
Section 1.3 Ordered pairs and functions

The ordered pair (a, b) of two things a and b is another thing that contains the

information of both a and b , together the information that " a comes first, b second".

Mathematically expressed, the essential property of the ordered-pair construction is

(a, b) = (c, d) �������
a = c and b = d . (1)

It is possible to construct the ordered pair set-theoretically; however, we will not do so here;

all we ever use about ordered pairs is the fact expressed in (1). Let us note though that the

pair-set {a, b} would not work as the ordered pair: we have

{0, 1} = {1, 0} ,

but we want

(0, 1) ≠ (1, 0) .

The use of the ordered pair is familiar in coordinate geometry; the points in the plane equipped

with a Cartesian coordinate system are represented by ordered pairs of real numbers. Various

geometric figures become sets of ordered pairs. Denoting the set of ordered pairs of real

2numbers by � , the set

2 2 2{(x, y)∈ � : x + y = 1}

is the circle with center the origin, and radius the unit length; that is, the set of points on that

circle. The set

2 2 2{(x, y)∈ � : x + y < 1}

is the open disc of radius 1 around the origin;
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2 2 2{(x, y)∈ � � x + y ≤ 1}

is the closed disc; the open disc does not, the closed one does, contain the circumference.

For sets A and B , A × B , the Cartesian product of A and B , is the set of all ordered

pairs (a, b) with first element a from A , second element b from B :

A × B = {(a, b) : a ∈ A and b ∈ B} .
def

2 2Thus, what we wrote as � above is the same as � × � ; in general, we may write A for

A × A .

A function f from a set A to another set B is a rule that assigns, to every element a of

A , a definite element of B ; this element is denoted by f(a) ; it is called the value of the

function f at the argument a . We write

f:A ��� ����� ����� B

to indicate that f is a function from A to B ; A is the domain of f , B is the codomain

of f . The codomain of f has to be distinguished from the range of f ; the latter is the set

{f(a):a∈A} of all values of f :

range(f) = {f(a) : a ∈ A} .
def

The range of f is a subset of the codomain of f ; the range and the codomain may or may

not be the same.

It is possible to construe functions as sets, in particular, as sets of ordered pairs: with

f:A ��� ����� ����� B , we may consider the set of all pairs (a, f(a)) with a ∈ A ; this set is called

the graph of the function f :

graph(f) = {(a, f(a)) : a ∈ A} .
def

This is exactly the representation of functions that we use in coordinate geometry and calculus.
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xFor instance, with the exponential function exp: � ��� � � assigning e to x for all

x ∈ � , we associate its graph which is the exponential curve in the Cartesian plane.

Note that the range of exp: � ��� � � is the set of all positive real numbers,

+� = {y∈ � : y>0} . This is true since the values of the exponential function are all positive,

and every positive real number is the value of exp at a suitable argument x∈ � : if y>0 ,

then there is x∈ � namely, x=ln(y) , for which y=f(x) . The range of exp: � ��� � �
+does not coincide with its codomain: � ⊂ � .≠

Usually, we do not distinguish between the function and its graph; the exponential function

and the exponential curve are considered to be the same thing. There is one qualification to

this rule though: two functions f:A ��� ����� B and g:A ��� ����� C , with the same domain but with

different codomains, may have the same graph. E.g., the sin function may be construed as

sin: � ��� ����� � , from � to � , or as sin: � ��� ����� [-1,1] , from � to the closed interval

[-1, 1] (since all values of sin are in the latter interval); these two functions have the

same graph. For us, these two functions are technically different; the specification of a

function includes the specification of its domain as well as its codomain.

When is a set, say A , is the graph of a function? There are two conditions that are necessary

and sufficient for this to hold:

(i) Every element a of A must be an ordered pair: a must equal to (x, y) for

suitable (uniquely determined) x and y ;

(ii) For all x, y, z , (x, y)∈A and (x, z)∈A imply that y=z [note the same

x as first component in the two ordered pairs].

The second condition expresses the fact that for a function f , the value y=f(x) is uniquely

determined by the argument x . If (i) and (ii) hold true, then there is a function f:X ��� � Y
for which graph(f)=A . Here, X , the domain of f , is the set of all x for which there is

y such that (x, y)∈A ; Y , the codomain, is any set that contains as a subset the set R of

all y for which there is x such that (x, y)∈A ( R is the range of f); and we have

y = f(x)
�������

(x, y) ∈ A .

xThe usual notation for a function is to give its value at an indeterminate argument; thus, e
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denotes the exponential function. This notation is ambiguous, however; it may also mean the

value of the function at a certain argument-value of x . A more explicit notation e.g. for the

exponential function is

xx
� � � � � � e (x ∈ � )

Note here the vertical line at the beginning of the arrow; this kind of arrow is to be

distinguished from the arrow that connects the domain and codomain of the function. If we

write exp for the exponential function, a full notation and description of the function exp

is this:

exp : � ��� ����� ����� ����� ����� ����� �
xx

� � � � � � � e .

If we have two functions f:A ��� ����� B and g:A ��� ����� B between the same two sets, f and g

are the same function, f = g , just in case for all a ∈ A , f(a) = g(a) :

f = g
����� for all a ∈ A , f(a) = g(a) .

This is in agreement with the construal of functions as sets of ordered pairs: f = g just in

case graph(f) = graph(g) ; note that this is valid only if the two functions f and g

are given already with the same domain and the same codomain.

Here is a notation for specifying a function when the domain of the function is a reasonably

small finite set. I'll explain this on an example. For instance, the symbolic expression

1 3 5 7 9 11( ) (2)
0 5 4 20 3 3

denotes the function whose domain is the set {1, 3, 5, 7, 9, 11} , the set which is listed in

the upper row, and whose value for each argument in the domain is given in the second row

underneath the particular argument; in the case of (2), if the function is called f , then

f(1)=0 , f(3)=5 , f(5)=4 , etc.

To be precise, we should note that this notation exhibits only the graph of the function. In the
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example (2), the function f may have any codomain (which then has to be specified

separately) that contains the set {0, 5, 4, 20, 3} , the range of the function f .

If we have two functions, f:A ��� ����� B and g:B ��� ����� C , such that the codomain of the first is

the same as the domain of the second, we can form their composite g � f:A ��� ����� ����� C ; the

definition of g � f is:

(g � f)(a) = g(f(a)) (a ∈ A) .
def

We may omit the circle in the notation of composition, and write simply gf . To see the

domain/codomain relationships of the functions involved, we may draw the three functions

f , g , and gf in the diagram

� � B ���f��� � � g��� � �	 

A ��� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� C

gf

The composite of two functions is defined only if the codomain of one coincides with the

domain of the other.

E.g., consider the functions

f :
�

��� ����� ����� ����� ����� �����
� ( � ) and g : � ( � ) ��� ����� ����� ����� ����� �����
� ( � )
n � � ����� ����� ����� ����� ����� {n} X � � ����� ����� ����� ����� ����� ����� �����

�
- X

Then, gf is the following function:

gf :
�

��� ����� ����� ����� ����� ����� �����
� ( � )
n � � ����� ����� ����� ����� ����� ����� {x ∈

���
x ≠ n}

xWhen, in the calculus, we talk about a function like sin(e ) , we have in mind a

composite; in the case at hand, the composite sin � exp :
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exp sin� ��� ����� ����� ����� ����� ����� ����� � ��� ����� ����� ����� ����� ����� ����� ����� ����� �
xx � � ����� ����� ����� ����� ����� e

y � � ����� ����� ����� ����� ����� ����� ����� sin(y)

x xx � � ����� ����� ����� ����� ����� e � � ����� ����� ����� ����� ����� ����� ����� sin(e )

The operation of composition of functions satisfies the associative law: in the situation

f g h
A ��� ����� ����� ����� ����� ����� B ��� ����� ����� ����� ����� ����� C ��� ����� ����� ����� ����� ����� D ,

we have that

h(gf) = (hg)f .

Indeed, h(gf) applied to any a ∈ A gives

[h(gf)](a) = h([gf](a)) = h(g(f(a))) ;

and, (hg)f applied to a gives

[(hg)f](a) = (hg)(f(a)) = h(g(f(a))) ,

which is the same value. Since the two functions, both from A to D , give the same value at

each argument a ∈ A , they are equal.

With any set A , there is a particular function associated, namely the identity function on A :

1 : A ��� ����� ����� ����� AA
a � � ����� ����� ����� ����� a

( 1 (a) = a for a ∈ A ). This has the property that its composite with any function,A
provided it is well-defined, is the function itself:

1f AB ��� ����� ����� ����� A ��� ����� ����� ����� ����� A :: 1 � f = f ,A
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1 gAA ��� ����� ����� ����� ����� A ��� ����� ����� ����� ����� C :: g � 1 = g .A

Another operation on functions is restriction. Suppose f:A ��� ����� B and A’ ⊆ A . Then the

restriction of f to A’ is the function denoted as f � A’ : A’ ��� ����� B for which

(f � A’)(a) = f(a) for all a ∈ A’ . E.g., for the absolute-value function
�
- � : � ��� �����

�
, its restriction to the subset

�
of its domain is

�
- ��� � = 1 , the identity�

function on
�

; the reason is that
�
n � = n for all n ∈

�
.

With any subset A’ of any set A , one can associate the inclusion function ϕ:A’ ��� ����� A ,

which acts like the identity: ϕ(a) = a (a ∈ A’) ; what makes it different from the identity

function is that its domain and codomain are not (necessarily) equal. Note that, with the

notation of this and the previous paragraph, f � A’ = f � ϕ .

A function f:A ��� ����� B is injective, or one-to-one, or f is an injection, if it maps distinct

arguments to distinct values:

a ≠ a’
�����

f(a) ≠ f(a’) for any a , a’ ∈ A .

A more positive, but equivalent, way of putting the definition of injectivity is that

f(a) = f(a’)
�����

a = a’ for any a , a’ ∈ A .

E.g., the exponential function exp: � ��� ����� � is injective: if x and y are two distinct real

x ynumbers, then either x < y , or y < x ; in the first case e < e (the exponential function

x yis strictly increasing), in the second case the other way around; thus, at any rate, e ≠ e .

But, the sin function is not injective: 0≠π but sin(0) = sin(π) = 0 .

f:A ��� ����� B is surjective, or onto, or f is a surjection, if for any b ∈ B , there is at least one

a ∈ A such that f(a) = b . f is surjective just in case its range equals its codomain.

E.g., the range of sin: � ��� ����� � is

[-1,1] = {y∈ � �
-1≤y≤1} ;

def

21



thus, sin: � ��� ����� � is not surjective (e.g., for y = 2 , there is no x such that

sin(x) = y = 2 ). But, if we consider sin to be a function from � to the interval

[-1, 1] , sin: � ��� ����� [-1,1] , then sin , in this sense, is surjective. (Note that for us, the

information of the codomain is part of the data defining the function. Thus, sin: � ��� ����� � and

sin: � ��� ����� [-1,1] are, strictly speaking, not the same function.)

g
� � ����� ����� ����� ����� ����� �����If A B , and gf = 1 , we say that g is a left inverse of f , or that f is a right��� ����� ����� ����� ����� ����� ����� Af

inverse of g . If gf = 1 and fg = 1 both hold, g is a two-sided inverse, or simply, anA B
inverse, of f (and then, of course, f is an inverse of g ).

Consider

k[ � ��� ] � � ����� ����� ����� ����� ����� ����� ��� � k2 g
� � ����� ����� ����� ����� ����� ����� ������ �
��� ����� ����� ����� ����� ����� ����� �����fn � � ����� ����� ����� ����� ����� ����� ����� 2n

k k(here, [� ��� ] denotes the largest integer not greater than � ��� ). Then gf = 1 , since2 2
�

2n(gf)(n) = g(2n) = [ � ����� ��� ] = [n] = n = 1 (n) .2
�

1However, fg ≠ 1 ; e.g., (fg)(1) = 2[ � ��� ] = 2 ⋅0 = 0 ≠ 1 . Thus, in this case, g is a�
2

left inverse of f , but it is not a right inverse of it.

We claim that in the situation:

g
� � ����� ����� ����� ����� ����� �����A B , and gf = 1 ,��� ����� ����� ����� ����� ����� ����� Af

f is injective and g is surjective. Indeed, if a, a’ ∈ A , and f(a) = f(a’) , then

a = g(f(a)) = g(f(a’)) = a’ ,�

gf=1A
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which shows the injectivity of f . On the other hand, if a∈A is an arbitrary element of A ,

then for b = f(a) , we have g(b)=g(f(a))=a (again since gf = 1 ); this showsAdef
that g is surjective.

We have shown that

if a function ( f in the previous situation) has a left inverse, then it is injective, and if

a function ( g above) has a right inverse, it is surjective.

The converses of the last two assertions are almost true. First,

if f:A ��� ����� B is injective, and if A is not empty, then f has a left inverse:

given any b ∈ B , define g(b) to be a ∈ A for which f(a) = b if there is (necessarily at

most) one such a ; if however there is no such a , let g(b) be any element in A (since A

is not empty, there is at least one such). Then (gf)(a) = g(f(a)) = a by the definition

of g on b = f(a) ; thus gf = 1 .A

Secondly,

if g:B ��� ����� A is surjective, then it has a right inverse.

Namely, we define f:A ��� ����� B in the following way. Given any a ∈ A , we pick an arbitrary

b ∈ B such that g(b) = a ; by the assumption of g being surjective, there is certainly at

least one such b ; we make f(a) equal this b . Then, with f:A ��� ����� B so defined,

(gf)(a) = g(b) for the b described above; but the choice of that b was such that

g(b) = a ; this shows that (gf)(a) = a for any a ∈ A , which is to say that f is a right

inverse of g . [In a foundational setting, this argument requires the so-called Axiom of
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Choice.]

Returning to the previous assertion, the additional assumption of A being non-empty is

necessary: any f:∅ ��� ����� B is injective, but there is a function g:B ��� ����� ∅ at all only if B is

also empty.

If a function is both injective and surjective, it is called bijective, or a bijection. Here are two

examples for bijection:

f : � ��� ����� ����� ����� ����� ����� ����� ����� ����� �
x � � ����� ����� ����� ����� ����� ����� ����� ����� x - 1

g : � ��� ����� ����� ����� ����� ����� ����� ����� �������
x � � ����� ����� ����� ����� ����� ����� ����� ����� 2x

≅The symbol ≅ is used to indicate a bijection: f:A ��� ����� ����� ����� B .

To say that a function is a bijection is the same as to say that it has an inverse.

Indeed, if it has a (two-sided) inverse, then, by what we said above, it is both injective and

surjective. On the other hand, if f:A ��� ����� B is bijective, and for a moment, we assume that A

is non-empty, then f has a left inverse g:B ��� ����� A and a right inverse h:B ��� ����� A :
gf = 1 , fh = 1 . But thenA B

h = 1 � h = (gf)h = g(fh) = g � 1 = g ,A B

which shows that h = g is a two-sided inverse of f . If A happens to be empty, then, with

f:A ��� ����� B bijective, in particular, surjective, B must also be empty; in this case, f =1 , the∅
"empty function", is a two-sided inverse of itself.

The last argument also shows that
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the (two-sided) inverse, if exists, is uniquely determined:

if g and h are both inverses of f , then g is a left inverse, h is a right inverse, of f ,

and the calculation above shows that g = h . Moreover, we have also shown that

if f has a left inverse g , and also a right inverse h , then g=h , and thus f has a

two-sided inverse, namely g = h .

-1The inverse of f:A ��� ����� B , if exists, is denoted by f . Thus, the defining properties of

-1f :B ��� ����� A are:

-1 -1f � f = 1 and f � f = 1 .B A

The composite of two injections (if well-defined) is an injection; the composite of two

surjections is a surjection; the composite of two bijections is a bijection.

We leave the easy proofs to the reader.

A permutation of a set A is any bijection from A to A itself. The following denotes a

permutation of the set {1, 2, 3, 4, 5} :

1 2 3 4 5( ) ;4 2 5 3 1

(Recall this notation for a function from above, at (2): if σ is the name of the permutation at

hand, then σ(1)=4 , σ(2)=2 , σ(3)=5 , σ(4)=3 , σ(5)=1 .)
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AThe set of all functions A ��� ����� B is denoted by the exponential notation B .

Sequences are particular functions. E.g., the 5-term sequence 〈a , a , a , a , a 〉 may be1 2 3 4 5
identified with the function whose domain is the set {1, 2, 3, 4, 5} , and whose value at i

this a . The notation 〈a 〉 means the n-term sequence whose i term is a .i i 1≤i≤n i
nA denotes the set of all n-term sequences of members of A . Thus,

nA = { 〈a 〉
�
a ∈A for all i < n} .i 1≤i≤n i

Note that for n=0 , for any set A , there is exactly one 0-term sequence of elements of A ,

0the empty sequence � ; A = { � } .

If A is an alphabet, that is, a set of characters, then strings over A are essentially the same

as finite sequences of elements of A ; strings of length n are the same as n-term sequences

* n *of elements of A . A =
� ���

A is the set of all strings over A . Note that A alwaysdef nε
�

contains � , the empty string, as an element.

If, for instance, A === {a, b, c} , then the strings aabccba and bccb are members of

* 7 4A ; the first belongs to A , the second to A .

�
Infinite sequences are the same as functions with domain

�
; � is the set of all infinite

sequences 〈r 〉 = 〈r , r , ..., r , ... 〉 of reals. Infinite sequences of reals arei iε
�

0 1 n
important in the calculus.

Some more notation related to functions. Let f:A ��� ����� B . If X ⊆ A , the image of X under

f , denoted f[X] , is the set of all values of f while the argument of f ranges over X :

f[X] = {f(a)
�
a ∈ X} .

def
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E.g., when

f:
�

��� ����� �����
�

n � � ����� ����� 2n

and X = {n∈
���

n is even} , X = {n∈
���

n is odd} , then1 2

f[X ] = {n∈
���

n is divisible by 4} ,1

f[X ] = {n∈
���

n is even, but not divisible by 4} .2

-1If Y ⊆ B , the inverse image of Y under f , f [Y] (warning: this notation does not

-1imply that the inverse of f , f , exists!) is the set of all a ∈ A that are mapped into Y

by f :

-1f [Y] = {a∈A : f(a)} .
def

-1 -1E.g., with continuing the previous example, f [X ] =
�

and f [X ] = ∅ .1 2

-1In the general case f:A ��� � B , let b ∈ B . Then f [{b}] is the set of those a ∈ A

-1whose f-image is b , f(a) = b . Thus, f is injective iff for all b ∈ B , f [{b}] has

-1at most one element; f is surjective iff for all b ∈ B , f [{b}] has at least one

-1element; and f is bijective iff for all b ∈ B , f [{b}] has exactly one element.

27


