
Section 4.3. Boolean functions

Let us take another look at the simplest non-trivial Boolean algebra,
�
({0}) , the power-set

algebra based on a one-element set, chosen here as {0} . This has two elements, the empty

set ∅ , which is � (bottom), and the set {0} , which is � . Let us write 2 for this algebra;

thus, 2 = { � , � } , with the total ordering given by � < � . It is obvious, either because we are

having a two-element total ordering, or because we are having an algebra of sets, that the

Boolean operations are as follows:

����� = � ����� = �

����� = � ����� = �

����� = � ����� = �

����� = � ����� = �

- � = � - � = � .

We read � as tttrrruuueee , � as fffaaalllssseee ; we read the operation � as aaannnddd , � as ooorrr , - as nnnooottt .

In this way, the two-element Boolean algebra becomes an algebra of truth-values, and

becomes the basis of propositional logic. In propositional logic, we analyze sentences into

constituent parts out of which the sentence is built up using the connectives: � (conjunction;

"and"), � (disjunction; "or"), ¬ (negation; "not"; the difference to the "minus" sign, - , is

inessential), and two more: �	� �
�
� (conditional; "if ..., then ...") and �	� �
�
� (biconditional; "if

and only if").

We also call a sentence of the form A � B a conjunction, its terms A and B the conjuncts

in the sentence. As indicated in the previous paragraph, the operation of conjunction is the one

that forms A � B out of A , B . A � B is a disjunction; A and B are its disjuncts.

A �	� �
�
� B is a conditional; A is its antecedent, B its succedent. A �	� �
�
� B is a biconditional.
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Consider the following sentences:

" n is divisible by 2 , or n is divisible by 3 ."

" n is divisible by 2 , and n is divisible by 3 ."

"If the greatest common divisor of n and 6 is not 1 , then n is divisible by 2 , or

n is divisible 3 ."

" n is divisible by 6 if and only if n is divisible by 2 and n is divisible by 3 ."

By denoting the sentence " n is divisible by 2 " by A ;

A ≡ " n is divisible by 2 ";
def

also

B ≡ " n is divisible by 3 ",
def

C ≡ " n is divisible by 6 ",

D ≡ " The greatest common divisor of n and 6 is 1 ",

the above sentences may be analyzed, respectively, as

E ≡ A � B ,
def

F ≡ A � B ,
def

G ≡ (¬D) �	� �
�
� (A � B) ,
def

H ≡ C �	� �
�
� (A � B) .
def

123



The truth or falsity of the last four composite sentences depend on the truth-values of their

constituents A , B , C and D . (Of course, the truth-value of each of A , B , C and D

depend on the value of the n , which we assume to be a fixed, but unspecified, natural

number.)

The dependence of the truth-value of E is exactly according to the truth-table given above

describing the effect of the operation of � (conjunction) on the two truth-values. That is to

say, if A and B are both tttrrruuueee, so is E ≡ A � B ; in any other of the three cases concerning

the values of A and B : ( � , � ) , ( � , � ) , and ( � , � ) , the value of A � B is fffaaalllssseee.

This corresponds to the ordinary use of the connective "and".

The truth-value of F ≡ A � B is computed according to the truth-table for � (disjunction)

given above. E.g., if n = 6 , or if n = 2 , or if n = 3 , A � B is tttrrruuueee; in fact, according to

the first three lines of that table, in the given order. However, if n = 1 , then A � B is fffaaalllssseee;

this corresponds to the last line of the table. Notice that disjunction as we are describing it here

is non-exclusive "or" ; a disjunction is tttrrruuueee if, in particular, both disjuncts are tttrrruuueee. The

sentence in question is, in more explicit form,

"Either n is divisible by 2 , or n is divisible by 3 , or both."

Let us note that in mathematics, "or" (disjunction) is always intended as non-exclusive "or".

(With exclusive "or" , a disjunction would be true just in case precisely one disjunct is true.)

This may be seen e.g. on the sentence G that is regarded as being true, no matter what n is.

If n = 6 , then the succedent of the conditional, A � B is tttrrruuueee under the non-exclusive

interpretation, but not under the exclusive one.

The connective of negation as used in mathematical language, clearly corresponds to the table

given for it above. If n = 5 , then D (with D the sentence denoted by D above) is tttrrruuueee,

and ¬D is fffaaalllssseee; if n = 2 , then D is fffaaalllssseee, and ¬D is tttrrruuueee.

The connective of the conditional also corresponds to an operation in the two-element algebra

2 as follows:

� �	� �
�
� � = � , � �	� �
�
� � = � ,

� �	� �
�
� � = � , � �	� �
�
� � = � .
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This table says that a conditional is tttrrruuueee unless the antecedent is tttrrruuueee, and the succedent is

fffaaalllssseee. In particular, the conditional is tttrrruuueee whenever the antecedent is fffaaalllssseee, independently of

the truth-value of the succedent: "false implies everything".

We may verify that this corresponds to the usual mathematical use by considering that the

sentence

I ≡ C �	� �
�
� A ,def

that is,

"If n is divisible by 6 , then n is divisible by 2 ",

should be true no matter what the value of n is. If n = 6 , n = 2 , n = 1 , we obtain the

sentences

"If 6 is divisible by 6 , then 6 is divisible by 2 ",

"If 2 is divisible by 6 , then 2 is divisible by 2 ",

"If 1 is divisible by 6 , then 1 is divisible by 2 ".

These are of the respective forms

� �	� �
�
� � , � �	� �
�
� � , � �	� �
�
� � .

As said, ordinary mathematical usage attributes the value tttrrruuueee to these forms, in agreement

with the table for the conditional above.

The fact that a conditional is tttrrruuueee once the antecedent is fffaaalllssseee is also reflected in the general

approach to the proof of a conditional, which is that we start by assuming that the antecedent

is tttrrruuueee. In fact, we may just as well do so, since if the antecedent is fffaaalllssseee, the whole

conditional is automatically tttrrruuueee, and we can rest in our task of proving the conditional to be

tttrrruuueee.
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The conditional can be expressed in terms of negation and disjunction:

x � �
�
� y = (-x) � y (1)

is an identity true for any values of x and y in 222 (verify!). Thus, in principle, the

conditional could be dispensed with; sentence G may be paraphrased as

"Either the greatest common divisor of n and 6 is 1 , or n is divisible by 2 , or

n is divisible by 3 ."

The biconditional has the following truth-table:

� �	� �
�
� � = � � �	� �
�
� � = �

� �	� �
�
� � = � � �	� �
�
� � = � .

In other words, the biconditional is tttrrruuueee just in case its terms have equal truth-values. The

biconditional can also be expressed in terms of previous connectives:

x �	� �
�
� y = (x � �
�
� y) � (y � �
�
� x) (2)

(verify!). In fact, this corresponds to our general attitude towards the proof of a biconditional,

which is that it involves the proof of two conditionals.

The equalities (1), (2) may be considered as definitions of the conditional �	� �
�
� and the

biconditional �	� �
�
� as operations in an arbitrary Boolean algebra. In case that algebra is
�
(B) , the power-set algebra, then, for sets X and Y ⊆ B , we have that

X � �
�
� Y = (-X) � Y
def

and

X �	� �
�
� Y = ((-X) � Y) � ((-Y) � X) .
def
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Next, we introduce a general construction on Boolean algebras.

Let
�
= (A, ≤) be any Boolean algebra, I any set. We consider all functions from I into

IA as the elements of a new Boolean algebra denoted
�

; read "
�

-to-the-power-I ", or

I Imore simply, "
�

-to-I ". The underlying set of
�

is, as we said, A , the set of all

I *functions ξ:I �	� A . The ordering in
�

, ≤ , is defined componentwise from ≤ : for

Iξ, ζ∈A ,

*ξ ≤ ζ ��������� ξ(i) ≤ ζ(i) for all i∈I .

* IThere are several things to check: firstly, that ≤ is indeed an order on A ; further, that this

I I *order has all the requisite properties to make
�

=(A , ≤ ) a Boolean algebra. In fact, what

* * * * * Ihappens is that the Boolean operations � , � , � , � , and - in
�

are all

Icomputed componentwise: for all ξ, ζ ∈ A and i∈I , we have:

*� (i) = � ,

*� (i) = � ,

(ξ � ζ)(i) = ξ(i) � ζ(i)
*(we should have written ξ � ζ , but it is not necessary to be that pedantic ...).

(ξ � ζ)(i) = ξ(i) � ζ(i)
(-ξ)(i) = -(ξ(i))

The proof of all these assertions is easy. For instance, the assertion for � is that the function

Iη∈A for which η(i) = ξ(i) � ζ(i) for all i∈I is, in fact, the meet of ξ and ζ in

I� . According to a display on page 80 in Section 3.2, the best way to prove this is showing

that

Ifor all χ∈A ,

*χ ≤ η ��������� χ ≤ ξ and χ ≤ ζ .
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*When we put in the definition of η and that of ≤ , we get

Ifor all χ∈A ,

χ(i) ≤ ξ(i) � ζ(i) ��������� χ(i) ≤ ξ(i) and χ(i) ≤ ζ(i) ,

which, for each i∈I , is an instance of the same relation on page 80 in Section 3.2 for the

original Boolean algebra
�

.

Let us apply the power-construction to the algebra
�
=2 . The elements of the Boolean

I Ialgebra 2 are the functions I �	� �
�
� { � , � } ; for ξ, ηε{ � , � } , ξ ≤ η iff ξ(i) ≤ η(i)
for all iεI . Also note that since 2 has just two elements � and � , and � < � ,

ξ(i) ≤ η(i) is equivalent to saying that if ξ(i) = � , then η(i) = � .

IThe power-algebra 2 is in fact a very familiar one: it is isomorphic to the power-set algebra
�
(I) :

I�
(I) ≅ 2 .

Let us specify the isomorphism, in fact, in both directions:

f�	� �
�
� �
�
� �
�
� �
�
� �
�
� �
�
� I�
(I) 2 ::�	� �
�
� �
�
� �
�
� �
�
� �
�
� �
���g

for X ε
�
(I) , f(X) is the function I �	� �
�
� { � , � } for which

� if u ε Xf(X)(u) = � if u ∉ X

and

Ifor any function ξ ε { � , � } , g(ξ) is the subset of I given as

g(ξ) = {uεI
�

ξ(u) = � }.
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These mappings f and g respect the orders, and they are inverses of each other; these facts

≅ Iare easily checked (exercises). In other words, f is an isomorphism f:
�
(I) �	� � � � 2 .

Note that, for X∈
�
(I) , f(X) is what we call the characteristic function of X .

This representation of power-set algebras provides a direct proof that

any identity that holds in the 2-element algebra 2 holds in any power-set algebra,

and hence, in any Boolean algebra whatsoever.

The reason is that, as it is seen by inspection, an identity that holds in an algebra
�

holds

Ialso in a power
�

of it; also remember that we said in the previous section that all identities

in set-algebras hold in all Boolean algebras.

Seen in the light of the last statement, the definition of "Boolean algebra" is just a summary of

what identities hold in the algebra of the two truth-values! Note carefully that, if we take this

"definition" of "Boolean algebra" as basic, it is not obvious -- although now known by us --

that the Boolean laws are all consequences of the few that we earlier explicitly specified as the

Boolean laws.

When people talk about "Boolean functions", they mean functions of possibly several

variables, all of which range over the set { � , � } , and whose values are also in { � , � } .

(Very often (specially in computer science), we write 1 for � , and 0 for � ; but we will

stick to the � , � -notation.) If the function f in question has n variables P , ..., P [we1 n
write P for the variables, since they are seen as "propositions"; in fact, they simply take the

values � and � ], then f is a function

nf : { � , � } �	� � � � � � � � { � , � } ;

for any P , ..., P ∈{ � , � } , f(P , ..., P ) is again an element of { � , � } .1 n 1 n

n(2 )With the fixed n , note that the number of distinct n-variable Boolean functions is 2 .

A Boolean function f can be represented by a truth-table listing all possible systems of

argument-values, and the corresponding function-values. For instance, when n=3 , the
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truth-table might be like this (we write P, Q, R for P , P , P ):1 2 3

P Q R f(P, Q, R)
� � � �

� � � �

� � � �

� � � � (3)

� � � �

� � � �

� � � �

� � � �

Now, regard the set { � , � } as the underlying set of 2 . Then the n-variable Boolean

I nfunctions form the underlying set of the power-algebra 2 , where I={ � , � } . In other

words, for a fixed n , the n-variable Boolean functions themselves form a Boolean algebra.
�

Let us write P to abbreviate P , ..., P . The Boolean operations on the power-algebra1 n
n({ � , � } )2 , the Boolean algebra of n-variable Boolean functions, is defined

componentwise:

� � �

(f � g)(P) = f(P) � g(P) ,

and similarly for the other operations.

n({ � , � } )We write, more simply, BF[n] for 2 , the Boolean algebra of n-variable

Boolean functions.

The most natural examples for Boolean functions are the Boolean polynomials: these are the

functions that can be written down by repeated use of the basic Boolean operations. For

instance, when n=3 , the following are Boolean polynomials :

(¬(((P � ¬R) � (Q � ¬R)) ��� )) � R

¬(R � ¬Q) .
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The fact that the last does not contain the variable P does not make it illegitimate as a

three-variable polynomial: this one simply does not depend on P .

Boolean polynomials should be seen as analogs to ordinary (algebraic) polynomials. The

differences are that, Boolean polynomials are functions on the truth-values, instead of

numbers; and the basic Boolean operations figure in them, instead of the ordinary arithmetical

operations + , ⋅ , etc.

A Boolean polynomial is (or, denotes) a Boolean function: substituting definite truth-values for

the variables, and using the basic Boolean operations on truth-values, we get a definite value

for the polynomial. For instance, here are all the values of the first of the two listed

polynomials:

P Q R (¬(((P � ¬R) � (Q � ¬R)) ��� )) � R
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

Calculating the value, for instance in the third line, looks like this:

(¬(((P � ¬ R) � (Q � ¬ R)) ��� )) � R .

� � � � � � � � � � � � � �
7 2 1 5 4 3 6 8

In this, first, we wrote the value of every variable under each occurrence of the variable,

including the value � under the constant � in the polynomial; next, we proceeded to

calculate the values of the part-expressions from the inside out; there are as many as there are

connectives, occurrences of � , � , and - . The numbers indicate the order in which we go

through all constituent expressions until we reach the total expression in stage 8 ; the final

result is that above 8 , � .

There is a slight ambiguity in the meaning of the expression "Boolean polynomial". We
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sometimes mean the formal expression itself, rather than the function denoted by it. However,

the official meaning should remain the function itself; when one wants to refer to the formal

notion, one should say "formal polynomial". This remark is relevant in the light of the fact that

two formally different Boolean polynomials may be equal to each other. In the first of the last

two examples, the values in the value-column coincide with the values of R ; the polynomial

coincides (denotes the same function as) the simple polynomial ("monomial") R .

Of course, this phenomenon is familiar in the case of ordinary (algebraic) polynomials. E.g,

2 2the two formal polynomial expressions (x-y)(x+y) and x -y denote the same

polynomial. We can see this by using the basic algebraic laws. The situation with Boolean

polynomials is similar. Instead of going through the tables of values (which tend to be very

large even with a moderate number of variables), we may use the Boolean identities to

establish that two formal Boolean polynomials are the same polynomial. For instance, in the

example at hand:

(¬(((P � ¬R) � (Q � ¬R)) ��� )) � R

= (¬(((P � Q) � ¬R) ��� )) � R (distributive law)

= (¬((P � Q) � ¬R) ) � R (unit law)

= (¬(P � Q) � ¬¬R) ) � R (De Morgan)

= (¬(P � Q) � R) ) � R (double negation)

= R (commutative law,

absorption)

In fact, what we said about all identities of Boolean algebras being true in 2 means that every

time two formal Boolean polynomials are the same function on the truthc-values, this fact can

be deduced by using the Boolean identities alone.

Note that the Boolean operations on the Boolean polynomials as Boolean functions are

performed by formally applying the operation in question. For instance, if the three variable

polynomials mentioned above are briefly called f and g , then f � g is

((¬(((P � ¬R) � (Q � ¬R)) ��� )) � R ) � ¬(R � ¬Q) .

What this means is that

132



the Boolean polynomials form a subalgebra of BF[n] .

Consider now the variables P , P , ... P themselves as such Boolean functions, in1 2 n
fact, Boolean polynomials. P is the function that satisfiesi

P (ε , ..., ε , ..., ε ) = ε ;i 1 i n i

here, each ε , , ε is a truth-value, � or � . (This is similar as when the single variable1 n
say y is regarded as one of the ordinary polynomials in variables x, y, z .) We clearly have

that

the particular elements P of BF[n] generate the Boolean subalgebra of Booleani
polynomials.

Now, I claim that

the Boolean functions P , P , ... P are independent in the Boolean algebra1 2 n
of all n-element Boolean functions.

What we have to see is that, for any distribution of the values ε , , ε in { � , � } , the1 n
meet-expression

ε P � ε P � ... � ε P1 1 2 2 n n

is different from � in the Boolean algebra of Boolean functions; here, εP means P if

ε = � , and -P if ε = � . But if we give the value ε to P , we get that ε P takesi i i i
the value � : (P)(P= � ) = � ; (-P)(P= � ) = � ; thus,

(ε P � ε P � ... � ε P )(P =ε , ..., P =ε ) = ������� ... ��� = � .1 1 2 2 n n 1 1 n n

Since the function takes the value � at at least one system of arguments, the function is not

the � -function, which is constant � .

Remember that an independent family of n elements generate a Boolean subalgebra of size

n n(2 ) (2 )2 . It follows that there are exactly 2 distinct Boolean polynomials. But the
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n(2 )whole algebra BF[n] is of the same size, 2 . It follows that

all Boolean functions are (represented by) Boolean polynomials. In fact, all Boolean

functions can be written as joins of complete meet expressions in terms of the variables.

�
The expressions P and ¬P (or, P ) are also called literals. The expression of a Booleani i i
function as a join of distinct complete meets of literals is called the disjunctive normal form

(dnf) of the function. We have that every function has a unique dnf: the complete meets of

literals appearing in the dnf are determined as those atoms of BF[n] that are below the

given function.

Applying duality, one also gets a conjunctive normal form.

The last-stated fact has concerning the existence of the dnf also has a direct proof, together

with a simple method of producing the dnf of a function, based on the truth-table of the

function. The result is this. Consider the truth-table of the n-variable Boolean function f .

Select those lines in the table in which the value of f is � ; say the lines in which this is the

case are

�
,
�

, ... ,
�

.1 2 k

Each line
�

( j=1, ..., k ) has a certain system of the values of the variables. Let usj
denote the value of P in line

�
by ε (and not ε , because j denotes thei j ji ij

k n
"row-number", i the "column-number"). The dnf of f is �������
	�� ε P ; or in moreji ij=1i=1
detail,

ε P � ε P � ... � ε P11 1 12 2 1n n
� ε P � ε P � ... � ε P21 1 22 2 2n n
� ...

� ε P � ε P � ... � ε P .k1 1 k2 2 kn n

Here we used the convention applied before: � P is P , � P is ¬P .

To give an example, consider the function whose truth-table is (3). There are five lines where
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the value is � . The dnf is

� � � ��� �����
PQR � PQR � PQR � PQR � PQR .

The proof that this is a correct procedure has to show that the dnf constructed assumes the

same values at each system of values for the variables. Now, the dnf is � if and only if one

of its disjuncts is � . But each disjunct corresponds to a line, say
�

, where the value of fj
is � . The corresponding disjunct is

ε P � ε P � ... � ε P , (4)j1 1 j2 2 jn n

and this will take the value � iff each conjunct ε P takes the value � , which is theji i
case if and only if P takes the value ε . This means that the unique system ofi ji
truth-values where the value of (4) is � is precisely the one in line

�
! We have concludedj

that the dnf takes the value � exactly in the lines
�

, for j=1, ..., k , which are alsoj
exactly the lines where f is � . This proves that the dnf and f are identical functions.

The dnf of a Boolean function may be extremely large already in case of a moderate number

of variables. The problem of Boolean realization is to find a possibly small formal Boolean

polynomial representing a given Boolean function.
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