
  Assignment 4/MATH 247/Winter 2010 
   Due: Tuesday, February 9 
 
 
First, you find, in Part 1, a summary of some of the material discussed in class, and also 
found in Chapter 6 of the text. 
 
The problems to solve are in Part 2,  starting  on page 5.  
 
 
 
Part 1:  Matrix representation and change of basis: the special case for operators. 
 
 
 
A linear operator is a linear mapping whose domain and codomain are the same space:  
 
  . :T V V→
 
(Linear operators are the most important, but of course, not the only type, of linear 
mapping, which has the general form   , with possibly different vector spaces  

 and V .) 
:T U V→

U
 
 
1. Coordinate vectors 
 
Let  V  be a vector space,   a basis of  V ; 1( ,..., )nu u=U dim( )V n= . For an arbitrary 
vector w  in  ,  the coordinate vector of   relative to  U , in notation  [ ] , is the 
column vector  

 V w w U

 

  [ ]   =  w U

1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

for which    . 1 1
1

...
n

n n i i
i

w x u x u x u
=

= ⋅ + + ⋅ = ⋅∑
 
Fact 1   (“Coordinates are linear functions”):   
 

 If  
1

k

j j
j

w a
=

= ⋅∑ w = 1 1 ... ka w a wk⋅ + + ⋅  , then   [  = .  ]w U
1

[ ]
k

j j
j

a w
=

⋅∑ U

 

 1



Proof:  Write  [   =  ]jw U

1 j

nj

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  Then  
1

n

j ij
i

w x
=

iu= ⋅∑ , and  for  
1

k

j
j

w a w
=

j= ⋅∑ , we have  

= .   For  [   =  w =
1 1

k n

j
j i

a
= =
∑ ∑ ijx u⋅ ⋅ i j ija x⋅ ⋅

1 1

(
n k

i j= =
∑ ∑ ) iu ]w U
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n
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x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  this means  
1

k

i j
j

ijx a x
=

= ⋅∑ . 

And this is the same as  
1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
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a
=

= j ⋅∑
1 j
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x
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, that is,  [  = .  ]w U
1

[ ]j ja w
=

⋅∑ U

k

j

 
 
 
 
 
2. Matrix representation 
 
Let    be a linear operator on  V ,  :T V V→ 1( ,..., )nu u=U

T U

 a basis of  V ; . 
The matrix of T  relative to  the basis U , in notation  [ ] , is the  n

dim( )V n=
n×  matrix  defined 

as 
 
  [ ]   =   T U 1[ [ ( )] ,..., [ ( )] ]nT u T uU U
 
We have the relation 
 
Fact 2:   `         [  ,       (1) ( )] [ ]T w A w= ⋅U U

 
where   ,     any vector in  V .  A = [ ]T U w
 

Proof:  Let  X =
1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

[ ]w= U . This means  
1

n

i i
i

w x
=

u= ⋅∑

i ix

. Therefore, since  T  is linear,  

.   Using Fact 1 (“coordinates are linear”), we infer 

  = 

1
( )

n

i
T w

=

= ∑

[ ( )]T w

( )iu⋅

[ (i T u

ix T

1

n

i
x

=

= ⋅∑ )]iU U
1
[ ( )]

n

i
T u

=

⋅∑ U  = 1[ [ ( )]T u ,..., [ ( )] ]nT u ⋅U U

1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

.  [ ]w⋅ UA X A⋅ =
 

 2



 
Fact 2’:  The equality (1) determines the matrix  A  as  [ ]A T= U .  
 
Proof:   Apply  (1) to the vector  iw u= . We have  [ ]iu ie=U

A

, the standard   column 
vector with all but the i th component equal zero, and with the i th component equal 1. 
For any n  matrix ,  , the th column of . Therefore, (1) now says that  

. This is precisely to say that  

1n×

n×

i A=
A iA e⋅ = iA i

[ ( )]T u U i [ ]A T= U .  
 
 
  
 
3. Change of basis 
 
 
Suppose    and  1( ,..., )nu u=U 1( ,..., )nv v=V  are both bases of the space  V ; dim( )V n= . 
The change-of –basis matrix from  U  to V  is the matrix  , denoted sometimes  by  

, and defined as 
P

[ →U V ]
 
   [  . P = ] 1[ [ ] [ ] ],..., nv v= U U→U V
 
 
 
Fact 3:   For any vector   in  V , we have    w
 
   [ ]     [ ]w P w= ⋅ VU

 
(and not the other way around!); 
 
and, equivalently,  
 
     .    (2) 1[ ] [ ]w P w−= ⋅V U

 
 

Proof:   Let us write  X =
1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 for  [ ]X w= U , and  Y =
1

n

y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= [ ]w V .  We want 

X P Y= ⋅  .  
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With  ,  we have that  the column vector    [    is the same as  ( )n n
ijP p ×=

=
1

]jv U

[ ]jv U

j

nj

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.     We have 

 

       
1 2 3 4

1 1 1 1 1 1,
( ) (

n n n n n n

j j j ij i j ij i j ij i
j j i i j i j

w y v y p u y p u y p
= = = == =

= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅∑ ∑ ∑ ∑ ∑ ∑ ) u⋅

[explanations:   by the definition [ ;  
1
= ]w V

2
=   by the definitions of  [  and  ;  

expresses the fact that the sum on the left can be written, in any order,  as the sum of  the  
 terms  

]jv U P
3
=

2n j ij iy p⋅ u⋅  , one for each pair   of indices   from  1 to n . On the right 

of  ,  the sum is regrouped by collecting the terms that contain the same .]  

( , )i j ,i j
4
= iu

 
and 
 

       . 
1

n

i
i

w x
=

= ⋅∑ iu

j

 

Therefore:    , which is the same as   ix =
1 1

j
j j

n n

ij ijy p p y
= =

⋅ = ⋅∑ ∑
1

n

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= P ⋅
1

n

y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  that 

is,  X P= Y⋅ .  
  
 
Fact 3’:   Equality (2) determines  the matrix    as  [ . P ]→U V
 
Proof:   Apply (2) to the vector  iw u= .  
 
 
4. Change of basis and matrix representation 
 
Suppose    and  1( ,..., )nu u=U 1( ,..., )nv v=V  are both bases of the space  V ; dim( )V n= . 
Suppose   be a linear operator on  V . We have the three matrices :T V V→
 
   ,  A = [ ]T U B = [ ]T V  ,  P = [ ]→U V .  
 
We have the following connection between them 
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Fact 4:   1A P B P−= ⋅ ⋅  
 
or equivalently, 
 
   1B P A P−= ⋅ ⋅  
 
Proof : By Fact 2’,  it suffices to show that  1( ) [ ] [ ] [ ( )]P B P w A w T w−⋅ ⋅ ⋅ = ⋅ =U U U

V

. But   
 
   (see  Fact 3) 1 [ ] [ ]P w w− ⋅ =U

  B ⋅ [ ]w V [ ( )]T w= V     (meaning of  [ ]B T= V ) 
and 
  .  [ ( )]P T w⋅ V = [ ( )]T w U

 
Therefore, 
 
  1 [ ] [ ] [ ( )] [ ( )]P B P w P B w P T w T w−⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ =U V V U

 
as desired.  
 
 
 
 
 
 
 
 
Part 2: The questions 
 
 
 
 
[1]    This problem is an exercise in comprehension of Part 1. Answer the questions 
economically, for each question using previously obtained items when possible. Pretend 
that the questions concerned vectors and matrices of large dimensions for which economy 
of calculation would be of importance.  
 
 
  Let : , E =  the standard basis of   ;   2V = 1 2( , )e e 2

   

1 2( , )u u=U  a basis of  , where  2
1

3
4

u ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 2

2
3

u
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

; 
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1 2( , )v v=V  another basis of  , where  2
1 2

1 8
,

2 5
v v⎛ ⎞ ⎛

= =⎜ ⎟ ⎜
⎞
⎟− −⎝ ⎠ ⎝ ⎠

,w U

,  

1

7
,

11
w ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

     .  2

6
,

10
w ⎛ ⎞

= ⎜ ⎟−⎝ ⎠
1 25 6w w w= +

 
 
  1)  Determine the following entities: 
 

1 1 2 2 1 1 2 2[ ], [ ], [ ] , [ ] , [ ] , [ ]P Q X w X w Y w Y= → = → = = = =E E UE U U E  
 
  [ ] , [ ]X w Y w= =E U  . 
 
 Write down the equalities that are true for these entities on general grounds.  
 
 
 2)  Let  . Write down and prove equalities that 
express  

[ ], [ ]R S= → = →U V V U
R  and  in terms of  S [P ]= →E U  and  [ ]M = →E V ; the equalities should 

hold on general grounds (hints: use Fact 3’, and argue similarly to the proof of Fact 4)).  
 
Determine  ,M  R  and .  S
 
 3)  Let the linear operator   be defined by: :T V V→
 
    1 1( ) 2 4 ,T u u u= − + 2 22 1( ) 3 9T u u u= − −  .  
 
Use ,when reasonable, previously obtained matrices, and determine the matrices  

.  [ ] , [ ] , [ ]T T TU E V

2

 
 4)  For  ,  and  given above, determine the vectors  .  w 1w 2w 1 2( ), ( ), ( )T w T w T w
 
 5)  Suppose  ;   are as given before. Determine  .  1 ( 1)v a v a v= ⋅ − + ⋅ 2 1 2,v v ( )T v
 
 
 
 
 
[2] We define the following linear operators: 
 

2
1 :T →  is the reflection in the line    whose equation is  l 2 5 0x y− = . 

 
2

2 :T → 2   is the orthogonal projection onto the line  l   ( l  as before); 
 that is,   . 2 ( )T X = proj ( )l X
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4

3 :T → 4  is the reflection of   (!)   in the plane  U4 = span , where 1 2( , )u u

1

1
2
1

0

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

,  .  This means that   2

2
3
1
1

u

−⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
−⎝ ⎠

⎟
⎟

( )T X =  proj ( ) proj ( )U UX X− ⊥ ; remember that 

always  X = proj ( )U proj ( )UX X+ ⊥ . 
  

4
4 :T → 4   is the orthogonal projection onto the plane  U  ( U  is as before). 

 
For each of the four cases  ,  :T V V→
 
 a)  determine a basis  U  of  V for which  [  is easily obtained; ]T U

 b)  determine  [ ] , with  E  the standard basis (of   for   or 4); T E
nV = 2n =

 c)  calculate the values   where  ( )T w
5
3

w
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 for the first two operators, and  

 for the last two.  

1
1

0
2

w

⎛ ⎞
⎜ ⎟−⎜=
⎜
⎜ ⎟
−⎝ ⎠

⎟
⎟

⎞
⎟
⎟
⎟
⎠

 
  
 
 

[3] Let   , and let  U1 2

1 5
2 , 1
2 1

u u
⎛ ⎞ ⎛
⎜ ⎟ ⎜= =⎜ ⎟ ⎜
⎜ ⎟ ⎜− −⎝ ⎠ ⎝

= span , a subspace (plane) of . 

There are two rotations of the plane   U  in itself, through   about the origin. (It is no 
use now to say which one is clockwise, which one is counterclockwise, since such a 
characterization depends on from which side of the plane we are viewing the plane itself.) 
For each of these rotations, say  T ,  and for  a vector  

1 2( , )u u

30

3

X  in U ,    is a vector in  U  
such that  

( )T X
( )T X X=  and  .  ( , ( )X )X T 30=

 
 Determine the matrix  [  for both rotations as  T  as follows: ]T U

 
  1) Determine an orthogonal basis   1 2( , )v v=V   of  U  by the following 

formulas:  2 1
1 1 2 2

1 1

,,
,

u vv u v u v
v v

< >
= = −

< > 1⋅   (this is called the Gram-Schmidt process, 

applied to two vectors; soon we will learn more about it).  
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  2) Normalize the basis  V : form   where  1 2
ˆ ˆ ˆ( , ),v v=V 1

î i
i

v v
v

= ⋅ .  

  is an orthonormal basis of  U :  , and  1 2
ˆ ˆ ˆ( , )v v=V 1̂v ⊥ 2v̂ 1 2 1v v= = . (Do not use 

decimal approximations. Leave quantities such as 2  as they are, without calculating 
them.) 
 
  3) Write down the matrix  : this is just an ordinary rotation matrix,  

=[ , for either of the two rotations   of   through  30 .  
ˆ[ ]T

V

' :Tˆ[ ]T
V

']T E
2 2→ 2

 
 
  4)  Apply change-of-basis to calculate  [ .  ]T U

 
As an application,  
 
  5)  determine the value of   1 2(2 3 )T u u+  numerically as a 3  vector in  

, for both rotations as T .  (Leave expressions “algebraically’; do not calculate square 
roots.) 

1×
3

 
 
 
Rotations of   (preliminaries to problem [4]) 3

 
Let  l  be a line passing through the origin, and let  α  be an angle. Let  U  be the plane 
through the origin that is perpendicular to  l : in our general terminology,  U , the 
orthogonal complement of  l .  

l= ⊥

 A rotation in  about  the  axis l   through the angle  3 α   is a linear operator  
 for which   3:T → 3

 a)    for the direction vector   of the line l ; and ( )T v v= v
 b)   whenever   we also have  ,u U∈ ( )T u U∈   (for which we say that  U  is 
invariant under  , and the operator  T U  on  U , defined by  

 (u ) , is a rotation of the plane  U  through angle  
)T

)u
:U U→

( )( ) (T U u T= U∈ α . In short,  T  
acts in the plane  U  as a rotation of a plane 
 
Since, unless  0α =

U
 or ,  there are two possibilities for  the rotation  

 as in [3], there are two rotations  T  about the axis    through angle  
180α =

:T U U → l α . 
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[4]   This is a continuation of problem [3]. We let  U  be the plane defined in [3]. We let  
 as in [3]. We let  l  be the line perpendicular to  U  through the origin:  l  

(and thus  U ).  
30α = U= ⊥

l= ⊥

 

 9

3

The task is to calculate  [  with the standard basis  E  of , for the two rotations  
 about the axis   through the angle  .  

]T E

l

3

3:T → 30α =
 
To do this, use the work in [3]. Recipe: Calculate a unit vector   that lies in the line  . 
(there are two possibilities; it is enough to take one, either one) . The three vectors  

  form an orthonormal basis  =   of  .  Write down the matrix  [  

directly, using the work in [3]. Apply change-of basis to obtain [ . As an application 

(“tasting”), calculate the two rotated vectors  , for both rotations  . 

(Leave expressions “algebraically’; do not calculate square roots.) 

3v̂

T

l

]T
V1 2 3ˆ ˆ ˆ, ,v v v V 1 2 3ˆ ˆ ˆ( , , )v v v

1
( 1

1
T
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

3

3 3

]E

) :T →

 
Remark: When   is an orthonormal system of  ˆ =V 1̂ ˆ( ,..., )nv v 1n×  column vectors, then 
the   matrix   =  is called an orthogonal matrix. An orthogonal matrix  

   has the property that   (as it is easily seen), and thus  : the inverse 
is easy to calculate!  

n n× P 1̂[ ,..., ]nv v
trP P

ˆ
⋅ =P nI 1 trP P− =

  
  
 
 


