All six problems [1], [2], [3], [4], [5] and [6] are worth the same marks.

[1] We let the set A be $A=\{1, 2, 3, 4, 5\}$. We list specifications of relations R_1, \ldots, R_7 on the set A. Decide in each case if there is a relation answering the specification. When the answer is "yes", give an example of a relation in question. Give reasons for both positive and negative answers.

R_1 is an equivalence relation and a reflexive order on A at the same time.

R_2 is a total irreflexive order on A such that $S \subseteq R_2$, where $S=\{(1, 2), (3, 1), (4, 1), (5, 3), (5, 4)\}$.

R_3 is a total irreflexive order on A such that $U \subseteq R_2$, where $U=\{(1, 2), (3, 1), (2, 5), (4, 1), (5, 3), (5, 4)\}$.

R_4 is the Hasse diagram of an irreflexive order Q on A with the property that there are exactly two incomparable pairs $\{i, j\}$ for Q ($\{i, j\}$ is an incomparable pair for Q if $\langle i, j \rangle \in Q$, $\langle j, i \rangle \notin Q$ and $i \neq j$).

R_5 is the Hasse diagram of a lattice on A which is not distributive.

R_6 is a transitive relation on A such that $R_6 \neq \emptyset$, and for any $\langle i, j \rangle \in R_6$, $R_6 - \{\langle i, j \rangle\}$ is not transitive.

R_7 is a symmetric and antisymmetric relation on A which is also not transitive.
In all parts of this problem, \(A \) is the set \(A = \{ 1, 2, 3, 4, 5, 6, 7 \} \), and \(S \) is the following relation on the set \(A \):

\[
S = \{ (1, 5), (1, 7), (2, 5), (3, 2), (3, 7), (4, 2), (4, 7), (6, 1), (6, 2), (6, 3), (6, 4), (7, 5) \}.
\]

(i) Give the transitive closure \(S^\text{tr} \) in the form \(S^\text{tr} = S \cup U \), where \(U \) is a suitable set of pairs. (I note that \(S^\text{tr} \) turns out to be irreflexive.)

(ii) Give the Hasse diagram \(H \) of \(S^\text{tr} \), in the usual graphic form, and also as a set of ordered pairs. (Recall that \(H \) is a relation on the set \(A \).) Is \(H \) equal to \(S \)?

(iii) Let \(\leq = S^\text{tr} \cup A \), the reflexive version of the irreflexive order \(S^\text{tr} \). Show that \((A; \leq) \) is not a lattice.

(iv) Find a single pair \((a, b) \) in \(H \) (for \(H \), see (ii)) such that \(\hat{H} \) is the Hasse diagram of a lattice. Verify in detail that \(\hat{H} \) is indeed the Hasse diagram of a lattice.

Hints: drawing the digraphs of \(S \) and \(S^\text{tr} \) will help. Do not hesitate to draw, and possibly redraw, digraphs according to need.
Define the concept of "Boolean algebra".

Remarks: The concept of "order" is *not necessary* to define; it can be used as given. However, every further term used in the definition should be given its own definition in full. Do not use logical formulas in your answer; the definitions should be given in ordinary (mathematical) English.

Let \(X \) be the Boolean expression

\[
X = ((A \rightarrow (B \lor C)) \land (C \rightarrow (A \lor B))) \rightarrow (B \rightarrow A) \land ((A \lor B) \rightarrow C)
\]

(i) Give a disjunctive form for \(X \); make it as short as you can.

The following two parts (ii), (iii) may be done in either order.

(ii) Show that \(X \equiv AC \lor \bar{B} \).

(iii) Give the disjunctive normal form for \(X \).

The subsets \(A, B, \) and \(C \) of \(\mathbb{R}^2 \) are given as follows:

\[
A = [x^2 + y^2 < 1], \quad B = [x^2 + y^2 < 4], \quad C = [y > 0]
\]

(i) Determine the atoms of \(\langle A, B, C \rangle \) (the Boolean subalgebra generated by the three sets, of the power-set algebra \((\mathcal{P}(\mathbb{R}^2); \subseteq) \)) as Boolean expressions of \(A, B, C \). Also, indicate the atoms graphically, as rough pictures in the Cartesian coordinate system of \(\mathbb{R}^2 \).

(ii) What is the cardinality (the number of elements) of the Boolean algebra \(\langle A, B, C \rangle \)?

(iii) For the given values of \(A, B, \) and \(C \), the expression \(X \) from Problem [3] is a particular element of \(\langle A, B, C \rangle \). Write \(X \) as a join of atoms of \(\langle A, B, C, D \rangle \).

(iv) Draw (roughly) \(X \) as a set in the Cartesian coordinate system of \(\mathbb{R}^2 \).

(v) *(for bonus marks)* Decide if \(\langle A, B \rangle = \langle A, B, X \rangle \); justify your answer.
By an informal argument, prove that the following inference, involving the natural numbers x and y, is correct.

"Assume that the statements (a), (b) and (c) hold:

(a) If $x > 5$, then y is even.
(b) If $y > 5$, then x is even.
(c) $x \cdot y$ is odd.

It follows that
(d) $x \cdot y \leq 25$.

Turn your argument into a formal proof:

(e) rewrite the statements (a), (b) and (c) as Boolean expressions; use letters denoting suitable ingredients of the statements;

(f) use these Boolean expressions as premisses, and provide additional premisses based on facts you used, maybe implicitly, in (i);

(g) using the standard Boolean calculation, verify the Boolean entailment whose premisses are the ones mentioned in (f), and whose conclusion is the letter standing for (d).