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Introduction

(A) The origins of the paper

Computads were introduced by Ross Street, for dimension 2 as early as 1976 in [S1]

and in general, in [S3]. Albert Burroni's paper [Bu] calls computads "polygraphs". Jacques

Penon's paper [Pe] is important for us, since it contains the full syntactical definition of

computads (reproduced with small changes in section 7 below), which will be used to

formulate the problem in the title of the present paper.

My interest in computads stems from their role in the definition and theory of weak

higher-dimensional categories. This role came to be realized as an afterthought.

In [He/M/Po], the definition of "opetopic set" introduced by John Baez and James Dolan

[Bae/D] is reworked into what we called "multitopic set". In [He/M/Po], it was shown, among

other, that the category of multitopic sets is, up to equivalence, the same as the category of

presheaves on a category called the category of multitopes. In [M3], inspired by the second

part of the Baez/Dolan definition of "opetopic category", but also following my earlier work

[M1], [M2] on logic with dependent sorts, I proposed a definition of "the large multitopic

category of all small multitopic categories"; the small multitopic categories constitute the

zero-cells in said large multitopic category.

Already at the time of our joint work with Claudio Hermida and John Power, we had the

feeling that multitopic sets were related to computads, in fact, that they were essentially

identical with the "many-to-one" computads, ones whose indeterminates (free generating cells)

have codomains that are themselves indeterminates (although, I must confess, at the time I did

not really understand the notion of computad). The paper [Ha/M/Z] established this result, in

the form of a pair of adjoint functors between the category of multitopic sets on the one hand,

and the category of small ω-categories on the other, under which the left adjoint functor, from

the first of the above categories to the second, being faithful and full on isomorphisms, has, as

its essential and full-on-isomorphisms image, the category of many-to-one computads.

This result represented an advance inasmuch the fairly complicated, albeit combinatorially

explicit, original definition in [He/M/Po] of multitopic sets became a conceptually simple one.

On the other hand, it is to be noted that the fact that the category of many-to-one computads is

a presheaf category, and the implied equivalent concept to the notion of multitope, do not
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become obvious by merely looking at many-to-one computads. At the present stage of our

knowledge, said fact needs, for its proof, the detour via the original theory of multitopic sets in

[He/M/Po].

The basic perspective of the present paper is a reversal of the above chronology. The notions

"multitopic set" and "multitope" are seen here as the result of a combinatorial/algebraic

analysis of the notion of many-to-one computad. The paper attempts to extend said analysis to

all computads.

(B) Computads as the algebraic notion of higher–dimensional diagram.

The notion of computad is, as far as I am concerned, nothing but the precise notion of

higher-dimensional categorical diagram. To explain this, I start earlier, with an informal

introduction to the notion of (strict!) ω-category. (In this paper, no "weak" category theory

appears at all.)

Consider the following ordinary categorical diagram:

f f3 6X A������@X A������@X3 6 9O O O� � �g � 2 g � 4 �g2� 4� � 6

X A������@X A������@X2 f 5 f 82 5O O Og � g � �g1� 1 3� 3 � 5� � �
X A������@X A������@X1 f 4 f 71 4

consisting of objects X and arrows f , g in some category. The reader will agreei j k
when we say this:

(*) if the four small squares 1, 2, 3, 4 commute,

then, as a consequence, the big outside square will commute as well.

Having agreed on this, one may ask what are the general laws behind this, and countless other

similar and/or more complicated facts. The answer is: the laws codified in the definition of
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notion of " ω-category".

To motivate that definition, the starting point is to adopt the position that "there is no bare

equality": every equality is mediated by some data that we -- conveniently or not -- forget

when we simply assert the fact of an equality. (At the Minneapolis (IMA) meeting on

higher-dimensional categories in June 2004, John Baez gave, as the introductory talk to the

conference, a brilliant lecture with this theme.) That position dictates that we, abstractly and

theoretically, introduce data that are responsible for the commutativity of the four numbered

squares above, in the way of fillers, 2-dimensional cells, or 2-arrows, as follows:

f f3 6X A������@X A������@X3 6 9O 	 O 	 O� k � k �g � a g � a �g2� 2 4� 4 � 6

X A������@X A������@X2 f 5 f 8 (1)2 5O 	 O 	 Og � k g � k �g1� a 3� a � 5� 1 � 3 �
X A������@X A������@X1 f 4 f 71 4

We think e.g. of a as a (2-)arrow with domain g f , and codomain f g . (We use2 2 3 2 4
"geometric order"; g f is what usually is denoted by f vg , or also g #f .) We even2 3 3 2 2 3
have given up the symmetry in the idea of the equality g f = f g , and think of g f2 3 2 4 2 3
being transformed into f g in some general way, that way being denoted by a .2 4 2

A 2-arrow must have a domain and a codomain that are ordinary ( 1-) arrows, which are

parallel: they share their domain and their codomain, which are 0-cells. The idea here is that a

2-arrow as a transformation does not have any effect on 0-cells: it must leave them alone;

transforming 0-cells is the responsibility of 1-cells.

The "if-then" statement (*) above becomes an operation that, applied to the four arguments

a , a , a , a results in a transformation, say b , of g g f f into f f g g :1 2 3 4 1 2 3 6 1 4 5 6

b: g g f f A�����@ f f g g (2)1 2 3 6 1 4 5 6

depicted as
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f f3 6X A������@X A������@X3 6 9O O� �g � �g2� � 6		X 	 X2 b k 8O Og � �g1� � 5� �
X A������@X A������@X .1 f 4 f 71 4

The above procedure of introducing 2-dimensional arrows into diagrams to represent

evidence, or proof, of a commutativity is closely related to the similar procedures in proof

theory, especially categorical proof theory; see for example [L/Sc], section I.1, "Propositional

calculus as a deductive system".

The concept of ω-category (" ω- " here anticipates the need for passing to ever higher

dimensions after 0, 1 and 2 that have appeared so far) will have, on the one hand, some

algebraically codified primitive operations that let us obtain b out of a , a , a , a by1 2 3 4
repeatedly applying those operations, and on the other, certain laws that ensure that no matter

in what order we apply the primitive operations to the four arguments, the result is always the

same: b is well-defined as the composite of a , a , a , a without any further1 2 3 4
qualification.

Just as the commutativity of 1-dimensional diagrams, that is, the equality of composite

1-arrows, has "given rise" to 2-dimensional diagrams, the contemplation of the equality of

composite 2-cells (possible 2-commutativities) gives rise to 3-arrows, and 3-dimensional

diagrams. For instance, the fact that the composite of a , a , a , a equals b is mediated1 2 3 4
by a 3-cell

f f f f3 6 3 6X A������@X A������@X X A������@X A������@X3 6 9 3 6 9O 	 O 	 O O O� k � k � � �g � a g � a �g g � �g2� 2 4� 4 � 6 2� � 6		X A������@X A������@X Φ X 	 X2 f 5 f 8 ����� 2 b k 8 (3)2 5O 	 O 	 O O Og � k g � k �g g � �g1� a 3� a � 5 1� � 5� 1 � 3 � � �
X A������@X A������@X X A������@X A������@X1 f 4 f 7 1 f 4 f 71 4 1 4
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Of course, the process does not stop at dimension 3 , and we see the need for a concept of

ω-category in which there are arrows (cells) of arbitrary non-negative integer dimensions (but

none of dimension ω or ∞ ).

Since the examples like the ones we considered clearly encompass a large variety, especially

when one contemplates arbitrarily high dimensions, it is a highly non-obvious fact that a

satisfactory concept of ω-category is possible at all. It is not a priori clear that there is a neatly

defined set of primitive operations whose combinations account for all the desired

compositions of cells; and it is not a priori clear that there is a neat set of laws that ensure

facts like the one above of b being well-defined as the composite of a , a , a , a . It is1 2 3 4
therefore a kind of miracle that in fact we do have a good notion of ω-category. It is the basic

general aim of the present paper and its projected sequels to investigate the ways and means of

this "miracle".

There is another, perhaps even more convincing, way of approaching the concept of

ω-category. This argues that the totality of (small) n-(dimensional) categories, properly

construed, is an (n+1)-category; therefore, if we want to freely form "arbitrary totalities", we

need n-categories for all n . (Let me note that the process stops at ω : the totality of (small)

ω-categories is, in a natural way, an ω-category again, not an (ω+1)-category.) However, in

this second argumentation, when carried out with proper care, we find a similar step of

replacing an equality by a transformation. In fact, this latter thinking, when followed to its

logical conclusion, gives rise to the notion of weak ω-category, a concept that we do not

discuss in this paper. The present paper sticks to the formal or syntactical role of higher

dimensional diagrams, and it does not need the consideration of "totalities".

In an ω-category in which the diagram (3) lives, there are many cells (infinitely many if we

consider the identities of all dimensions required by the concept of ω-category). In particular,

we have the composite 1-cell g f "on the same level" as the generating arrows g ,2 3 2
f , etc. The concept that makes the distinction between "generating cell" and "composite3
cell" is the concept of computad. This is a conceptually very simple notion; it can be stated as

levelwise free ω-category.

Imagine a structure, a typical computad, that can be taken to be essentially identical with the

diagram (3). We want the elements of this structure to be exactly the named items in the

diagram: the 0-cells X (i=1, ..., 9), the 1-cells f (j=1, ..., 6) , g (k=1, ..., 6),i j k
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the 2-cells a (l=l, ..., 4), b , and the 3-cell Φ . However, to account for the structurel
itself, we need to consider various composites of the elements. We decide to form the

composites freely.

1To begin with, we take the free category X on the ordinary graph consisting of said 0-cells

and 1-cells. To incorporate the 2-cells and their composites, we need the operation of freely

1adjoining the mentioned 2-cells as indeterminates to X , with the appropriate preassigned

1domains and codomains given as certain (composite) 1-cells in the category X .

This process of free adjunction is very familiar from algebra. The ring of polynomials

R[X, Y, ...] is obtained from the ring R , by freely adjoining the indeterminates

X, Y, ... . The definition, via a universal property, is too familiar to be quoted here. The

2 12-category X obtained by the free adjunction of the appropriate 2-cells to X , with the

1specified domains and codomains in X , is defined by a similar universal property. The only

additional complication is that the adjoined 2-cell a , to have an example, is constrained to2
1have the specified domain g f and codomain f g given in X already. In the section2 3 2 4

I.5, "Polynomial categories", of [L/Sc], we find a similar situation in which an arrow with

preassigned domain and codomain is freely adjoined to Cartesian closed category. (The

definition of computad is given in section 5 , based on section 4.)

When we adjoin an indeterminate u to an ω-category X in which we have specified du

and cu in X , to get X[u] , we usually assume that du and cu are parallel: they have

the same domain and codomain. However, this is only a "reasonability assumption". The

definition through the appropriate universal property works without this assumption. The

canonical map F:XA@X[u] will naturally produce the equality

F(ddu)=F(dcu)=d (u) . Thus, F can be injective only if said parallelism conditionX[u]
is satisfied. As we will see, in that case, F is indeed injective. � 2The composite of a , a , a , a will be a definite 2-arrow a in X . Of course, this is a1 2 3 4
major point of the construction, and it has to be ascertained specifically. That is, we have to

define, using the primitive operations of " ω-category", a specific 2-cell that we will take, by

definition, to be the composite of a , a , a , a . This we will not do here, since we do not1 2 3 4
have the formalism of ω-category yet. However, once we have done this, the resulting 2-cell

6



� �a will have domain and codomain as b does in (2); in other words, a will be parallel to

b .

Finally, the whole structure -- a computad -- is obtained by freely adjoining the 3-dimensional

2 �indeterminate Φ to X , with the stipulation that d(Φ) is to be the composite a , and

c(Φ) is b .

We have outlined the definition of a particular ω-category, in fact, a computad, that we take

to be the structure representing the pasting diagram (3). It gives a good idea of the general

notion of computad.

It turns out (see sections 4 and 5) that, when we define a computad to be an ω-category

without additional data as we did in the example, we are able to recover the indeterminates in

the computad from its ω-category structure as the elements that are indecomposable in a

natural sense. Thus, it is not necessary to carry the indeterminates as data for the structure.

I consider the notion of computad as being identical to the notion of higher dimensional

diagram, or pasting diagrams.

An analysis, using combinatorial, algebraic or geometric means, may provide descriptions

amounting to equivalent definitions of smaller or larger classes of computads. In fact, such

descriptions are one of the main areas of the theory of computads. As I mentioned above, the

paper [Ha/M/Z] is part of this area.

The notion of a diagram being pastable (composable), the focus of the attention in the theory

of pasting diagrams, is implicit in the concept of computad, since a computad always carries

within itself all possible (free) compositions of the indeterminates (elements of the diagram).

Of course, this does not mean that the problem of pastability of given candidates of pasting

diagrams, given in some combinatorial or other manner, is solved automatically by using

computads. The value of computads is mainly in their ability to provide mathematically

satisfactory definitions of intuitive concepts -- such as pastability --, which then can be

analyzed in any manner that comes to mind.

The important papers [J], [Po1], [Po2], [Ste]) give with various combinatorial, algebraic and

geometric definitions of classes of pasting diagrams. They make connections to computads to
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varying degrees. In ongoing and future work (e.g. [M4]), I revisit the results of the existing

theory of pasting diagrams in the spirit of computads.

(C) Concrete presheaf categories.

In part (A) above, we mentioned two results, both asserting the equivalence of certain

categories. The first said that MltSet , the category of multitopic sets, is equivalent of

op
 MltMlt = Set , with Mlt the category of multitopes. The second said that MltSet

is equivalent to Comp , the category of many-to-one computads.m/1

It turns out that in both cases, what is proved is stronger than what is stated. In both cases, we

have equivalences of concrete categories.

A concrete category is a category A together with an "underlying-set" functorQ-R:AA@Set . Equivalence of concrete categories (A, Q-R ) , (B, Q-R ) is equivalenceA B
of categories compatibly with the underlying-set functors: we require the existence of a functor

Φ:AA@B that is an equivalence of categories, such that the following diagram of functors:

ΦAG�������������@B�� ��t�� ≅ ��h WQ-R Set Q-RA B

≅commutes up to an isomorphism: there is an isomorphism ϕ:Q-R A���@Q-R vΦ .A B
All three of the above-mentioned categories MltSet , Mlt , Comp are equippedm/1
with canonical underlying-set functors.

A multitopic set, an object of MltSet , consists of n-cells, for each n∈ � ; we have an a

priori underlying-set functor Q-R:MltSetA�@Set . ( In the notation of [He/M/Po] , Part 3,

p. 83, for the multitopic set S , QSR= $ C ; the elements of C are called the k-cells ofk kk∈ �
S . In [Ha/M/Z], §1 gives an alternative, possibly more conceptual introduction to multitopic

sets. On p.51 loc.cit., it is pointed out that in dimension 0 , a detail in the definition in

[He/M/Po] is to be corrected.)
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op
 CFor any small category C , we take the presheaf category C=Set to be equipped with
the underlying-set functor Q-R:CA@Set defined as QAR= $ A(U) .
U∈ Ob(C)

We have the underlying-set functor Q-R:CompA@Set which assigns to each computad X

the set QXR of all indeterminates of X . Comp is a concrete category with them/1
underlying-set functor the restriction of that for Comp .

It turns out that both equivalences
MltSet J Mlt
Comp J MltSetm/1

are in fact concrete, that is, compatible with said underlying-set functors. As a corollary, we

have the concrete equivalence 
Comp J Mlt .m/1

This statement is meaningful even if we do not know the precise definition of Mlt ; it says

that Comp is (concrete-equivalent to) a concrete presheaf category.m/1

A concrete presheaf category is, of course, in particular, a presheaf category; thus it is a very

"good" category. Let us see what the "concreteness" in the equivalence says, in addition.
The concrete equivalence of (A,Q-R) and C means that we have an equivalence functorJ 
F:AA�@C , and a natural bijectionQAR ≅ $ (FA)(U) . (A∈ A) .
U∈ Ob(C)

Thus, up to a natural bijection, we have a classification of the elements of an object A (the

elements of the set QAR ) of A into mutually disjoint classes (FA)(U) , the classes being

labelled with a fixed set of types, the objects U of C . This classification is functorial: it is

compatible with the arrows of A . Moreover, we have arrows between the types, the
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ftype-arrows, that account for the complete structure of the category A : an arrow AA���@B ,

essentially a natural transformation, is given by a system of maps

fU(FA)(U)A����@(FB)(U) , one for each type U , that are jointly compatible with the

type-arrows. 
It turns out that the equivalence type a concrete presheaf category C determines C up to

isomorphism; we say that C is the shape category of any concrete category that is concretely
equivalent to C .

*Given a concrete category A=(A, Q-R) , we identify a category, denoted by C [A] , which

is the shape category of A in case A turns out to be a concrete presheaf category. Here is the

definition.

El(A) denotes the category of elements of the functor Q-R:AA@Set ; its objects are pairs

(A, a) = (A∈ A, a∈ QAR) , and they are called elements of A .

An element (A, a) is said to be principal if it is A is generated by a , in the sense that

whenever f:(B, b)A@(A, a) is an arrow in El(A) such that f:AA@B is a

monomorphism in A , then f is an isomorphism. The element (A, a) is primitive if it is

principal, and for any principal (B, b) , any arrow f:(B, b)A@(A, a) must be an

isomorphism.

*The shape category C [A] has objects that are in a bijective correspondence with the

isomorphism types of primitive elements (A, a) . Moreover, if the primitive elements

*(A, a) , (B, b) are (represent) objects of C [A] , then an arrow (A, a)A@(B, b) in

*C [A] is the same as an arrow AA@B in the category A . Thus, there is a full and faithful

*forgetful functor C [A]A@A .

Furthermore, we can spell out a set of conditions, some of them involving the primitive

elements of A , that are jointly necessary and sufficient for A to be a concrete presheaf

category.

The first group, (i), of the conditions says that A is small cocomplete, Q-R:AA@Set
10



preserves small colimits, and reflects isomorphisms.

The second group contains four conditions.

The first, (ii)(a), says that the set of isomorphism types of primitive elements is (indexed by a)

small (set).

The second, (ii)(b), says that every element is the specialization of a primitive element:

for every element (A, a) of A , there is a primitive element (U, u) together with a

map f:(U, u)A�@(A, a) in El(A) .

Here, (U, u) is said to be a type for (A, a) , f a specializing map for (A, a) .

The third condition, (ii)(c), says that, for any element (A, a) , with any given primitive

(U, u) , there is at most one specializing map (U, u)A@(A, a) .

Finally, the last one, (ii)(d), says that if the primitive elements (U, u) , (V, v) are both

types for (A, a) , then they are isomorphic: (U, u)≅ (V, v) .

All the above facts concerning concrete presheaf categories are established as parts of standard

category theory; they are easy, but form a basic setting for the first of the two main lines of

inquiry in the paper, the investigation of the category Comp and certain of its full

subcategories as to which of the above conditions are satisfied in them. Comp is one ofm/1
those full subcategories, and, by what we know from previous work, it satisfies every one of

said conditions.

It is relatively easy to show that Comp itself satisfies (i) and (ii)(a); see the work leading up

to section 6. One of the main results of the paper that Comp satisfies (ii)(b) ; every element of

Comp has at least one type. The proof of this result requires the more substantial tools of the

paper developed in sections 8 , 9 and 11. An easy example shows that (ii)(c) fails in Comp

(see section 6). I do not know if (ii)(d) is satisfied or not by Comp .

Let C be a sieve in Comp , that is a full subcategory of Comp for which if B is in C , and

AA@B is any arrow, then A is in C . ( Comp is an example for a sieve in Comp ). Cm/1
is regarded as a concrete category with the underlying-set functor inherited from Comp . It is
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then immediate that the notions of principal element, primitive element, and type for an

element for C become the direct restrictions of those for Comp . More precisely, for (A, a)

in El(C) , (A, a) is principal resp. primitive for the concrete category C just in case it is

principal resp. primitive for Comp . Moreover, obviously, for an element (A, a) of C , any

(U, u) is a type of (A, a) in the sense of the concrete category Comp if and only if

(U, u) is a type of (A, a) in the context of the concrete category C .

Thus, for a sieve C in Comp , to say that it is a concrete presheaf category, is to say that it

satisfies (i) -- which is ensured by assuming that C is closed under colimits in Comp --, and

that the conditions (ii)(c) and (ii)(d) are satisfied by primitive elements of Comp that belong

to C .

An additional simplification is provided by the fact that a principal element (A, a) of Comp

is determined by the underlying computad A ; a is the unique indeterminate of maximal

dimension in A ; it is denoted by m . We call A a computope if (A, m ) is primitive. IfA AC is a sieve in Comp , and as a concrete category is a concrete presheaf category, then its

*shape category C [C] is the skeletal category of the computopes that are in C .

Furthermore, it is a one-way category (all non-identity arrows AA@B have

dim(A)<dim(B) ), which makes it amenable to the manipulations of logic with dependent

sorts ([M1], [M2]).

In particular, multitopes can be identified with many-to-one computopes: an elegant, albeit

fairly abstract, definition of "multitope".

Here is an example illustrating the role of computopes.

Consider the diagram

fhf h A������@A���@ A���@ �X Y Z ; X a� Z . (4)A���@ A���@ Pg i A��� ��@gi

(recall the use of geometric order in compositions). It is clear how to interpret (4) as a

computad: once again, the elements (indeterminates) of the computad are exactly the distinct

elements named by single letters in the figure. (4) is a principal computad; its main cell

( m ) is a .(4)
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In drawing the diagram, we had the inconvenience of Y being in the way of placing the

2-cell a ; this made us repeat parts and denote some composites (the last should not be done

...). We would do better drawing the same as follows:)YK� 	f� 	h� k�X a Z . (5)	 P )	 �g 	 � ik HY
This repeats the 0-cell Y , but this is "all right". It seems right to say that (5) shows the real

shape of the diagram (4). Of course, as a computad, (5) is identical to (4). However, we have

the diagram -- computad --

Y1) K� 	f� 	h� k�X a Z (6)	 P )	 �g 	 � ik HY2

"without repetition" of indeterminates; in fact, it is easy to see that (6) is a computope. We

also have the obvious computad map f:(6)A@(5) that, in particular, collapses Y and Y1 2
to Y . f is a specializing map for (5) (using the terminology introduced above), and (6) is

the type for (5). In this case, it is easy to see that the type is unique up to isomorphism

(condition (ii)(d) above), and it is obvious that the specializing map is unique (condition (ii)(c)

above). We are inclined to say that (6) is in fact the shape of (5) (and (4)). (5) is obtained from

the shape by labelling, in particular, labelling the spots Y , Y both by the same item Y .1 2

"Computope" is the mathematical concept of shape of (principal, in particular finite)

higher-dimensional diagrams. The specializing maps are the labellings of shapes to get the

general diagrams.

I should note that the fact that Comp is a concrete presheaf category does not becomem/1
obvious by what has been said above: although we know, by previous work, that conditions

(ii)(c) and (d) hold true for many-to-one computads, I do not have a direct proofs of these

facts. Despite this circumstance, I think it is be possible, by further developing the methods of
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this paper, to show that further significant categories of computads are concrete presheaf

categories.

Perhaps it is not superfluous to state that my interest in higher-dimensional diagrams, hence, in

computads in general, stems from the view that they should constitute the language for talking

in a flexible way about matters within weak higher dimensional categories. Although the

many-to-one computads are sufficient for defining a suitable concept of higher-dimensional

weak category, a flexible language to develop mathematics in the context of a suitable weak

higher-dimensional category, in analogy to mathematics developed in a topos, one needs

higher-dimensional diagrams in general.

(D) The word problem for computads

For a fully explicit, computationally adequate, implementation of higher-dimensional diagrams

-- that is, computads -- we need a notational system to represent, not only the indeterminates,

but also the pasting diagrams, or pd's, i.e., all composite cells, in the computad. After all, we

must input the information about the domain and the codomain (arbitrary pd's in general) of

each indeterminate.

The formalism of ω-categories provides such a notational system; as usual with free

constructions, we can denote all cells of the ω-category freely generated by indeterminates by

using a system of words derived directly from said formalism. This method is familiar from

algebra, for instance, in the study of free groups, or more generally, groups given by

presentations. In the case of computads, there is a new element, namely, the necessity to

consider the condition of a word being well-formed. This becomes clear on the conditional

nature of composition: one needs the precondition that a domain be equal to a codomain for

the composite to be well-formed. However, having realized that we have to talk about

well-formedness, the system of words is naturally defined. In this paper, this is done in section

7, following Jacques Penon's system in [Pe].

Similarly to what happens in the algebra of groups, the pd's in a computad will be identified

with equivalence classes of words, rather than with words simply; the laws of ω-category will

make certain pairs of words equivalent, that is, denote the same pd in the computad. The

question how to see if two words are equivalent naturally arises, and one wants to know if the

word problem is solvable: whether or not there is an decision method, efficient if possible, to
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decide for any two words if they are equivalent. Only in possession of such a decision method

can we hope to have a reasonably general way of handling higher-dimensional diagrams

computationally.

One of the main results of this paper is that the word problem for computads in general is

solvable. After preparations, the main part of the work of the proof is done in section 10.

The motivation for this result also came from the situation of the many-to-one computads. In

[Ha/M/Z] and independently, in [Pa], there is a description of the ω-category, in fact, a

typical many-to-one computad, generated by a multitopic set, in which the general cells of the

ω-category are given as multitopic pd's of the multitopic set "with niches". (In [Ha/M/Z], this

is given as the left-adjoint of a pair of adjoint functors between MltSet and ωCat , the

right adjoint of which is a multitopic nerve functor). The construction provides a normal form

for words denoting the pd's of the many-to-one computad. Starting from any many-to-one

word, its normal form is computable, and two words are equivalent iff their normal forms are

identical; the word problem of many-to-one computads is solvable as a consequence.

The solution of the word problem for general computads starts in a similar manner, with

reducing an arbitrary well-formed word to a "pre"-normal form. The question of equivalence of

pre-normal words is still non-trivial, but it is simpler than that for raw words, and it is

eventually manageable, although the decision procedure as it stands at present uses searches

through fairly large finite sets, and therefore it is quite unfeasible.

(E) The contents and the methods of the paper

The paper separates into two parts, one that uses, and the other that does not use, words.

Sections 7 and 10 use, and are about, words. The other sections do not mention words, or use

results based on words, at all.

The elementary theory of equivalence to a concrete presheaf category is explained in section 1.

Here, and elsewhere, the proofs that were found boring or less than easily readable were put

into appendices. On the other hand, the paper, taken as a whole, is more than usually

self-contained.
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Sections 2 and 3 contain the generally accepted definitions of ω-graph and ω-category.

Compare [Str2].

Sections 4 and 5 contain the concepts underlying the definition of "computad", and the basic

results concerning these concepts. The approach is leisurely and the proofs are mostly routine.

Section 4 explores the operation of adjoining indeterminates to a general ω-category, and the

iteration of this operation. Section 5 defines computad as an ω-category obtained by iterated

adjunctions of indeterminates to the empty ω-category. The emphasis in section 5 is on the

properties of the category Comp of all computads, and the way this category resembles

"good" categories such as presheaf categories.

The one element of section 5 that seems to be novel is the concept of the content of a pd in a

computad: this is a multiset of the indeterminates occurring in the pd, counting the multiplicity

(number of occurrences) of each indeterminate.

The definition of the content function was a non-trivial matter, and in fact, it is not entirely

successful. One of the main intuitive requirements would be that in case of a computope A ,

the multiplicity of each occurring indeterminate in m is equal to 1 . Our definition of theA
content function definitely does not satisfy this; and I do not know if it is possible to give such

a definition, also having the other desired properties.

Despite its drawbacks, the content function is an efficient tool for the main purposes of the

paper. One needed property is its invariance under equivalence. Its verbal description sounds

as if it is defined for words, by a direct count of occurrences. However, such a definition

would not give something that is invariant under equivalence of word, that is well-defined for

pd's. As a matter of fact, the definition of the content is not done using words at all.

Another crucial property of "content" is its "linear" behaviour under maps of computads; see

5.(12)(ix).

Section 6 was fairly completely described under (C).

Section 7 displays the system of words for computads in complete (and straight-forward)

detail.

Sections 8 and 9 contain the main mathematical novelty in the paper. I propose a kind of

normal form, the expanded form, for compound expressions (words) in the language of
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ω-categories. The expanded form is constrained in two ways. The first is that it admits only

restricted instances of the ω-category operations. Specifically, the operation a# b is allowedk
for cells a of dimension m and b of dimension n only if k=min(m, n)-1 . Since k is

determined by a and b , its notation is not necessary; we write a ⋅b for a# b .k

The second constraint is that the expanded form allows the operations only in a certain order.

For instance, denoting a 4-cell using a single indeterminate 4-cell u , is allowed only in the

form of an atom

b ⋅(b .(b ⋅u ⋅e ) ⋅e ) ⋅e3 2 1 1 2 3

where b and e are cells of dimensions i , i=1, 2, 3 . Of course, it is required that thei i
composites be well-defined. "Bigger" 4-cells are obtained in the form of molecules, which are

⋅ -composites of atoms.

The picture for a 3-atom b .(b ⋅u ⋅e ) ⋅e is2 1 1 2�������������������������������������� db �� �b 2 �� � 2 �� P �� ddu �� A������������ �� � � �� � Pb � � � P e1 du� u �cu 1⋅A��������@ ⋅ �A���@� .A��������@ ⋅� �� � P P� � O� � � O� A������������ �� ccu �� �e �� 2� P ce �� 2 �A�����������������������������������
The success of the expanded form to account for all expressions rests with certain features of

the constrained dot-operations. Section 8 shows that the operations obey laws that are of a

nature that is more familiar from algebra than the laws in the generally accepted definition of

ω-category. In particular, we have an associative law involving three variables (similarly to the

usual definition), a distributive law, also involving three variables, and a "commutative law"

involving two variables. It is shown that the usual operations, with their laws, are recoverable

from the dot-operations with their postulated laws, effectively providing a new definition of

ω-category, equivalent to the original one. In particular, the distributive law let's one distribute

a lower dimensional cell over the composite of higher-dimensional cells as in
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a ⋅(b ⋅e) = (a ⋅b) ⋅(a ⋅e) ,

where dim(a)<dim(b) , dim(a)<dim(e) , and the expressions are well-defined. It is

mainly this that allows to reduce an arbitrary word to the form of a molecule.

The definition of ω-category through the dot-operations and the expanded form are very

natural, and they readily come to mind when one discusses examples. For instance, the

composite of the diagram in (1) has two molecular forms, both shown in

g g f f1 2 3 6�� g a fP 1 2 6
g f g fa g f 1 2 4 6G g g a1 4 6��t �� 1 2 4�� ��W hf g g f g f f g1 3 4 6G 1 2 5 6�� ��t�� ��f g a h W a f g1 3 4 f g g g 1 5 61 3 5 6� f a gP 1 3 6
f f g g1 4 5 6

as the two equal composites from top to bottom.

The expanded form is used in section 9, the heart of the paper. This provides a reduction of the

structure of an (n+1)-dimensional computad to that of a "collapsed" n-dimensional one,

whereby the only thing, beyond the n-computad, left to discuss for the description of the

(n+1)-computad is the effect of the commutative law on interchanging (n+1)-dimensional

atoms.

I note that the results of section 8 and 9 are stated without referring to words. They have

immediate variants involving words, which are stated and used as the main tools for the

solution of the word problem in section 9. The same results, without reference to words, are

used to establish certain finiteness lemmas, which are needed, in a natural fashion, to limit

certain searches to finite sets, and to establish the decision procedure for the equivalence of

words in section 10. In both sections 9 and 10, the content function of section 5 is crucial.
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