
Chapter 6 The mathematics of the natural numbers

Section 6.1 The system of the natural numbers

The most important concept of mathematics is that of natural number. These are the numbers

used for counting, among others; we talk about a set having 0 , or 1 , or 2 , 3 , etc.

elements. Before we discuss counting in detail, we need to give an overview of certain basic

properties of the natural numbers.

The natural numbers are 0 , 1 , 2 , 3 , ...; all numbers obtained by repeatedly adding 1

to the previous number, starting with 0 . This is a rather poor "definition"; and in fact, rather

than defining, one has to postulate the existence of the (set of the) natural numbers. Here we

do not attempt to build up the theory of the natural number system in an axiomatic way.

Rather, we only summarize the main points, some of which should be very familiar.

The set of all the natural numbers is denoted by
�

. The most fundamental operation on the

natural numbers is the successor operation:

S :
� ��� ����� ����� �������
n � � ����� ����� ����� ����� n + 1 ,

that is, the operation of adding 1 to a number. This operation satisfies the following

properties:

0 ≠ S(n) for all n ∈
�

;

S(n) = S(m) �	�	
 n = m for all n , m ∈
�

.

The first of these says that 0 is not the successor of any natural number, the second says that

S:
����� �������

is injective. Of course, every child knows these; the reason for pointing them out is

that, together with the principle of mathematical induction (see below), they are enough for

establishing all the needed properties of natural numbers (which is certainly a surprising fact).
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One considers many other operations on natural numbers; foremost among them are those of

addition and multiplication:

+ :
�

×
� ��� ����� ����� ����� �������

(k, n) � � ����� ����� ����� ����� ����� k + n

⋅ :
�

×
� ��� ����� ����� ����� �������

(k, n) � � ����� ����� ����� ����� ����� k ⋅n .

(In the notation of multiplication, the dot may be omitted if no confusion arises as a result: kn

may be written for k ⋅n . On the other hand, especially with numerical factors, sometimes we

use × in place of ⋅ .)

We may define these by the method of recursion, or recurrence, a very important concept not

only in mathematics, but also in computer science. The recursive definition of addition, via the

successor function, is as follows:

k + 0 = k , (ADD 1)

k + S(n) = S(k + n) . (ADD 2)

Certainly, these equations are true as we know addition (the second says that

k + (n + 1) = (k + n) + 1 ), but in what sense do they give a definition of addition? The

answer is that, although these equations do not explicitly specify what k + n is in general, by

repeated application of them, we can calculate any value of k + n . To see this, first recall

that any natural number is obtained, in fact in a unique way, by applying the S operation to

0 . If m = SS...S0 (we omitted parentheses in the function-value notation), then, according

to the second equation, (ADD 2),

k + m = k + SS...S0 = S(k + S...S0) ,

and on the right-hand-side, inside the parentheses, we now have an instance of addition with

one less S operators in the second argument. That is, we have reduced the calculation of
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k + m to another calculation, namely to that of k + n where n is the predecessor of m ,

m = Sn . We may continue reducing in this way until we hit 0 in the second argument, in

which case we apply the first recursion equation (ADD 1).

For instance,

4 + 3 = 4 + SSS0 = S(4 + SS0) ( ADD 2 with n = SS0 )

= SS(4 + S0)

= SSS(4 + 0)

= SSS4 (ADD 1)

= SS5 = S6 = 7 .

As another example for recursion, here is a recursive definition for multiplication among the

natural numbers:

k ⋅0 = 0 (MULT 1)

k ⋅Sn = k ⋅n + k (MULT 2)

This recursion uses the addition as already given, but otherwise it operates in the same way as

the previous definition: the second equation reduces the calculation of an instance of

multiplication, k ⋅Sn , to one, namely k ⋅n , in which the second argument is one less than

in the first instance. This circumstance, together with the first equation, allows us to calculate

any instance of multiplication of natural numbers in a series of steps each of which is an

application of the recursion equations (MULT 1), (MULT 2); when doing so, we have to be

able to calculate addition for any pair of arguments. E.g.,

4×3 = 4×SSS0 = 4×SS0 + 4 = (4×S0 + 4) + 4 =
= ((4×0 + 4) + 4) + 4

= ((0 + 4) + 4) + 4

= 12 .

In the case of addition and multiplication, their definition via recursion has a theoretical

significance only; however, recursion is used to specify many functions on the natural numbers
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which would be harder to define without recursion. An important example is the factorial

function:

! :
� ��� ����� ����� ����� �������

::

0! = 1 (!1)

(Sn)! = n! ⋅Sn (!2)

E.g., 4! = 3! ⋅4 = 2! ⋅3 ⋅4 = 1! ⋅2 ⋅3 ⋅4 = 0! ⋅1 ⋅2 ⋅3 ⋅4 = 1 ⋅1 ⋅2 ⋅3 ⋅4 = 24 .

Related but more general recursions define sums and products. Suppose x is a quantity, onei
for each natural number i (in other words, i � � ����� x is a given function defined on

�
).i

Then, for any n ∈
�

, we may define the quantities

�
x ,ii<n

�
xii<n

by recursion on the variable n :

�
x = 0 (SUM 1)ii<0

(the sum of zero-many terms is 0 )

�
x =

�
x + x (SUM 2)i i ni<Sn i<n

�
x = 1 (PROD 1)ii<0

(the product of zero-many terms is 1 )

�
x = (

�
x ) ⋅ x . (PROD 2)i i ni<Sn i<n
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�
x is the sum of all terms x where the subscript runs over the given range, in this casei ii<n

the set of natural numbers less than n . We may write

�
x = x + x + ... + x ;i 0 1 n-1i<n

the recursive definition of the expression makes the three dots precise. Similarly,

�
x = x ⋅x ⋅... ⋅x .i 0 1 n-1i<n

We may write sum and product expressions with ranges of subscripts different from " i < n ".

E.g.,

n+1�
x is the sum x + x + ... + x + x ;i 2 3 n n+1i=2

of course, it is really just another case of the original kind of expression:

n+1�
x =

�
xi j+2i=2 j<n

(here, j = i-2 , i.e., i = j+2 ; while i ranges from 2 to n+1 , j ranges from 0 to

n-1 ).

The factorial function is a special case of the product-expression;

n
n! =

�
i = 1 ⋅2 ⋅... ⋅n .

i=1

The famous Fibonacci numbers are defined by recursion:

f = 0 ,0
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f = 1 ,1

f = f + f ( n ∈
�
)n+2 n n+1

In other words, a sequence 〈f 〉 is defined, by saying that the first two terms of then nε
�

sequence (the ones indexed by 0 and 1 ) be equal to 1 , and any other term equal the sum

of the two previous terms. The first few Fibonacci numbers are:

f = 0 , f = 1 , f = f + f = 1 , f = f + f = 2 ,0 1 2 0 1 3 1 2

f = f + f = 3 , f = f + f = 5 , ...4 3 2 5 3 4

The fundamental method of proving facts about the natural numbers is mathematical induction.

In the axiomatic introduction of the natural number system, the principle of mathematical

induction is taken as a basic axiom. The principle says that in order to prove that all natural

numbers have a certain property , it suffices to convince oneself of two things: ooonnneee, that 0

has the property, and tttwwwooo, that the property is inherited from any natural number to the next.

One sees that this is correct, by the following intuitive argument. 0 has the property, as

assumed. But then, since it is inherited from 0 to 1 , 1 has it . Since it is inherited from 1

to 2 , 2 has it. Etc. Since by starting with 0 , applying the successor operation repeatedly,

every natural number will be eventually reached, we obtain that the every natural number has

the property.

Let us analyze the principle of mathematical induction in terms of sets. With a property P of

natural numbers, let us take the set of all those natural numbers that have property P , and let

us call this set X . Thus, " n ∈ X " is now synonymous with " n has property P ". To say

that 0 has property P is the same as to say that

0 ∈ X . (1)

To say that the property is inherited from any natural to its successor is expressed more

mathematically in this way:

for all n ∈
�

, if n ∈ X , then Sn ∈ X ,
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or, with logical abbreviations,

∀n∈
�
( n ∈ X �	�	
 Sn ∈ X ) . (2)

(Read " ∀n∈
�

" as "for all n in
�

".) The principle says that from the two assumptions (1),

(2) it follows that every natural number has property P ; this latter is simply the statement that

every natural number is in X , or even more simply, since X is already a subset of
�

, that

X =
�

. (3)

Thus, finally, the principle of mathematical induction is as follows.

PPPrrriiinnnccciiipppllleee ooofff MMMaaattthhheeemmmaaatttiiicccaaalll IIInnnddduuuccctttiiiooonnn (PPPMMMIII) Let X be any subset of
�

. Assume that

0 ∈ X (1)

and that

∀n∈
�
( n ∈ X �	�	
 Sn ∈ X ) . (2)

Then

X =
�

. (3)

Here is a formulation, directly in terms of properties rather than sets. Let us write P(n) for:

" n has property P ". Then the PMI may be stated as follows:

PPPMMMIII (ssseeecccooonnnddd fffooorrrmmm). Let P be any property of natural numbers. Assume

P(0) (1')

and
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∀n∈
�
( P(n) �	�	
 P(Sn) ) . (2')

Then

∀n∈
�
P(n) . (3')

Induction may be used, on a very basic level, to establish the fundamental laws of arithmetic

for addition, multiplication and exponentiation on the natural numbers (the same laws

concerning more comprehensive number systems are established as later steps in the process of

building up mathematics axiomatically). This happens very naturally, because those operations

are defined by recursion, and recursion and induction go hand in hand.

To see the Principle of Mathematical Induction at work, that is, for an example for a proof by

induction, let us consider a simple example concerning sums. The sum of the first n odd

n
numbers may be written as

�
(2i-1) . Experimenting with the first few values, we find

i=1

1�
(2i-1) = 1 ,

i=1

2�
(2i-1) = 1 + 3 = 4 ,

i=1

3�
(2i-1) = 1 + 3 + 5 = 9 ,

i=1

4�
(2i-1) = 1 + 3 + 5 + 7 = 16 ,

i=1

from which we may conjecture that

n 2�
(2i-1) = n (4)

i=1

for all values of n ∈
�
. We propose to show that (4) holds for all natural numbers n , by
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induction on n . This phrase means that we consider the property P of an arbitrary natural

number n that (4) holds true, or equivalently, we consider the set X of all those natural

numbers n such that (4) is true, and we apply the PMI to this property/set. First, we have to

show that 0 ∈ X (see (1)); in other words, that (4) holds for n = 0 ; this is called the bbbaaasssiiisss

sssttteeeppp of the induction.

Basis step: n = 0 in (4) .

0 2The sum
�
(2i-1) is empty, hence, by definition, it is 0 . Also, 0 = 0 . The basis step

i=1
is complete.

Secondly, we have to show that the property in question is inherited from any n to

Sn = n+1 . In other words, we want to show the statement under (2). To this end, let n be an

arbitrary natural number, and assume n ∈ X ; using this assumption, we will show that

Sn = n+1 ∈ X . This is called the iiinnnddduuuccctttiiiooonnn sssttteeeppp.

Induction step: For all n∈
�

, (4) for n implies (4) for n+1 .

We fix an arbitrary natural number n , and we assume (4) for n , that is,

n 2!:
�

(2i-1) = n . (5)
i=1

We call (5) the iiinnnddduuuccctttiiiooonnn hhhyyypppooottthhheeesssiiisss; in general, when establishing (2), or (2'), we assume

n ∈ X , respectively P(n) , and we call this assumption the induction hypothesis.

We will show that (4) holds for n+1 in place of n , that is

n+1 2?:
�

(2i-1) = (n+1) (6)
i=1

But, according to the recursive definition of summation,
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n+1 n�
(2i-1) =

�
(2i-1) + (2n+1) .

i=1 i=1 �

2(n+1)-1

Using the induction hypothesis (5), we find that the latter equals

2= n + (2n+1)

2and this is indeed the same as (n+1) , as needed for (6). The induction step is complete.

According to the PMI, we may now conclude that (4) holds generally, for all n ∈
�
.

There are other forms of the PMI. For one thing, we may start with any fixed number, rather

than 0 , and seek to prove that a property holds from that number on. E.g., if we had not

wanted to consider the empty sum in the previously proved identity, we might have asserted it

for integers n = 1 and greater; in this case, the Basis Step would have been the case n = 1 ,

and in the Induction Step, we would have argued for an arbitrary positive natural number n ,

rather than an arbitrary natural number.

More importantly, we have the version of the PMI in which we infer the truth of the induction

statement at n from the truth of the statement at all numbers less than n , rather than at the

immediately preceding value.

WWWeeellllllooorrrdddeeerrriiinnnggg PPPrrriiinnnccciiipppllleee (WWWOOOPPP). Let X be a subset of
�

. Assume that for any n ∈
�

,

iiifff k ∈ X holds for all k∈
�

such that k < n ,

then n ∈ X (7)

(in logical abbreviation:

((∀k∈
�
)(k < n �	�	
 k ∈ X) �	�	�	
 n ∈ X ).

Then
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X =
�
.

WWWOOOPPP,,, ssseeecccooonnnddd fffooorrrmmm. Let P be any property of natural numbers. Assume that for any n ∈
�

,

if P(k) holds for all k < n , then P(n)

(in logical abbreviation:

((∀k∈
�
)(k < n �	�	
 P(k)) �	�	�	
 P(n) ).

Then

for all n ∈
�

, P(n) holds.

In comparison with the PMI, we find only one assumption (7) in place of the two in the PMI.

First of all, let us note that 0 ∈ X , the "basis step" occurring as an assumption in the PMI,

follows from the present "global induction step" (7). This is because the proposition

" k ∈ X holds for all k∈
�

such that k < 0 " (8)

is always true, no matter what the set X is, since there is no natural number less than 0 .

(The proposition asserts that something holds for all members of the empty set; and any such

proposition is automatically true; we also say it is vacuously true.) Since the global induction

step (7) says that from (8), 0 ∈ X follows, we have that 0 ∈ X .

To give an application, let us prove that every natural number can be written as the sum of

distinct integral powers of 2 :

for any n ∈
�

, there are natural numbers m and i < i < ... < i such0 1 m-1
that

i i i ij 0 1 m-1n =
�
2 = 2 + 2 + ... + 2 .

j<m
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(Note that when n=0 , then also m=0 , and the sum is an empty one, with value equal to 0

as it should be.)

Now, the property P(n) , the one that we want to prove to hold for all n∈
�

, is this:

P(n): there are natural numbers m and i < i < ... < i such that0 1 m-1
i i i ij 0 1 m-1n =

�
2 = 2 + 2 + ... + 2 .

j<m

GGGlllooobbbaaalll IIInnnddduuuccctttiiiooonnn SSSttteeeppp. Let n ∈
�

be arbitrary. Assume

∀k∈
�
(k < n �	�	
 P(k)) , (9)

to show

P(n) . (10)

(9) is called the iiinnnddduuuccctttiiiooonnn hhhyyypppooottthhheeesssiiisss.

In the proof of the implication (9) �	�	
 (10), we make a case distinction; we distinguish the

cases n=0 and n>0 ; this has nothing to do with the "basis step" and the "induction step" of

the earlier form of induction; more remarks on this later.

CCCaaassseee 111... n = 0 . As we noted before, in this case, we can take m = 0 ; 0 is the empty sum

of powers of 2 .

i iCCCaaassseee 222... n > 0 . Let 2 be the largest (integral) power of 2 for which 2 ≤ n (we will

justify this intuitively obvious step below by what we'll call the Greatest Number Principle;

for the time being, it should be enough to note that, certainly, there is at least one integral

h hpower 2 of 2 for which 2 ≤ n , namely the one with the exponent h = 0 ;

0 h2 = 1 ≤ n ; it is here that we use the case assumption n > 0 ). Let k = n - 2 . Since

h2 ≥ 1 , we have that k < n . Now, let us apply the induction hypothesis (9) to this k ;
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ijP(k) holds, that is, k =
�
2 with strictly increasing i ∈

�
. Then,jj< �

ih j hn = k + 2 =
�
2 + 2 ;

j< �

the only thing left to show is that h is strictly greater than all the indices i , i< � . But,j
otherwise, we must have that � ≥1 , h ≤ i , and� -1

i � -1 h h h h h+1n ≥ 2 + 2 ≥ 2 + 2 = 2 ⋅2 = 2 ,

hand this is in contradiction with the choice of 2 as the largest power of 2 still ≤ n ; this

shows what we wanted.

The Global Induction Step is completed; by the Wellordering Principle, P(n) holds for all

n , which is what we wanted.

Note that within the proof of the Global Induction Step, there was a case distinction that

resembled the distinction between the "Basis Step" and "Induction Step" in the PMI. However,

this is merely coincidental. The important point is that the proof uses the Wellordering

Principle in an essential way. Note that in the "induction step", we inferred the truth of P(n)

not from the truth of P(n-1) as in a proof by the ordinary PMI, but from the truth of P(k)

hfor some k<n , namely k=n-2 , where we only know that k<n , and k may well be

different from n-1 .

Uses of the WOP are also called proofs by induction; the distinction in the names serves the

clarity of the discussion here, and later the principles mentioned in this section will all be

referred to as "induction".

The WOP can be proved on the basis of the PMI. The proof consists in showing that, under the

assumption of the WOP, the property

Q(n) ≡ for all k∈
�

, if k < n , P(k) holds
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satisfies the assumptions of the PMI; we will not give the details here (the reader may try to

complete the proof; it is not hard!). By the PMI, then Q(n) holds for all n , which, applied

to n+1 in place of n , one gets that P(n) holds for all n .

There is an equivalent version of the WOP, the

LLLeeeaaasssttt NNNuuummmbbbeeerrr PPPrrriiinnnccciiipppllleee (((LLLNNNPPP))). Let X be any subset of
�

. If X is non-empty, then there is

a least element of X : there is n ∈ X such that x ≤ y for all y ∈ X .

The connection between the WOP and the LNP can be summarized by saying that applying the

LNP to X is the same as applying the WOP to its complement, the set
�
- X .

[Let us prove the LNP for X by applying the WOP to
�
- X . Assume X is non-empty, but,

contrary to the assertion, there is no least element in it; we will derive a contradiction. We

claim that the Global Induction Step (7) holds for
�
- X in place of X . Assume that for all

k < n , we have k ∈
�
- X . Then n ∈

�
- X : otherwise n ∈ X and since for all k < n ,

we have k ∈
�
- X , this is exactly to say that x is the least element of X , which is not

supposed to exist. This shows (7) for the set
�
- X . By the WOP,

�
- X =

�
, which is to

say that X = ∅ (since X ⊂
�

). We have arrived at the desired contradiction.]

Perhaps it is not superfluous to mention that the LNP is a special property of the system of the

natural numbers. When you replace
�

by � , the principle becomes incorrect: do you see

that?

As a first application of the LNP, let us state and prove the

Greatest Number Principle (GNP). Let N be any natural number, and let X be a subset of

{i∈
�
:i<N} (in other words, X⊂

�
and it is strictly bounded by N ). If X is non-empty,

then there is a greatest element of X : there is n∈X such that x≤n for all x∈X .

Note that, unlike in the LNP, now the side-condition of X being bounded is essential; do you

see that?

Here is the proof of the GNP. Let X be as in the statement. Consider the set of all strict upper
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bounds of X , and call it Y :

Y = {y∈
�
: x<y for all x∈X } .

Y is non-empty: N∈Y (why?). Therefore, by the LNP, Y has a least element; call it m . m

cannot be 0 since m is a strict upper bound of X , and X is non-empty. Now, consider

m-1∈
�

. I claim that m-1∈X , and n=m-1 is the maximal element of X . We have that

x<m for all x∈X ; that is,

x≤m-1 for all x∈X ;

and in yet different words,

either x<m-1 (Case 1) or x=m-1 (Case 2) for all x∈X .

It cannot be that we have Case 1 for all x∈X , since then m-1 would be also a strict upper

bound of X , which is impossible since m-1<m , and m was the least strict upper bound of

X . Therefore, there must be an x∈X for which Case 2 holds, that is, m-1=x ; but this means

that m-1∈X . But we already know that x≤m-1 for all x∈X ; thus, x is the largest

element of X .

Note that we are in fact using the GNP in our proof above of the "binary decomposition of

hnumbers"; in Case 2 there, we said: "Let 2 be the largest integral power of 2 for which

h2 ≤n ." Can you justify this step formally by the GNP?

Let us give another application of the LNP.

We will prove in the next section that, for every n ∈
�

, there are prime numbers greater than

n . Using this, we may define the sequence 〈p 〉 by recursion as follows:n nε
�

p = 2 ,0 def

p = the least prime number greater than p .n n-1def

The point is that the set

{p∈
���

p is prime and p > p }n-1
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is non-empty, by what we just said; hence, by the LNP, p is well-defined. The sequencen

p = 2 , p = 3 , p = 5 , ...0 1 2

stis the list of all primes in increasing order; p is the n+1 prime number.n

Finally in this section, let us mention still another equivalent form of the "wellorderedness" of

the natural numbers, the method of "infinite descent". This is the form the principle of

mathematical induction takes explicitly in the work of Pierre de Fermat (1601-1665), one of

the greatest of all mathematicians. Actually, the principle should be called "the impossibility of

infinite descent". What it says is that if we have a sequence

n > n > n > n > ...1 2 3 4

of strictly decreasing natural numbers, then the sequence cannot be infinite: there must be a

stage k such that n is not defined any more. The truth of this fact is seen by applyingk+1
the Least Number Principle: consider the set

{n , n , n , n , ...}1 2 3 4

of all the numbers in the sequence; this non-empty set has to have a least element; but if that

is n , then n cannot be defined, since if it were, it would be smaller than n , andk k+1 k
thus the latter would not be the least element of the said set.

In the next section, we will see an application of the "impossibility of infinite descent".
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