Section 4.2 Generating Boolean subalgebras

A Boolean subalgebra, or more smply, a subalgebra, of a Boolean algebra ( A;<) is a subset
that contains the top and bottom elements of A, and with any elements x and vy , it contains
XAy, Xvy and -x aswell.

A sublattice was defined similarly in section 3.2, but with reference to complements removed.
Thus, a subalgebra of a Boolean algebra is a sublattice of the ambient Boolean algebra, which
is aso closed under taking complements. A subalgebra of a Boolean algebrais again a
Boolean algebra, with operations inherited from the ambient algebra.

We identify a subalgebra with its underlying set. Thisis all right, since the order and the
operations of the subalgebra are given by those of the ambient (containing) algebra, thus to
specify a subalgebra of a Boolean algebra it suffices to specify its underlying set.

Consider the figures on pages 62 and 63 in Section 3.1, Chapter 3. The one on page 62 is the
Hasse diagram of P({ 0, 1, 2}) , the Boolean algebra of all subsets of theset {0, 1, 2} .
The one on page 63 is an isomorphic copy of the previous one; in particular, a Boolean
algebra. Let us call this A, or more completely, (A, <) . Itsunderlying set is
A={0,1,2,3,4,5,6, 7} .

Now, theset X={0,1, 6,7} isasubset of A; andinfactitisasubalgebraof (A <) .
Indeed, the top and bottom elements, T=7 and 1=0, of A, arein X. The meet and join
of any two elementsof X areagainin X: thereisonly one pair of incomparable elements,

1 and 6,in X,and 1A6=00X, 1v6=70X. Findly, -1=60X, -6=10X. X isa
Boolean algebra on its own right; the top and bottom elements of it are the same as those of

A ; meets, joins and complements are computed in it asin A . For instance, the equations
1A6=00X, 1v6=7, ~1=6, -6=1 areright when understood either in (A, <) orin

(X ) .

On the other hand, the set Y={ 0, 1, 2, 4} isnot asubalgebraof A since the top element of
A, 7, isnotin Y. On the other hand, note that on its own right, Y , with the ordering
inherited from A, isaBoolean algebra: it isisomorphicto P({1, 2}), 0) . For instance,
Y hasatop element, butitis 4 , not 7 , the top element of A.
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The subset Z={ 0, 2, 6, 7} isasublattice of A, but not a subalgebra, since 20Z, but
-2=5isnotin Z.

For any Boolean algebra (A, <) , thesubset {1, T} conssting of the top and bottom
elements alone is aways a subalgebra. The reason is that the operations A, v and -, when
appliedto L or T,resultin L or T again. In particular,

The last two relations are particularly important. They directly follow from the first two, by
the very meaning of what "complement” (=) means.

The whole of a Boolean algebra itself is a subalgebra. In fact, the latter is the maximal
subalgebra; the set { L, T} isthe minimal subalgebra.

Given any Boolean algebra (A, <) and an arbitrary subset X of A, we have the subalgebra
of (A, <) generated by X . Thismay be defined as the least (smallest) subalgebra of
(A, £) containing X . Let us consider this carefully.

Consider the set Subal g( A, <) of all subalgebrasof (A, <) .E.g., theset A isawaysin
it; and soistheset { L, T} . When the algebrais A on page 63 of Chapter 3, the set
Subal g( A, £) consists of five elements:

Subal g(A <) ={{0,7} ={1, T},
{0,1,6,7},
{0,2,5,7},
(0,3, 4,7},
A}

To see this, note that a subalgebra must be of size 2, 4 or 8, by what we learned in the
last section. Theone of size 2 is {1, T} , theoneof size 8 is A; theonesof size 4 are
given by apair of elements ( x, y) which are different from L and T, and which are
complements of each other: -x =y . Therearethreesuch pairs: 1 and 6; 2 and 5; 3
and 4 .

Subal g( A, £) isasubset of the power-set P( A) ; we claim that
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Subal g( A, £) isclosed under intersectionin P(B) :

Kk
when X X2, Xk are subalgebras of (A, <) , then the intersection mxi isagan
i=1

l ’
asubalgebraof (A, <) . (Infact, even an infinite intersection may be taken.)

The proof of thisis quite easy once one decides to do it. Moreover, the essence of the matter
has nothing to do with Boolean algebras. What is essential is only that we have aset A, some
distinguished elements of it, inthiscase L and T, and a couple of operations on the set, in
thiscase - (unary), A, v (both binary). The set Subal g( A, <) is, in the general case,
replaced by the set S of all subsets that contain the distinguished elements, and which are
closed under the operations. S isasubset of P(A) , and, we assert, S is closed under
intersection; the intersection of any number of elements of S isagain a member of S.

For the sake of concreteness, let us return to the Boolean case. Consider the fact that the
intersection of the second and third subalgebra of A in the example above is the first
subalgebra; the assertion at hand says in this case that the intersection of any two members of
that five-element set of setsis again a member of that five-element set.

k
Let us prove the assertion for Subal g( A, <) as stated above. To say that [\ Xi isa
i=1
k

subalgebra is to say, among others, that L and T belongto [\ Xi . But thisis clear since
i=1
k
1 and T belong to each X . Further, we should see that [\ X is closed under the
i=1

k
operations A, v, - ;eg.,if x and y arein [\Xi , thensois x Ay .Butif x and
i =1

k
y arein ﬂxi , then they arein X for each i ; since each X is a subalgebra,
i=1

Kk
X AY in ; sincethisholdstrueforall i , xay € [\ Xi as required. The argument for v
i=1
and - isidentical. We have proved our claim.

Now, let X be an arbitrary subset of A, (A, <) aBoolean algebra. Then we may look at
the intersection of all subalgebras of (A, <) containing X:
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XO= MA{Y | XOY & Y isasubalgebraof (A <)} .

As an intersection of some subalgebras, [X[J isagain a subalgebra. Since X isa subset of
each member of the set whose intersectionis X0, itisclear that X O [X[; [XOisa
subalgebra containing X . But also, [X[J isthe least subalgebra containing X : whenever Y
isasubalgebraof (A <) ,and XOY, then necessarily, (XOO Y : thisisclear, since Y is
a particular member of the set whose intersection is [X[. We conclude that

(X0, theintersection of all subalgebras containing X, isthe least subalgebra
containing X.

We call [X[ the subalgebra generated by X . It may happen that [X[FA, the generated
subalgebra is the whole algebra; in this case, we say that X generatesthe algebra (A, <) .

Let uslook at the example of (A, <) on page 63 of Chapter 3 again. Let X={1, 6} .
Looking at the list of all subalgebras of A given above, we see that the ones containing
{1, 6} ae A itself,and {0, 1, 6, 7} ; theintersection of these two is the smaller one,
{0,1,6, 7} ;

41,6} 0={0,1,86,7}.

Let us note a curious aspect of the definition of [X[. [X[J itself is a subalgebra containing
X, hence, [X0O itself belongs to the set whose intersection is [X[! This seems to make the
definition through intersection pointless; the definition of [X[J seemsto refer to [X[OJ itself,
among all subalgebras containing X . However, before we considered the intersection, we did
not know that the least subalgebra containing X existed; the definition through the
intersection is necessary to have a hold on the thing theoretically.

In general, it would very difficult to find the subalgebra generated by a subset by following the
definition. The definition requires the consideration of all subalgebras containing the given set
X . Of course, once we have one, say Y , then there is no need to consider any but the ones
that are contained in Y ; [X0O will be containedin Y .If Y islarge, itisof little help. We,
of course, have A itself as one of the subalgebras containing X ; taking thisas Y does not
cut down on the subalgebras we have to consider for getting [X[J.

There is another approach to the subalgebra X[ generated by X that is better from the
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point of view of calculation, but messier from a theoretical point of view. Let X be an
arbitrary subset of the Boolean algebra ( A, <) . Then, besides the elements of X, all
elements of the form

L, T, XAY, XVYy, -X, (8

where u and v come from the elements (8) just considered, will aso belong to [X0. E.g.,
this includes all elements of the form

(xAy) v(X ay")
with x, y, x', y’ from X. Clearly, we can continue in this way, and we may say that

all elements, including the elements of X itself, that can be expressed in terms of L,
T and the elements of X, using, possibly repeatedly, the operations A, v and - , belong
to [XO.

Now, we claim, the elements mentioned in the last displayed paragraph are precisely the
elements of [X[. Since we aready know that they all belong to X[, we only have to
convince ourselves that the set S of these elementsis a subalgebra: since [X[ isthe least
subalgebra, and S O X[, it must then be the casethat S = X! But, once we said this,
the assertion is clear: the set S contains, by its definition, the elements L, T; andif u, v
belongto S, then they are given as expressions in terms of the elementsof X,and 1, T,
A, Vv, -, andso, theelements u Av, uvv areasogiven as expressions, one level
more complicated though, in terms of the elementsof X,and L, T, A, v, -, andthus,
Uuav, uvv belongto S again. We conclude that

the subalgebra [X[J consists of all elements, including the elements of X itself, that
can be expressed intermsof L, T andthe elementsof X, using, possibly repeatedly, the
operations A, v and - .

It is good to realize that this last description of the subalgebra generated by a set is again quite
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independent of the concrete kind of "algebra" we are considering (in this case, "Boolean
algebra"). E.g., clearly, in the same way, we may talk about the sublattice of a lattice
generated by a given set. Besides the definition as an intersection, we get that the sublattice
generated by X isgiven as the Boolean subalgebra in the last description, except that we
ignore the referencesto - . There are many other kinds of "algebras’ considered in
mathematics; the considerations just given apply to al of them.

Consider again this last description of the Boolean subalgebra generated by X . Constructing
[X O involves collecting all Boolean expressions involving elements of X (thisisjust a
short-hand for the elements described). Suppose we collect some of them, and we notice that
the set of elements we have collected is already closed under the Boolean operations. Then, of
course, we may stop, and have the given set equal to [X[.

Let us reconsider the example of the Boolean algebra A on p. 63, Chapter 3, and its subset
X={0,6} . 1=-6 and 7=71; 1 and 7 aregiven as Boolean expressions in terms of
X, and so, they belong to [{ 0, 6} [I. But, then we see that the set

Xv{1,7} ={0,1, 6,7} isdready closed under the operations A, v and - andit
contains L and T aswell (in principle, by looking at al possible u Av, uvv, with u
and v from this set; in fact, now we know that {0, 1, 6, 7} isasubalgebraof A sinceit
appearsin Subal g( A, <) above.); therefore, we conclude again that

40,6} 0={0,1,6,7} .

Next, we give a theorem that describes the Boolean subalgebra [X[J of any Boolean algebra
generated by a set X in more explicit terms. This description will be quite specific to Boolean
algebras; one does not have a similar description e.g. for the sublattice generated by a subset.

Let (A <) beaBoolean algebra, X O A. We consider the specific elements of A which
are of the form

Yy AYo Aee AY

where each Yi iseither x ,or -x ,with x € X. These elements are called the
meet-expressions based on X, or more simply, the meets based on X . The top element, T,
as the empty meet, is always, by definition, a meet based on X . Likewise, as the meet of the
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one-element set { x} , any element x of X isameet based on X, and so isthe
complement of any element of X .

If X1: Xor X3, X4 are elements of X ( X may have further elements), then
“Xq A-Xy AXqg
Xq A=Xg A-Xg AXy
“Xq AXy AXg AXy

are examples of meets based on X.

We use an abbreviation to denote meets. We write

X1X2X3, X1X2X3X4, X1X2X3X4

for the above three examples, by ignoring the symbol A , and putting the minus sign on top of
the letters.

Next, still with the given X, we consider arbitrary joins of X-based meets. By definition, L
isalways such ajoin: 1 isthejoin of the empty set. In the example when

Xl’ x2, x3, x4sX,

X1X2X3 \Y, X1X2X3X4 \Y, X1X2X3X4

is another example of such an element. We call these elements the join-meet expressions based
on X. The theorem promised above is as follows:

The set of the values of all the join-meet expressions based on the subset X of any
Boolean algebra is identical to the subalgebra generated by X.
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Somewhat doppily, we will omit the phrase "the value of" from "the value of the join-meet
expression E " and just say "the join-meet expresson E". The expression E isnot the same
thing as its value: an expression is a linguistic entity, its value, on the other hand, is an
element of the Boolean algebra under consideration. But this kind of sloppinessis practiced in
ordinary algebra all the time.

To be able to speak more briefly, let us denote the set of join-meet expressions based on X by

N

X . We are claming that
N
XO= X.

Clearly, every element of />\( isan element of [X[, ’)\(D (XO (why?). To see that

(X0Oo % , we have to see that l>\( is a subalgebra containing X, that is, the following facts:

(1) Every element of X isequal to ajoin-meet expression based on X ;

2 L ad TeX:

N

N
3 If u and vs/>\(, then U/\VE/)\(, uvveX, -ueX.

(1) and (2) are clear; likewise, the case of joinin (3) (why?). Let u, v 5/)\(; then
k
u=\/u
i=1
distributive law in its generalized form,

{
: v:_\_/vj , with each u;, v; ameet based on X . But then, by using the

J

Now, notice that the meet of two meets based on X isagain ameet based on X . This shows
that u A v isajoin-meet expression based on X . For use in the next argument, let us note

N N
that, as a consequence of the fact that the meet of any two elementsof X isin X, the meet

of any finitely many elements of l>\( belongs to l>\( (we aready know that T el)\( ).
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k A
Finally, let us turn to complements; assume u = \/ u; € X, with each u; ameet based on
i=1

N
X; we want to show that - u € X. By the De Morgan law, we have

k k
_u:--\/ui :_/\-Ui. (9)
=1 =1

9
But, each u; is of the form u; = /\yp, with yp either an element, or a negated

(complemented) element of X . By De Morgan's law, now applied to negating a meet rather
di

than ajoin, we get that - u = -yp . Here, each -yp isstill either x , or -x for some
=1

p
x & X . Namely, if yp is x , then -yp is -x ,and if yp IS - X , then -yp IS --X=X.

So in particular, each of the - yp's is a meet expression (of avery smple kind) based on X,
hence, their join is a join-meet expression, and so, - u; € />\< . Now, above we saw that the

meet of any finitely many elements of />\( isagainin />\<.Therefore, by (9), -u belongsto ,>\(
as desired.

This completes the proof of the theorem asserting that X[ coincides with the set of all
join-meet expressions based on X .

Now, let us consider the special case when X (but not necessarily A) is afinite set;
X= {Xl’ Xor « oo xn} . The complete meets based on X are those meet-expressions that

use each Xi straight or negated, exactly once. That is, the complete meets based on X are

the expressions of the form (ﬁ(ﬁ. .. (ﬁ , With bars present or not present at will. If
1 72 n

n=4,then X17273,X4 : x71x2x3x4 are complete meets based on X, but 1XoX3 is
not necessarily one, unless it happens to be equal to one for an individual reason (this last

happens, e.g., if Xqg=T; then 7172x3 = 7172x3x4 ).

In the case when X has 4 elements, we may form 24 = 16 of these complete meets; this
is the number of ways we can assign positive or negative signs to four elements independently
of each other. Of course, there is no guarantee that all the elementary meets are distinct; the
actual number of distinct complete meets may be lessthan 16 .
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We claim that, in case X isfinite,

every meet based on X isthe join of some complete meets based on X .
Indeed, note that

u=(uav) v(ua-v),

or in an abbreviated form,

u=uv vuv.
Namely, the distributive law, read backwards, says that
(uav) v(ua-v) =ua(VV-V) = UAT =U.

Using this equality, any meet-expression can be "completed" to read as a join of complete

meet-expressions. E.g., suppose X = {Xl’ X0 Xg, x4} , andlet u= X1X5 . Then

X1X2 = X1X2X3 \; X1X2X3

= X1X2X3X4 \Y, X1X2X3X4 \Y, X1X2X3X4 \Y, X1X2X3 4

Thus, if X isafinite set, then every meet-expression, and hence, every join-meet expression,
based on X, isthejoin of complete meets based on X, and we get that

for afinite subset X of a Boolean algebra, the subalgebra X[ generated by X is
the set of all joins of complete meets based on X .

We obtain an estimate of the cardinality of the subalgebra [X[I.

The cardinality of the subalgebra generated by a set of cardinality n isat most
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o(2")

The reason is that the number of complete meets based on X isat most N ; we have at most

n
2( 2%) sets of complete meets of which to form joins.

In particular,
in any Boolean algebra, a finite set generates a finite subalgebra.

This is not obvious on the basis of the definitions alone, and in fact, it does not hold true for
many other kinds of "algebras’ in mathematics; the sublattice generated by a finite subset of a
lattice is not always finite.

The last result, together with the one from the last section that says that every finite Boolean
algebra is isomorphic to a power-set algebra, allows us to make an inference of a general
"logical" nature. We ask ourselves about all possible identities holding for the Boolean
operations on sets. Certainly, since the power-set algebras are particular Boolean algebras, any
identity that can be derived from the Boolean identities will hold for sets. But, is the converse

true? That is, could there be an identity, say p(xl, Cy xn) = q(xl, Cy xn) , made up
of the variables Xqveooa Xp and the Boolean operations T, L, A, v, -, whichdoes
hold whenever the X; mean subsets of afixedset A,and T, L, A, v, - mean A,

0, n, Oand A-( ) , respectively, but which does not follow from the axioms for Boolean
algebras? If such an identity existed, one could argue that the concept of Boolean algebrais
"Incomplete”.

The answer to this question is "no"; such an identity cannot exist. In other words, if an identity
holds in power-set algebras, then it holds in al Boolean algebras,

the concept of Boolean algebra is "complete" as far as identities for the Boolean
operations on sets are concerned.
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To see this, suppose that the identity p(xl, Ce xn) = q(xl, Ce ey xn) holds in

power-set algebras; let A be an arbitrary Boolean algebra, and Xqseo0 Xp particular
elementsin A ; we want to see that

p(xl,...,xn):q(xl,...,xn) (9)
holdsin A. Take Bdgf E{xl, C ey xn} [, the subalgebra of A generated by the given

elements. It is enough to show that (9" holdsin B, since the operationsin B are the same as
in A, except that they are restricted to a smaller set. But by what we proved, B isafinite

Boolean algebra, and thus, it isisomorphicto P(C) for afinite set C. But, we assumed that
(9) was true for any elements Xqreoa X in any algebra of the form P(C) . Since B is

n
isomorphicto 2(C) , (9) must holdin B for any elements Xqre0 Xy in B,in
particular, also for the originally selected elements Xqv oo Xp And thisis what we

wanted to prove.

Next, let us point out that, for X afinite set,

the atoms of the Boolean algebra [X[I are exactly those complete meet-expressions
based on X which are not equal to L .

To seethis, let 'Y be the set of al the complete meet-expressions based on X that are not
equal to L . Still, every element of X[ isajoin of elements of Y ; the bottom can always
be omitted from every join. Now, assume a isan atomin [X0,; it isanon-empty join of
elementsof Y ; but,thenforatleastone y €Y, y <a;since y # L, we must have that
a =y . We have proved that every atom of X[ must be an element of Y . Conversely, let
y €Y, and

Y =YY - Yp

with Yi =X, 00 -X; where X; (i =1,...,n) aealltheelementsof X.We
want to see that y isan atomin [X[O. Then, since y#L, aswe noted above, thereisan

atom a of [X[Obelow y, a<y.Wejust sawthat a must belongto Y,
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a = aja,. ..a,,

where each a, =X ,0r-x . We must have a; =Y, ; otherwise, Yi =%, and

a =-X; , or vice versa; thus, a AYj =X A-X; =L Butthen a Ay <a; Ay =L,
andso, a=a Ay =1, contradicting that a isan atom. We thus have that, for each i ,
a; =y, ; which of course impliesthat a = aq8y...8,=Y1Yo- - Y, =Y - Since a is
an atom, and y=a, Yy isanatom as asserted.

Knowing the atoms of the Boolean algebra [X[J gives us all the elements of that algebra, by
the proposition proved in the previous section, according to which, in afinite Boolean algebra,
each element is the join of the atoms below it. This now tells us again that every element of
[X 0O isthe join of some complete meets based on X . Note, however, that to reach the
conclusion about the atoms of [X[I, we first had to prove the statement in the previous
sentence -- thus, we did not do anything superfluous!

Let X:{xl, Xor oo Xn} , With the X; 's (distinct) elements of the Boolean algebra
(A =) . Letuslook at the subalgebra [X[] generated by X more closely, with the exact

determination of its cardinality in mind. Among the 2" formal expressions

where each letter X; is either negated or non-negated, there are some which are equal to 1 ;

let us say that their number is k . The remaining 2Nk eXpressions represent atoms.
Moreover, it is clear that any two formally different expressions that are not equal to L are
different atoms: here, "formally different” means that at least one X; appears in one
unnegated, in the other negated. The reason is that the two expressions are digoint, as a
consequence of X; and - X; being digoint. Therefore, the algebra X[ has exactly 2Nk

atoms. But then, by what we learned in the previous section, we know that the cardinality of

n
XOis |XO =2(27-K) In fact, X0 isisomorphic to a power-set algebra P2(Y)

where Y isaset of cardinality 2"k ;Y can be taken to be what it denoted above: the
non-bottom complete meets based on X .
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When k=0, we say that the values X1: Xoy ooy X, @€ independent. A set of elements of
a Boolean algebra are independent if all the complete meet expressions based on them are
different from the bottom element. This is equivalent to saying that the subalgebra generated

(2"
by X11 Xy ooy X isof cardinality 2 .

n

We can give a very neat description of all the finite Boolean subalgebras of a given Boolean
algebra by looking at the above things a bit longer. Looking at any finite Boolean algebra, we
know that every element, hence in particular the top element T, isthejoin of the atoms
below it, that is, all the atomsin the algebra. To repeat:

in any finite Boolean algebra, the top element T isthe digoint join of the set of all
atoms in the algebra.

(Of course, a"digoint join" means ajoin of pairwise digoint elements, elements such that for
any two distinct ones of them, say x and y ,wehave X Ay =1.)

If X1 Xou oy X are non-bottom elements of a Boolean algebra, which are pairwise
digoint and whose joinis T, we say that {Xl' Xor oo xn} isa partition of T . Of course,
the expression comes from the fact that a partition of T in P(B) isthe samething asa

partition of the set B in the usual sense.

Now, if C isafinite subalgebra of the Boolean algebra ( A, <) , theatoms of C are digoint
in C, hence, they are digoint in the sense of ( A, <) aswell, since meet and bottom element
arethesamein (C, <) and (A <) . Also, for asmilar reason, the join of the atomsof C
isthetop T of (A, <) (whichisthe same asthetop of (C, <) ). We conclude that

the atoms of a finite subalgebra of a Boolean algebra form a partition of the top
element of the Boolean algebra.

Note however that an atom of a subalgebrais far from necessarily being an atom of the big
algebra; an atom of the subalgebra has no non-bottom element of the subalgebra under it, but
it may have plenty of elements of the big algebra under it.
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In particular, we conclude that

the atoms of any finite subalgebra of P(B) form a finite partition of the set B in the
usual sense.

By the Venn diagram generated by a system {Xl’ X2, Ce Xn} of subsets of afixed set B
we mean the partition of the set B whose cells are the non-empty complete
intersection(=meet)-expressions based on {Xl’ X2, Cey Xn} , that is, all non-empty sets of
the form

(%Xln(ﬁxzf\... f\(-)Xn,

with the minus signs present or not in an arbitrary manner. The cells of the Venn-diagram
generated by a system of sets are the atoms of the Boolean subalgebra generated by the given
sets. The elements of that generated subalgebra are precisely the unions (joins) of the cells.

We have just seen that any finite subalgebra of a Boolean algebra gives rise to a partition of
T . Moreover, the subalgebra is completely given by this partition; it consists of the joins that
can be formed using the elements of the partition.

Now, let us consider an arbitrary partition {Xl' Xoyovns xn} of T inaBoolean algebra
(A, £) . What are the atoms of the subalgebra generated by {xl, Xy oo xn} ? Not
surprisingly, the elements X1 Xo0 oo X themselves! Just consider: an expression of the
form

(%le\(-)xzf\(-)x:an... f\(%xn

(which is the form any atom of the generated subalgebra will take) must be L if there are two
or more terms without — in the expression; namely, any two distinct atoms are digoint, and
thus, any intersection in which two distinct atoms and possibly other things are terms is
bottom. If all terms have minus signs, we just have

‘)(1/\'X2/\'X3/\.../\‘)(n

=-(x1vx2vx3v... vxn) =-T = 1;
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again, we got L . Therefore, the only way we get a non-bottom element, that is, an atom of
the subalgebra, is when we have precisely one term without minus sign in the expression.
Now, suppose this term without minus sign is the first one:

X{A=Xg A=Xg A =X (10)

But, since X1 AXy =1, we have
X1:X1/\T:X1/\(X2\/-X2) =(x1/\x2) v(xlx\-xz) =J.v(x1/\-x2) =X A Xy
We got that XqA-Xp =Xy . So, the element under (10) is

X A=Xg Ao =X,
Of course, by the same argument, - Xz, .. =X, Can also be taken away, and we get that
the element under (10) isjust X1 -

another x. isthe one term without a

Similar conclusion can be drawn if, instead of X1 |

negative sign. We obtain, as promised, that

the atoms of the subalgebra generated by a partition of T are precisely the elements
of the partition.

We conclude

the finite subalgebras of a Boolean algebra are in a one-to-one correspondence with
the finite partitions of T .

If we take P(B) to bethe Boolean algebra, and if we consider that T isthe set B itself,
and a finite partition of B isthe same as an equivalence relation with finitely many
equivalence classes, we get that
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the finite subalgebras of P(B) arein a one-to-one correspondence with those
equivalence relationson B which have finitely many classes.

Of coursg, if B itself isfinite, we do not have to stipulate that the equivalence relation have
finitely many classes. Also, it iseasy to seethat if X and Y are two Boolean subalgebras of
P(B) ,and E and F are the corresponding equivalence relationon B, then XOY iff

F O E . We conclude:

For afinite set B, the lattice of Boolean subalgebras of P( B) isisomorphic to the
converse of the lattice of equivalence relationson B .

121



