Section 1.3 Ordered pairs and functions

The ordered pair (a, b) of twothings a and b isanother thing that contains the
information of both a and b , together the information that " a comesfirst, b second".
Mathematically expressed, the essential property of the ordered-pair construction is

(a,b) =(c,d) < a=c and b=d. D
It is possible to construct the ordered pair set-theoretically; however, we will not do so here;

all we ever use about ordered pairs is the fact expressed in (1). Let us note though that the
pair-set {a, b} would not work as the ordered pair: we have

{0,1} ={1,0},
but we want
(0,1) #(1,0) .

The use of the ordered pair is familiar in coordinate geometry; the points in the plane equipped
with a Cartesian coordinate system are represented by ordered pairs of real numbers. Various
geometric figures become sets of ordered pairs. Denoting the set of ordered pairs of real

2

numbers by R” , the set

{(x,y)DIRZ: x2+y2=1}

is the circle with center the origin, and radius the unit length; that is, the set of points on that
circle. The set

{(x,y)DIRZ: x2+y2<1}

is the open disc of radius 1 around the origin;
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{(x,y)OR? [ x2 +y2 <1}

is the closed disc; the open disc does not, the closed one does, contain the circumference.

For sets A and B, A x B, the Cartesian product of A and B, isthe set of all ordered
pairs (a, b) withfirst element a from A, second element b from B :

AxB = {(a,b) : alA and b IB} .
def

Thus, what we wrote as [R2 above isthesameas R x R ; in general, we may write A2 for
AxA.

A function f fromaset A toanother set B isarule that assigns, to every element a of
A, adefinite element of B ; thiselement isdenoted by f (a) ; itiscalled the value of the
function f at the argument a . We write

f:A——B

toindicatethat f isafunctionfrom A to B; A isthedomainof f , B isthe codomain
of f . Thecodomainof f hasto be distinguished from the range of f ; the latter is the set
{f(a):alA} of al valuesof f :

range(f) = {f(a): alA} .
def

Therange of f isasubset of the codomain of f ; the range and the codomain may or may
not be the same.

It is possible to construe functions as sets, in particular, as sets of ordered pairs. with
f: A——>B, wemay consider the set of al pairs (a,f(a)) with adA; thissetiscalled
the graph of the function f :

graph(f) = {(a,f(a)) : alA}.
def

This is exactly the representation of functions that we use in coordinate geometry and calculus.
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For instance, with the exponential function exp: R——R assigning e* to x for all
x OR, we associate its graph which is the exponential curve in the Cartesian plane.

Note that the range of exp: R——>R isthe set of all positive real numbers,

RT = {yOR: y>0} . Thisistrue since the values of the exponential function are all positive,
and every positive real number is the value of exp at asuitable argument xOR : if y>0,
then thereis xOR namely, x=l n(y) , for which y=f (x) . Therange of exp: R——R

does not coincide with its codomain: [R+ g R .

Usually, we do not distinguish between the function and its graph; the exponential function
and the exponential curve are considered to be the same thing. There is one qualification to
this rule though: two functions f: A——B and g: A—— C, with the same domain but with
different codomains, may have the same graph. E.g., the si n function may be construed as
sintfR—R,from R to R,oras sin:R—[-1, 1] ,from R to the closed interval
[-1,1] (sinceall valuesof sin arein the latter interval); these two functions have the
same graph. For us, these two functions are technically different; the specification of a
function includes the specification of its domain as well as its codomain.

Whenisaset, say A, isthe graph of afunction? There are two conditions that are necessary
and sufficient for this to hold:

) Every element a of A must be an ordered pair: a must equal to (x,y) for
suitable (uniquely determined) x and vy ;

(i) Foral x,y,z, (x,y)0OA and (x, z) OA imply that y=z [note the same
x asfirst component in the two ordered pairs).

The second condition expresses the fact that for a function f , the value y=f (x) isuniquely
determined by the argument x . If (i) and (ii) hold true, then there is a function f: X—Y
for which graph(f)=A. Here, X,thedomanof f ,isthesetof al x for which thereis
y suchthat (x,y)UA; Y, thecodomain, isany setthat contains as a subset the set R of
al y for whichthereis x suchthat (x,y)OA (R istherangeof f); and we have

y=f(x) < (x,y) OA.

The usual notation for a function isto give its value at an indeterminate argument; thus, e®
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denotes the exponential function. This notation is ambiguous, however; it may aso mean the
value of the function at a certain argument-value of x . A more explicit notation e.g. for the
exponential function is

X eX (x OR)

Note here the vertical line at the beginning of the arrow; this kind of arrow isto be
distinguished from the arrow that connects the domain and codomain of the function. If we
write exp for the exponential function, a full notation and description of the function exp
isthis:

exp: R— R
Xlieex.

If we have two functions f: A——>B and g: A——>B between the sametwo sets, f and g
are the same function, f =g, justincaseforal aOA, f(a) =g(a) :

f=g < fordl alOA, f(a) =g(a) .

Thisisin agreement with the construal of functions as sets of ordered pairs. f =g justin
case graph(f) =graph(g) ; notethat thisisvalid only if the two functions f and g
are given already with the same domain and the same codomain.

Here is a notation for specifying a function when the domain of the function is a reasonably
small finite set. I'll explain this on an example. For instance, the symbolic expression

1 7 11
(r 39 9 11 @)
05 4 20 3 3

denotes the function whose domainistheset {1, 3,5, 7, 9, 11} , theset whichislisted in
the upper row, and whose value for each argument in the domain is given in the second row
underneath the particular argument; in the case of (2), if the function iscalled f , then
f(1)=0, f(3)=5, f(5)=4, etc.

To be precise, we should note that this notation exhibits only the graph of the function. In the
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example (2), the function f may have any codomain (which then has to be specified
separately) that containsthe set {0, 5, 4, 20, 3} , therange of the function f .

If we have two functions, f: A——>B and g: B-——~C, such that the codomain of the first is
the same as the domain of the second, we can form their composite g-f: A——~C; the
definition of gof is

(gef)(a) = g(f(a)) @dA).
def

We may omit the circle in the notation of composition, and write smply gf . To see the
domain/codomain relationships of the functions involved, we may draw the three functions
f, g, and gf inthediagram

of

The composite of two functions is defined only if the codomain of one coincides with the
domain of the other.

E.g., consider the functions

f:N 5 PN and g: AN — > P(N)
ni— > {n} X | >N- X

Then, gf isthe following function:

gf : N—— P(NN)
n ———={x ON| x#n}

When, in the calculus, we talk about a function like si n( ex) , we havein mind a
composite; in the case at hand, the composite si noexp :
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R__E€XP R sin R

X |—— ex
y — > sin(y)

X ——> eX—— 5 sin(eX)

The operation of composition of functions satisfies the associative law: in the situation

A B C D,

we have that
h(gf) =(hg)f .
Indeed, h(gf) appliedtoany a DA gives
[h(gf)](a) =h([gf](a)) =h(g(f(a))) ;
and, (hg)f appliedto a gives
[(hg)f](a) =(hg)(f(a)) =h(g(f(a))) ,

which is the same value. Since the two functions, both from A to D, give the same value at
each argument a 0 A, they are equal.

With any set A, thereis a particular function associated, namely the identity function on A:

1A: A——A
al——a

(1 A( a) =a for a JA). This has the property that its composite with any function,
provided it is well-defined, is the function itself:
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A C :: golAzg.

Another operation on functionsis restriction. Suppose f: A——=B and A O A. Then the
restriction of f to A’ isthe function denoted as f A : A* ——B for which
(ftA)(a) =f(a) foradl alA . E.g., for the absolute-value function

|- | I—N, itsrestriction to the subset IN of itsdomainis |- [N = 1IN , the identity
functionon N ; thereasonisthat In|=n foral nON.

With any subset A’ of any set A, one can associate the inclusion function ¢: A’ — A,
which acts like the identity: ¢(a) =a (a A" ) ; what makesit different from the identity
function is that its domain and codomain are not (necessarily) equal. Note that, with the

notation of this and the previous paragraph, f TA” =f «¢ .

A function f: A—B isinjective, or one-to-one, or f isaninjection, if it maps distinct
arguments to distinct values:

aza = f(a) #f(a’) for any a, a’ OA.
A more positive, but equivalent, way of putting the definition of injectivity is that
f(a) =f(a’) = a=a forany a, a’ OA.

E.g., the exponential function exp: R——R isinjective: if x and y aretwo distinct real
numbers, then either x <y, or y <x ;inthefirst case eX <Y (the exponential function

is strictly increasing), in the second case the other way around; thus, at any rate, eXzeY .
But, the si n functionisnot injective: 0 but sin(0) =sin(m =0.

f: A——>B issaurjective, or onto, or f isasurjection, if forany b 0B, thereis at least one
alA suchthat f(a) =b. f issurjective just in case its range equals its codomain.

E.g., therangeof sin:R—R is
[-1,1] = {yOR | -1=sy<l} ;

def
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thus, si n: R——R isnot surjective (e.g., for y =2 , thereisno x such that

sin(x) =y =2).But, if weconsider si n to be afunction from R to the interval

[-1,1] , sintR—[-1, 1] , then sin,inthissenseg, issurjective. (Note that for us, the
information of the codomain is part of the data defining the function. Thus, si n: R——R and
sintR——[-1, 1] are srictly speaking, not the same function.)

g
« _ . . . .
If A f B,and of —1A,wesaythat g isaleftinverseof f ,orthat f isaright

inverseof g .If gf = 1A and fg = 1B both hold, g isatwo-sided inverse, or smply, an
inverse, of f (and then, of course, f isaninverseof g).

Consider

k
[T}e—kk
g
N € N
f 5
n ——2n

(here, [g} denotes the largest integer not greater than 5—). Then gf = lIN’ since

(gf)(n) =g(2n) =[5 =[n] =n=1y(n) .

However, fg # 1[N yeg., (fg)(l) :2[%} =2[M=0#1. Thus,inthiscase, g isa
left inverse of f , but it isnot aright inverse of it.

We claim that in the situation:

g
AS B, and gf =1

B a
f isinjectiveand g issurjective. Indeed, if a,a’ OA, and f(a) =f(a’) , then

a =g9(f(a)) =g(f(a’)) =a’,

I — 1

of 1A
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which shows the injectivity of f . On the other hand, if alJA isan arbitrary element of A,

thenfor b = f(a) ,wehave g(b)=g(f(a))=a (againsince gf =1A); this shows
def
that g issurjective.

We have shown that

if afunction (f in the previous situation) has a left inverse, then it isinjective, and if
a function ( g above) hasaright inverse, it is surjective.

The converses of the last two assertions are almost true. First,

if f: A—>B isinjective, andif A isnot empty, then f hasa left inverse:

givenany b 0B, define g(b) tobe a A forwhich f(a) =b if thereis (necessarily at
most) one such a ; if however thereisno such a , let g(b) beany elementin A (since A
is not empty, there is at least one such). Then (gf) (a) =g(f(a)) =a by the definition
of g on b=f(a) ;thus gf :1A.

Secondly,

if g: B——A issurjective, then it has a right inverse.

Namely, we define f: A—— B inthefollowing way. Givenany a J A, we pick an arbitrary
b 0B suchthat g(b) =a; by the assumption of g being surjective, there is certainly at
least one such b ; we make f (a) equal this b . Then, with f: A——>B so defined,
(gf)(a) =g(b) forthe b described above; but the choice of that b was such that

g(b) =a;thisshowsthat (gf)(a) =a forany a 0 A, whichistosaythat f isaright
inverse of g . [In afoundational setting, this argument requires the so-called Axiom of
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Choice/]

Returning to the previous assertion, the additional assumption of A being non-empty is
necessary: any f: 0—>B isinjective, but thereis afunction g: B——0 atal onlyif B is
also empty.

If afunction is both injective and surjective, it is called bijective, or a bijection. Here are two
examples for bijection:

f: 70— 1
X|——>x-1

g:Q————-Q
X |[———2X

The symbol [ is used to indicate a bijection: f: A— 9 5B,

To say that a function is a bijection is the same as to say that it has an inverse.

Indeed, if it has a (two-sided) inverse, then, by what we said above, it is both injective and
surjective. On the other hand, if f: A——B ishijective, and for a moment, we assume that A
isnon-empty, then f hasaleftinverse g: B-——>A and arightinverse h: B-——>A::

gf=1A,fh=1 But then

B
h=1,ch=(gf)h=g(fh) =g-1g=g,

which showsthat h = g isatwo-sided inverse of f . If A happens to be empty, then, with
f: A——>B bijective, in particular, surjective, B must also be empty; in this case, f :1D , the
"empty function”, is a two-sided inverse of itself.

The last argument also shows that
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the (two-sided) inverse, if exists, is uniquely determined:

if g and h arebothinversesof f ,then g isaleftinverse, h isarightinverse of f ,
and the calculation above showsthat g = h . Moreover, we have also shown that

if f hasaleftinverse g, andalsoarightinverse h,then g=h,andthus f hasa
two-sided inverse, namely g = h .

Theinverseof f: A——B, if exigts, isdenoted by f 1 . Thus, the defining properties of

f- 1: B—A ae

The composite of two injections (if well-defined) is an injection; the composite of two
surjections is a surjection; the composite of two bijections is a bijection.

We leave the easy proofs to the reader.

A permutation of aset A isany bijection from A to A itself. The following denotes a
permutation of theset {1, 2, 3, 4, 5} :

(12345).
42531

(Recall this notation for a function from above, at (2): if o isthe name of the permutation at
hand, then o(1)=4, o(2)=2, o(3)=5, 0(4)=3, o(5)=1.)
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The set of all functions A——B is denoted by the exponential notation BA .

Sequences are particular functions. E.g., the 5-term sequence Eal, a,, 8z, 8, ag O may be
identified with the function whose domainistheset {1, 2, 3, 4, 5} , and whose value a i

. . . th
is a . The notation Eai Dlsi <n means the n-term sequence whose |

A" denotes the set of all n-term sequences of membersof A. Thus,

term is ai )

A" = {a O, | a0Aforal i <n}.

Note that for n=0, for any set A, thereisexactly one 0-term sequence of elementsof A,

the empty sequence 1 ; A0 ={1} .

If A isan alphabet, that is, a set of characters, then strings over A are essentially the same
as finite sequences of elements of A ; strings of length n are the same as n-term sequences
of elementsof A. A d5f \J A" isthe set of all strings over A . Note that A aways

neN
contains 1 , the empty string, as an element.

If, for instance, A={a, b, ¢} , thenthestrings aabccba and bccb are members of

A* ; the first belongs to A7 , the second to A4 .

Infinite sequences are the same as functions with domain N ; IRIN Isthe set of all infinite
seguences Eri q N Ero, TR, [ of reals. Infinite sequences of reals are
important in the calculus.

Some more notation related to functions. Let f: A——B. If XOA, theimageof X under
f ,denoted f[ X] ,istheset of all valuesof f whilethe argument of f rangesover X:

FIX & {f(a) |[alX}.

ef
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E.g., when

f:-N——N
ni—2n

and Xlz{nDIN | n iseven} ,XZ:{nDIN | n isodd} , then
f[Xl] ={n0N | n isdivisbleby 4} ,

f[X2] ={n0N | n iseven, but not divisible by 4} .

If YOB, theinverseimageof Y under f , f'l[Y] (warning: this notation does not

imply that the inverse of f , f 1

by f :

, existgl) isthe set of all a 0 A that are mapped into Y

t7ly] = {amA: f(a)}.

def

E.g., with continuing the previous example, f 1[ Xl] =N and f~ 1[ X2] =0.

Inthe general case f: A—B,let b 0B. Then f'l[{b}] isthe set of those a 0 A
whose f-imageis b, f(a) =b.Thus, f isinjectiveiff foral b 0B, f'l[{b}] has
at most one element; f issurjectiveiff foral b B, f'l[{b}] has at least one

element; and f isbijectiveiff forall b OB, f~ 1[{b}] has exactly one element.
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