g|'A

as desired.
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An application of the last fact is the proof of the relation
=2 A

or in words, the number of all subsets of an n-element set is 2" . The reason for this s that
the subsets of A are in a one-to-one correspondence with the functions A——~{0, 1} : if
X OA, we consider Xx: A—{0, 1} , the characteristic function of X, defined by

1if adX

Xy(a) =
X 0 if adX

Any function x: A—{0, 1} isthe characteristic function of a unique subset X of A,
namely of X={alA | x(a) =1} . Thus, we have the bijection

A — 2 0, 137

_ oAl

and therefore, | P(A) | = {0, 1}A| as claimed.

The laws (1), (2), (3) are generalized to many-termed unions/sums and Cartesian
products/products as follows. In what follows, | and each AI are assumed to be finite sets.
Sum rule:

UA = L TA provided the A, are pairwise digoint:
i €l i €l
AinAj=theneveri,le and i #] .

Product rule:

||_|Ai\=i|;|||Ai\

i €l
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(thus, the use of the same symbol [] for the product of numbers and the Cartesian product of
setsisjustified). The proofs of these identities are by inductionon |1 |. (1) isthe special
case of thesumrulewhen || | =2 ; (2) isthe specia case of the sum rulewhen B=1 and
Ab = { b} xA (essentialy, the case of equal-cardinality terms); (3) isthe specia case of the
product rulewhen | = A, and AI =B fordl i OI .

The sum rule can be expressed in the following informal way. We have aset A whichis
partitioned into certain subsets AI , for i 01 , or A isthedigoint union of the AI 'S,

meaning that A= 1| J AI and the AI s are pairwise digoint. Note that thisis the same as to
i €l
say that every a [ A belongsto AI for exactly oneindex i 1 . To count the elements

of A it sufficesto count the elements of each AI , and to add up the numbers obtained. We

write A= \9 A toindicate that A isthe disoint union of the A 's.
i €l

To consider a kind of situation when the sum rule is useful, let f: A—B an arbitrary
function. Then the sets f 1( {b}) when b runsover B form a partition of A : every
alA isin exactly one of the sets f 1( {b}) , namely the one for which b=f (a) . The sum

ruesaysthat |Al= ) If'l({b}) . If we also assume that the sets f'l({b}) are
beB
al of equal cardinality, say m, thenthissaysthat | Al =mlB|.

The product rule is paraphrased as follows. An element of ] AI isthe result of m
i €l

independent choices(m=1[1 |), the i th choice constrained to lie in the set AI . The
number of such compound selections consisting of m independent choices is the product of
the numbers of the possibilities of the m individual choices.

The product rule has a generalized form which is the really useful version in practice. In this,
we have selections in which the individual choices are not independent of each other, but the

numbers of them are. We consider asubset A of a Cartesian product [] B, determined as
i <n
follows. The sequence Eai Ei<n from T[] Bi belongsto A iff each a belongsto a
i <n
certain constraint-set A( Eaj q <i) , a subset of Bi depending on the segment Eaj q <i
of the aj preceding a . The essential assumption is that the cardinality of the
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constraint-set A( Eaj q<i) does not depend on Eaj q<i ,juston i ; letussay, this
cardinality is n; :

IA(Eaj q<i) =,
at least when Eaj q<i is properly constrained: aj OA( Eak q«j) foral j<i .

Inthiscase, | Al = [] n; . Letus cal this rule the product rule for dependent selections.

i <k
The product rule for dependent selections can be proved by induction on k , the length of the
sel ections made.

Let us take a smple case illustrating the last mentioned rule. Let C be an alphabet of size n ,

*
and let us compute the number of stringsin C  in which there are no identical letters next to

each other. The set of such strings being called A, A isasubsetof [] C (we identify
i <k
strings with sequences), and Eai q<k from [] C belongsto A justin casefor each i
i <k
intherange 1<i <k , wehave a; #a; _, .Inother words, in this case

A( Eaj q<i) ={aDC|a¢ai_1}

if 1<i <k , and
A ) =C.

Thus, the numbers ni are: n0 =n, n. =n-1 when 1<i <k , and the desired number is

i
n[(n-l)k'l.

It is customary to express the above argument in the following informal way. To have a string
in which there are no two identical letters next to each other, we may take n different letters
as the first letter of the string. But for the second letter, we can take only n- 1 , since the first
one is now excluded. This says that the number of compound choices for the first two
positionsis n(n-1) . For the third letter we can again choose from n- 1 letters, the ones
that are different from the second letter, whatever that was; thus, there are n(n-1) (n-1)
possibilities for the segment in the first three positions. Etc.; the number of such strings of

208



length k is n(n-1) K1

We can see that the informal argument actually reproves the product rule by induction on k .
Let us determine the cardinality of some important finite sets.

Supposethat Al =m, |Bl=n and m<n . Then the number of injections

AQB between two given sets A and B is

1 (n-i) =nn-1) O.. On-m2)(n-ml)
i <m

This can be easily shown by the product rule for dependent selections. First of all, we may
assume without loss of generality that A=[m . A function A——>B isa sequence

Ebi q<m with each bi 0 B. The sequence Ebi q<m isaninjection iff foral i <m,
bi differsfrom b, for each j <i . This meansthat bi in Ebi q<n is constrained to

J
liein the set

. foral j <i} .

B( b § ;) ={bOB | b#b,

The latter set has cardinality n - i , since the bj 's are al distinct (the selection Ebj q <i
being "properly constrained"), and hence, there are exactly i of them. We see that the

cardinality of the constraint-set B( Ebj q <i) is independent of the segment Ebj q <i it
dependson i only. The product rule, for the variant for dependent selections, gives that the

desired number is  [] (n-i) aspromised.
i <m

A special case of the last proposition, for the case m=n, isthe following.

The number of bijections between two fixed sets of the same cardinality n is n! ;in
particular, the number of permutations of a set of cardinality n is n! .

209



Indeed, this follows from the previous proposition, since any injection from a set to another of
the same cardinality is a bijection, as we stated above.

Note that the injections from [ m) into an aphabet A are the same as the strings in A* of
length m in which no letter is repeated; the proposition above gives a formula for the number
of such strings.

Let ( E) (read: " n-choose-k ") denote the number of k-element subsets (more briefly:

k-subsets) of an n-element set. Clearly, if n <k, then (}}) =0 . Als, (8) =(p) =1.
We claim that

(E) = —k!(ﬂl-k)! whenever k <n.

To show this, let usfix k and n, k <n. Lettheset of all permutationsof [ n) be
caled P, andletthe set of all k-subsetsof [n) be S. We partition the permutations of

[ n) into as many digoint sets as there are k-subsetsof [n) .Let o:[n) Q[n) be

any permutation; consider the set of values of ¢ at thefirst k arguments O, 1, ... ,
k-1, thatis, the set
xadéf {o(0), o(1), ..., o(k-1)} .

Since o isone-to-one, XU isa k-subset of [ n) . Consider the function

f:P—>S
gl—— Xa.

For any k-subset XOS of [n) , f'l({X}) consists of those permutations ¢ for which
Xo isthe given set X;

H00) = {o] X=X .
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We claim that

FTL9) =k (n-k) ! @)

independently of X . This equality is based on the following general fact.

Suppose A:Alﬁﬂxz and 8281%2’ assume that \A1|= \Bll , \A2|= \BZI (and, as a

consequence, |Al = IBl ), and let usconsider theset T of those bijections a: A U >B for
which o{Al] :Bl , that is, o maps A1 onto B1 . Then, writing (temporarily)
Bij (U, V) forthesetof al bijections UQV, we have a bijective mapping
O - - ,
T————>Bij (Al’ Bl) x Bij (A2, Bz) (4
oF—> ( arAl : arA2 )

The point is that if the bijection oz A-=>B maps (bijectively) A, onto B, , thenit

necessarily maps the rest of A, A2 , bijectively onto 82 , therest of B . In other words, if
oJT , then elzarAlDBij (Al’ Bl) and 92=GPA2DBi ] (A2, BZ) . Conversely, if
GlDBi ] (Al' Bl) , GZDBij (A2, BZ) , then o defined by

6,(a) if aDA

1
ofa) = |
6,(a) if alA,

. N O . : :
isabijection o: A———B for which arAl—el and arAZ—OZ.

In our application, A=B=[n) , A1=[ k) , A2=[ n)-[k), Blzx, 82:[ n) - X. Then the

set T iswhat wecaled f~1({X}) . Since IA;I=B,I=k, IA,l=B,l=n-k, wehave
Bij (Al’ Bl) | =k! , IBij (A2, BZ) | =(n-k)! . Therelation (4') therefore tells us that
TI=k! [{n-k)! , asdesred. This shows (4).

Since for each k-subset X of [n) , f'l({X}) is of the same cardinality, namely
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k! (n-k)! ,and P ispartitionedinto () sets f 1({X}) ,we have
[PI=(Q) K (n-K)! .

But we know that | P | = n! . The desired expression for (E) follows by dividing by
k! (n-k)! .

The numbers ( E) are caled the binomial coefficients, because their appearance in the

Binomial theorem:

(x+y)" = Z(E)xkyn'k (nON, n=1) .
k<n

This equality is immediate when one considers that in the product (x+y) ... (x+y) (n

factors), when written out via the distributive law as a sum of monomials xkyn' K , the

number of terms with exactly k x-factors (and hence exactly n- k y-factors) is the same as
the number of ways we can select k factors ( x+y) out of the n such; the latter number is,

by definition, (}) -

The binomial coefficients satisfy many identities. One such is

() * (D) = (jh) -

The reason for thisisthe fact that the set S of k+1-subsetsof [ n+1) is partitioned into
two digoint subsets, S1 and 82 , according to whether X € S does or does not contain the
element n . The elements of S1 are in one-to-one correspondence with the k-subsets of

[ n) :with X sSl , take away from X the fixed element n , and get a k-element subset of
[n) . 82 is nothing but the set of all k+1-subsetsof [ n) . Thus
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1Si=(piD) . 1Sy =() . and 1S, 1=(, 1),

and since S =S, UDSZ . the assertion follows.

The last-proved identity gives a recursive definition of the binomial coefficients. The
successive calculation of the binomial coefficients is suggested by the Pascal triangle:

(9
(3 (D
(3 (D (3
HEGHEORE)
(5 (D (3 (3 (D
HEGEGEOEHES

in which every coefficient is the sum of the two immediately above it, and in which all the
values on the two sloping sidesareequal to 1 .

Substituting particular valuesfor x and y in the binomial theorem, we get various identities
involving the binomial coefficients. E.g., if weput x =-1, y =1, weobtan

(-1+)"=0= 7T (-1*D (nz1),
k<n
that is,
(- (D+ -+ ") DD =o.

Since (8) =1, we may rewrite this as
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M-+ RN ™D =

that is,

=1 (n>1) ©)

n
L (-1)
k=1
We will make use of the last identity in establishing the so-called sieve principle, or
inclusion/exclusion principle.

The principle mentioned concerns the way one can compute the cardinality of a union of sets.
The sum rule gives the answer when the sets involved are pairwise digoint. In the general
case, the answer involves the cardinalities of the various intersections of the given sets (which
are all equal to 0 inthe digoint case).

Consider the special case of the union of two sets. We have

|A1UA2\=|A1\+|A2\- IAlf\Az\;

the reason is that "when we add up the cardinalities of A1 and A2 , We count the elements in
the intersection A1 N A2 twice; subtracting the cardinality of the intersection corrects this".

The case of three setsislike this:

|A1UA2UA3\=
|A1|+|A2\+|A3\- IAlf\Az\- |A1AA3\- |A20A3\+ \Alf\Azf\Ag\.

An argument justifying this would say that the corrections afforded by the three subtractions
over-correct precisely for the elements that are in at least two of the double intersections; but
these are exactly the elements which are in the triple intersection; hence, we have to
compensate by adding the cardinality of that triple intersection.

We have to admit that these arguments, although intuitive, fall somewhat short of the ideal of

a clear mathematical proof. Considering that the general case of an arbitrary number of setsis
likely to be more involved, we are drawn to a more serious mathematical approach.
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First of al, let us state the general result:

|\nin| - T (-pkHt y A A A nA
i=1 k=1 1<i ,<i ,<...<i_ <n 1 2 k
172 k
or in amore detailed form
IAlquu...uAn\=
n
YOIA |- | , | . n A
i:1AI 1<i A' AI2 1<| < A' AI2 A'3
1 2 3
+(-1)n+1|A1f\A2f\... nA L
Here, e.g. the sum 1< |AI AI |istakenoveral|pairs(i1, i2) of integers
|1 2 2

between 1 and n inclusive such that i 1 <j 5 -

To prove this, we introduce the concept of multiset. Let X be alarge set so that every set we
may want to consider isasubset of X . A multiset is a function assigning a positive, negative
or zero integer to every element of X ; briefly, afunction M from X to 7, M X——T1 .
Intuitively, M isa"set" for which the thingsin X may bein M with various "multiplicities’;
M x) isthe multiplicity of x in M. E.g.,, with X=IN, we may consider the multiset M
for which M n) =0 foral n=5, and M0)=1, M1)=-4, M2)=0, M3)=1,

M 4) =2 . We consider only finite multisets, that is, ones in which only finitely many
elements have a multiplicity different from O .

A simple notation for concrete multisets follows the notation for functions; the multiset in the
example may be denoted by

=W
N B~
~

(6)

OoN

215



It is understood that for any x &€ X not in the upper row of the notation, the multiplicity is
0.

Any ordinary set A (asubset of X) isconsidered as a multiset E for which

1 if xeA

Ax) =
0O iIf xOA .

In other words, E is the characteristic function of A asasubset of X. E.g,, if

A={0,2,5)}, then Alis
_,012345
AN=(G5i06D:

The cardinality of amultiset M, | M|, is, by definition, the sum of the multiplicities of the

elements: | M| = ) Mx) ; since we assume that only finitely many M x) are different
x eX
from O , the sum is awell-defined integer. E.g., in the example, | M| = 0, athough M is

far from being the same as the empty set.

Note that for afinite set A, the usual cardinality of A and the cardinality of it as a multiset

aethesame: | Al = \E\ )

We define addition of multisets by simply adding multiplicities: the multiset M+ N is defined
by the equality

(M+N) (x) = Mx) +N(x)

def
In other words, the multiplicity of an element x in the sum-multiset MtN is, by definition,

the sum of the multiplicitiesof x in M and N.

E.g.,, for M asabove, andfor A={0, 2, 5}, M+E is the multiset

(O 1234 5)

2-41121"-

If a isaninteger, a M or more simply aM, (scalar multiplication) is the multiset for
which
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(aM (x) = aMx) .

def

E.g., the multiset (-1)Efor A asabove is (_2 i 8 8513) .

([N o

-M means (-1)M,and M- N means M+ (-1) N. E.g.,, with M and A as before, M- E

012345
Is(g.2-1712-1) -

The usual rules concerning addition and scalar multiplication (commutativity, associativity,
etc) familiar from linear algebra are valid for addition and scalar multiplication of multisets,
since they are inherited from those operations on numbers.

We have the following rules connecting cardinality and the operations just introduced:
IM+ NI =Ml +INJ,
laMl =al M/ .
These are immediate from the definitions. As a consequence, the cardinality of a linear
combination of multisets is the corresponding linear combination of the cardinalities of the

terms.

The main point is the following equality of multisets: for any (ordinary) sets

Al’AZ’ ...,An,wehave

<.Z..<iksn(AilmA‘20'” AA‘k)

To prove this, we take an arbitrary x&X, and show that the multiplicity of x in the left-hand
side equals the multiplicity of x in the right-hand side. If x does not belong to any of the
Ai , that is, the multiplicity of x intheleft sideis O, then it does not belong to any of the
sets involved in the right side either, and thus its multiplicity on the right, being asum of O's,
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isalso O . Let usthen assume that x does belong to at least one AI ; thus, the multiplicity
of x ontheleftis 1. Letthoseindices /=1,...,n forwhich x sAz be
Kl < £2 <... < lm; in particular the number of these £s is m; m=> 1. Let usaso write

L = {4 ,4,, ... 41}
def 2 "}

Take an arbitrary selection i 1< i 9 <... < i K of indices between 1 and n (inclusive) ,
and ask what the multiplicity

(AilnAizn...nAik)QX) ©)

is. Clearly, thisis 1 or O depending on whether x does or does not belong to the set
Ai n AI Neoo N AI . On the other hand, x belongs to the latter set if and only if x
1 2 k

belongs to each one of the sets AI , AI y e AI , thatis, if each of il, i2,
1 2 Kk
S is the same as one of El, ZZ lm, that is, if
{il,iz,...ik}DL. 9

We have shown that (8) isequal to 1 if (9) holds; otherwise (8) is O . Therefore, with a
fixed k between 1 and n , the sum

Z”<_ <n(Ai1f\Ai2f\... nAik)QX)

I k—

equals the number of selections i 1<ip<... < [ K for which (9) holds. But this number is

nothing but the number of k-subsetsof L , and thisis (E} . It follows that the right-hand

n
side of (7), when evaluated at x , equals ) (-1) k+1(w , which is the same as
=1

m
Y (- M since () =0 for k>m. By (5)and m21, the last sum is equal to
k=1

1 . We have shown that the multiplicity of x ontherightin (7)is 1 ; since the multiplicity
ontheleftisalso 1, we have proved (7).
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Having proved (7), we may take the cardinality of the two multisetsin (7). The cardinality of
the left side is the same as the cardinality of the ordinary union-set. The cardinality of the right
side may be taken term by term, as we pointed out above. The cardinalities of the
intersection-multisets are just the cardinalities of the intersections as sets. We get the
right-hand side expression in the framed equality; that equality is thus proved.

Note that the cases of two and of three sets stated earlier are the special cases of the general
formulafor n=2 and n=3.
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