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1. Well-foundedness 
 
Let  R  be a Relation on the class  X  ( R X X⊆ × ). We say that the structure ( , )X R  is 
well-founded  (wf) if the following holds true: 
 
  . { [ ( ) ]}Y X x X y yRx y Y x Y Y X∀ ⊆ 〈 ∀ ∈ ∀ → ∈ → ∈ ⇒ = 〉
 
In words: call a subclass  Y  of  X   inductive (with respect to the relation R )  if the 
clause in  { …}  holds:  [ ( ) ]x X y∀ yRx y Y x Y→ ∈ → ∈∀ ∈ .  R  is wf  if the only 
inductive class is  X  itself. 
 
 
 
[1.1]  Suppose that  ( , )X R  is wf. Let   be any sub-Relation (subclass) of  S R , and  Z  
any class such that  . Then  (S Z⊆ ×Z ,Z S ) is wf as well. (Exercise) 
 
 
The main example for a wf  Relation is  the membership Relation  {( , ) : }x y x y∈ = ∈





 on 
the class    of pure sets. Indeed,  Y  being an inductive subclass of    means that  Y  is 
a subclass of      that is closed under set-formation.  Since   is a subclass of any class 
closed under set-formation,  an inductive subclass of  must equal  .   




 
 
Suppose that ( , )X R  is wf, and let  Y  be a subclass of  X ; Y . Let us call  Y  
bottomless (with respect to 

X⊆
R ) if the following holds: 

 
 ( ( ))x x Y y y Y yRx∀ ∈ →∃ ∈ ∧ .  
 
 
[1.2]   If  ( , )X R  is wf, then every ( R -)bottomless class is empty.  
 
Proof   Consider the complement of  the bottomless Y  in  X :  Y = { : }x X x Y∈ ∉ . Y  is 
inductive: assume  
 
 ( )y yRx y Y∀ → ∈ ,     (2.1) 
 
to see  x Y∈ : if  we had  x Y∈ , then, by bottomlessness,   ( )y y Y yRx∃ ∈ ∧  , 
contradicting  (1). Therefore,  Y X= , which is to say that  Y  is empty.  
 
[1.3]   If  ( , )X R  is wf, then  xRx¬  for all x X∈  ;  ( )xRy yRx¬ ∧  for all ,x y X∈ .  
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Proof   If  xRx , then the class  { }x  is bottomless: contradiction. If  xRy yRx∧ , then the 
class  { , }x y  is bottomless.  
  
  
 
 
 
2. The natural numbers 
 

We define  0  = {  (the empty set),  
def
=  : }x ⊥ ( )S x

def
= { }x x∪ . 

 

We define  the class     as    ` `
def
=  { : {[(0 ( )] }x X X y y X Sy X x X∀ ∈ ∧∀ ∈ → ∈ → ∈ . 

The elements of   are called (von-Neumann) natural numbers. `
 
Later on, we will adopt the axiom of infinity:  `  is a set. At this point, however, we do 
not need this axiom.  
 
The letters   range over  natural numbers. This means that the quantified 
expression   is to be read as  

, ,m n p
( )nP n∀ ( ( ))x x P x∀ ∈ →`   and  ( )nP n∃   as  

( ( ))x x∃ ∈` P x∧ .    
 
The principle of mathematical induction:   
 
  (0) ( ( ) ( )) ( )P n P n P Sn nP n∧∀ → → ∀
 
is a direct consequence of the definition:  take  { : ( )}X n P n=  in the definition of  . `
 
 
[2.1]   (.1) Every natural number is a pure set:  .  (exercise; hint:  use mathematical 
induction for the predicate  

⊆` 

( )P n n≡ ∈ ). 
           (.2)  Every  natural number is a transitive set  (a  class  X  is transitive if  

(( ) )x y y x x X y X∀ ∀ ∈ ∧ ∈ → ∈ ).  
           (.3)   (obvious) 0Sn ≠
           (.4)  Sm   Sn m n= → =
 
    Proof   Suppose that  . This means  . Therefore, both of the 
following are true: (1) either   or  

Sm Sn=
m∈

{ } { }m m n n∪ = ∪
n m n=  (by  { }m n n∈ ∪ ) , and (2) either   

or  n . Hence, either  ( m  and 
n m∈

m= n∈ n m∈ ), or  m n= . However, by  (.1) and [1.3],  
 and  is impossible.  Therefore,   m n∈ n m∈ m n=  follows.  

 
Remark:  (.2) and (.3) are (some of the) so-called Peano axioms.  
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            (.5)    (obvious by induction).  0 .m n m= ∨ ∃ = Sn
 

The order-Relation  <   on   is given by:  `
def

m n m n< ↔ ∈ .   
 
[2.2]  (.1)   is transitive:  m n  implies that  < p< < m p<  (follows from [2.1.2]) 
 
          (.2)  m S  (obvious from the definitions) n m n m n< ↔ < ∨ =
 
 
 
 
3.  A summary of the axioms 
 
 

Y  is a set  
def
↔ .Z Y Z∃ ∈ { : }Y x x↔ ∈ = = x  

 
Lower-case variables range over sets.  
 
Class comprehension schema: For any predicate  ( , )P X Y

G
, we have 

 . . . ( ( , ))Y Z x x Z P X Y∀ ∃ ∀ ∈ ↔
G G

 
By extensionality,  Z  is unique; we write  { : ( , )}Z x P X Y=

G
.  

 
 
The set-existence axioms are: 
 
      Axiom of subset:   x∀ .Y x  is a set   (a subclass of a set is a set) Y⊆ →
 

Define  .    { : }
def

x= ⊥�
      Axiom of the empty set:    is a set.    . �
 

For sets x  and y , define  { , } { : }
def

x y u u x u y= = ∨ = .    
     Axiom of the pair-set:   x∀ . y∀ .{ , }x y  is a set.  
 

For a set x , define  
def

x =∪ { }  : .u y u y y x∃ ∈ ∧ ∈
     Axiom of the union set:   x∀ . x∪  is a set.  
 

For a set  x , define  ( )
def

x =P { : ( )}y z z y z x∀ ∈ → ∈  
     Axiom of the power set:  x∀ . ( )xP  is a set.  
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The class  N  of the natural numbers was defined above. 
     Axiom of infinity:   is a set.  N
 
 
A Relation is a class all whose elements are ordered pairs. 

Dom( )
def

R = { : . , }x y x y R∃ 〈 〉∈ , Range( )
def

R = { : . , }y x x y R∃ 〈 〉∈ . A Function is a 
Relation  R  such that  1 2 1 2( , )1 2, )x y y∀ ∀ ∀ x y y〈 =y R〉∈ x y R∧ 〈 〉∈ →  
     Axiom of replacement:  If  R  is a Function, and  Dom( R ) is a set, then  
Range( )R  is a set.  
 
(The axiom of choice will  be considered later.) 
 
 
 
4.  Transitive models of set theory 
 
Let  Φ  be any formula in the language of classes. All variables, free or bound, in     
are class-variables (the set-variables, which are a device of abbreviation, are not used). 
Given any variable  

Φ

X  not occurring in  Φ  either as a free or a bound variable, we let  
[Φ X ] denote the formula, with the single free variable  X , obtained by relativizing  

each quantifier in   to subclasses of  Φ X . This means replacing each   in  Φ  by  
, and   by  

...Y∀
(Y Y∀ ⊆ ...)X → ...Y∃ ( ...)Y Y X∃ ⊆ ∧ .  

 
Let us abbreviate   by  ( ...)Y Y X∀ ⊆ → ...Y X∀ ⊆ , and  ( ...)Y Y X∃ ⊆ ∧  by   ...Y X∃ ⊆
 
Note that if we have a set-quantifier  y∀ …, with  y   a set- variable (as usual), this 
means  .  After relativizing to subclasses to  (( ( )) ...)Y U Y U∀ ∃ ∈ → X , it becomes  

, which is equivalent to  ( ...)∀ ⊆ )(( )( )Y X U X Y U∃ ⊆ ∈ → ( ...)Y X)(Y X∀ ⊆ ∈ → .  
 
Now, from now on, we assume that the class  X  is transitive:  y x X∈ ∈  implies  y X∈ . 
Thus,  Y  implies that  Y  is a set, and  Y . Therefore, the phrase  

 is equivalent to  
X∈

)(Y X Y
X

( X
⊆

y y( ...)X∀ ⊆ ∈ → ...)∀ ∈ → .  
 
Another remark. Frequently, we can re-write formulas by using the abbreviations  

 for  , and ...u Y∀ ∈ ( ...)u u Y∀ ∈ → ...u Y∃ ∈  for  ( ...)u u Y∃ ∈ ∧ .  
 
We conclude that, with  X  transitive, the set-quantifier  y∀ , after relativizing to  
subclasses of  X , becomes  ...y X∀ ∈ , and similarly,  y∃  becomes  ...y X∃ ∈  
 
 
Moreover,  if our original formula Φ  contains the bounded quantifier  , or  

, then in 
...u v∀ ∈

...u v∃ ∈ [ ]XΦ  the quantifier remains the same: the reason is that  

 4



(( ) ...)u u X u v∀ ∈ ∧ ∈ →  is the same as  ( ...)u u v∀ ∈ → , with the understanding that  
, since  v X∈ X  is transitive; similarly for ...u v∃ ∈  .    

 
Consider the example of the power-set axiom as  Φ  (this is a senence, without free 
variables): 
 
   ( .v u v y∀ ∈ ∈ )

v v u

y z u u z∀ ∃ ∀ ∈ ↔
 
(I have re-written  the phrase  , that is,  u y⊆ ( )v y∀ ∈ → ∈  ,  as   ).  .v u v y∀ ∈ ∈
 

[ ]XΦ

( )(y X z X∀ ∈ ∃ ∈

 is (equivalent to) Then  
 
 . )( )(u X u∀ ∈ ∈ .z v u v y↔∀ ∈ ∈ )
 
Let us examine what this means (of course, it may or may not be true, depending on what  

zX
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 is).  The set   said to exist has to satisfy that, for    in u X ,  u  is in  z   iff   ; 
that is,  

u y⊆
z X∩ = ( )y ∩  P X . But since  z X , and  X  is transitive,   is to be in  

z X∩ = z . Thus,  it is required that  z = ( )y X∩  P . In conclusion:  the truth of [ ]XΦ , 
the  power-set axiom for  the transitive structure  ( , )X X∈b , is to say that   ( )P y X∩  

X )y X X∩ ∈is an element of  ;  ( .   P


