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1.  We define an axiomatic system, called the First-Order Theory of Abstract Sets 
(FOTAS). Its syntax will be completely specified. Certain axioms will be given; but these 
may be extended by additional ones at a later time (as it is expected from the experience 
with the Morse-Kelly system). In FOTAS, we only have sets; no classes. However, we 
also have functions as a primitive notion.   
 
We use: 
 

 set variables: , , ,...X Y Z  [thus: capital letters are sets now; not “classes”; in fact 
they are “abstract sets”]; 
 

 element variables:  , , , ,...x x y z′
:

 . Each element-variable must be declared to be 
typed by a set-variable, thus:  x X . The intuitive meaning of  :x X  is that  x  is an 
element of  X ; however,  :x X  is not a poposition, and, for instance, one cannot write  

( : )x X¬ . This, of course, is familiar from ordinary type theory. The only difference is 
that in   :x X ,  X  itself is a variable.   
 

 The combinations : . ( , )x X X x∀ Φ  ,  . : . ( , )X x X X x∀ ∀ Φ ,  . : . ( , )X x X X x∃ ∀ Φ   are 
well-formed, provided  ( , )X xΦ  is a well-formed proposition (formula), with possibly 
other free variables.  The first quantified formula says, of course, that  “for all  x  in X ,   

( , )X xΦ  holds”; the third that “there exists  X  such that  for all  x  in X ,   ( , )X xΦ  
holds”.  
 

 Note however that  ( , )X X x∀ Φ  (with  :x X  as before) is not meaningful – and, 
correspondingly, it will be declared illegal (not well-formed) syntactically. Supposing 
that the free variable x  actually occurs in  ( , )X xΦ   (we’ll see examples below),  in  

( , )X X x∀ Φ , we have lost its “grounding” as  :x X : we have no particular  X  any more 
to relate  x  to: we cannot evaluate it at values of  x .  
 

 We have function variables  , ,...f g . Each function variable has to be typed thus:  
:f X Y→ , with  X  and Y  set-variables, possibly the same. Of course, the “meaning” 

of  :f X → Y  is that  f  is a function whose domain is  X , and whose codomain is Y  
(in particular, the range of  f  is included in Y ). The type of  f  is thus a dependent type: 
Arr( ,X Y )  (“arrow from X  to Y ”), and we have the variable declaration  :f Arr( ,X Y ). 
We write  :f X Y→   synonymously to  :f Arr( ,X Y ). 
 
 The upshot is that it is not possible to talk about functions in general; only ones 
with pre-assigned domain and codomain. We can use a quantifier over the collection of 
arrows from a given  X  to a given  Y , but not over functions in general  (directly, at 
least). Suppose we have a well-formed proposition (formula)  ( , , )X Y fΦ , with possibly 
other free variables.  Then the formula   . . : ( , )). ( , ,X Y f X Y X Y f∀ ∃ ∃ Arr Φ  is meaningful 
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and well-formed. For instance, if  ( , , )X Y fΦ  is T  (“identically true”), then  
 says that from every “object” (set), there is an “arrow” 

(function) to at least one  object. The statement 
. . : ( , ).X Y f X Y∀ ∃ ∃ Arr T

. : ( , ).X f X X∀ ∃ Arr T  is also meaningful. 
It is not all-right to say, however, that  .X Y . :f ( , ).X Y∀ ∀ Arr T , which would, apparently, 
say that  f  is an arrow from every set to every set at the same time. The latter statement, 
even if it looks meaningful to you, is not expressible in our language (it is not simply 
false).    
 

f :f ,X Y is declared thus:   Arr( )  (equivalently:  Let us note that, once the variable  
:f X Y→ . . :X Y f (X , ).Y∀ ∃ ∃ Arr T X), we may abbreviate    as  . . .Y f∀ ∃ ∃ T , although this 

now looks ambiguous.  We will have variable declarations and judgments separately, for 
a full description of a situation:, thus:   
 
  : ; : ; : ::X Set Y . . .X Y f∀ ∃ ∃ TSet f X Y→   . 
 
 

 For each set variable  X , we have  the equality predicate  X= : equality for 
elements of  X . The grammar of X=  is this: for variables  1 : , 2 :x X x X ,  the atomic 
formula  1 2Xx x= 1x 2x is well-formed, with free variables  and   (of course).  
 

X For each pair of set variables   and  Y ,  we have the equality predicate   
for arrows  

,X Y=

:f X Y→ . The grammar of ,X Y=  is this: for variables  :f X Y→ , 
,  the atomic formula  :g X Y→ ,X Yf g=  is well-formed, with free variables f  and   

(of course). 
g

 
 

: ;

 We have an operation  symbol  App(lication) which works like this: 
 
   
  : ; : ; : :: ( , ) :X Set Y Set f X Y x→

, , ,

X App f x Y  
 

X Y f xWe mean that in case the variables   are declared as shown, we have the well-
formed term  typed as a term of type  Y  :  . We will abbreviate 

the term  

( , )App f x

( , )

( , ) :App f x Y

App f x  as  f x| , or even  ( )f x fx . Of course,  ( , )App, or  f x  signifies the 
(unique) value of the function f at the argument  x . 
 
With the usual iterated term-formation rules, as an example, we can then form the 
following typed term : 
 

    . , :
f g

X Y Z x→ → ( ( )) :g f x Z::X
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Of course,   abbreviates  .  ( ( ))g f x ( , ( , ))App g App f x
 
The above essentially completes the specification of the language of   FOTAS. We have 
explained the (restricted) use of the quantifiers. We have the connectives   
 
  , ( ),⊥ ( ,  ∧ ( ), ∨ →T (true) false) and or implies( )
 
used as usual (no restriction). ¬Φ  abbreviates  Φ →⊥ .  
 
I should add that in the formula  : . Xx X x x∀ = , the variable  X  is a free variable.  
 
 
For clarity’s sake, let’s review the natural general (ensemblist) semantics of the language 
of  FOTAS (  Tarski).  We are using set theory, in fact Morse-Kelly, in this 
specification. 

'a la

 
 A structure M  for FOTAS consists of: 
  
 a collection (a set, or a class) S  (= MSet , the interpretation of the sort    in the 
structure 

Set
M ) (the collection of “sets”); 

 
 for each  “set” , or object  X S∈ , a  set  ( )XEl (= ( )M XEl ), the collection of 
“elements of X ” (here we insist that  ( )XEl  be a set); 
 
 for each pair of  objects ,X Y S∈ ,  a set ( , )X YArr  (or: hom M ( , )X Y ) of all 
arrows from  X  to Y ;  
 
 for each  object X S∈ , the binary relation  X=  on the set  ( )XEl  is taken to be 
real equality. (This is the standard interpretation, within the framework of  Fregean 
absolute equality. In another version, a “non-standard” one,  X=  is  
an arbitrary binary relation   on the collection  X= ( )XEl );  
 
 similar specs for  ; ,X Y=
 
 a ternary operation   App  = ( MApp )  that applies to any quadruple  ( , , , )X Y f x  
where  , , ( , ),X S Y S f Y∈ ∈ Arr X∈  and  ( )x X∈El , and gives, as the output, a value 
denoted (naturally) as  ( )f x ( in  . In other words, for any  )YEl , , ,X Y f x  as stated we 
have an actual function  (carelessly denoted as)  :f ( ) ( )X Y→ ElEl .  
 
Under the semantics, we have, by an obvious (implied-by-the-above) Tarskian truth-
definition for formulas of FOTAS in general, resulting in a truth-value of any formula, at 
any admissible evaluation of its free variables. “Admissible” here means, for instance, 
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that if we had the free variables  x  and  X , with  :x X  declared, then in evaluating  x  
and  X , we must have observed the condition that  ( )x X∈El .  
 
(Note also that there is a corresponding E -valued semantics of FOTAS, for any “Set-
like” universe (category)  E ; for instance, for any topos  E .) 
 
The two main axioms (the second being an axiom scheme, in fact) are 
 
 

 Function extensionality:   
 
 :f X Y→ , , :g X Y→ :x X  ::   ,. .( ( ( ) ( )))X Y Yf g f g x f x g x∀ ∀ = ↔ ∀ = . 
 
Several abbreviating devices may be used. Firstly, in an axiom, the initial universal 
quantifiers may be omitted (and considered being there, after all). Secondly, the 
subscripts of the equality signs may be omitted, since they can be uniquely restored from 
the context. We obtain the simplified statement  ( ( ) ( ))f g x f x g x= ↔ ∀ = .  
 

 Function comprehension: 
 
 Given any formula  ( , , , )X Y x yΦ  with the free variables  :x X  and  :y Y , and 
possibly other free variables, the following is an axiom: 
 
 . ! . ( , , , ) ( : ). . .( ( ) ( , , , ))x y X Y x y f X Y x y f x y X Y x y∀ ∃ Φ → ∃ → ∀ ∀ = ↔ Φ . 
 
( ! . ( )y y∃ Φ  abbreviates  . ( ( ) )y y y y y′ ′ ′∃ ∀ Φ ↔ =  as usual; of course,  :y Y′ .) 
 
Uniqueness of  f  in comprehension is assured by extensionality. 
 
The effect of the axioms is this. Suppose we have any model M  of the axioms so far. 
Suppose  further that we have a formula  ( , , , ; )X Y x y aΦ , with  :x X  and  :y Y , and 
with the free variables denoted  a  are all given (admissible!) values (parameters) in  M , 
also denoted by  . The formula   a ( , , , ; )X Y x y aΦ  provides for a definable (with 
parameters) relation El( ) El( )R X Y⊆ × . If this relation R  is functional, that is, R  is a 
function with domain  El( )X  in the usual set-theoretic sense, then there is a unique 
arrow f , an element of  hom M ( ,X Y ), :f X Y→ , that denotes  R , i.e., such that  

( )f x = y  iff  xRy  ( El( ), El( )x X y Y∈ ∈ )  (remember that  ( )f x y=  abbreviates  
 ).  ( ,App )xM f y=

 

As an example, let  , :
f g

X Y Z x X→ → , ,  and  consider the formula  
 (with free variables  all the displayed variables). Suppose  all the five 

:z Z
( ( ))g f x z=
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variables in 
f g

X Y Z→ → are given (appropriate) values (simply: assume that we have 

objects and arrows 
f g

X Y Z→ → in  M ). I claim that it is obvious that   
defines a functional relation from 

( ( ))g f x z=
X  to Z : for all El( ),x X∈ there is a unique  

 such that  . Therefore, there is a well-defined  arrow   
such that   iff  

El( )z ∈ Z (g f
( )h x z= (

( ))x =
( ))g f x

z
z

:h X → Z
= , for all El( ), El( )x X z Z∈ ∈ ;  that is,  

  for all ( ) (h x g= ( ))xf El( )x X∈ . We denote   as  , and call it the composite of  h g f
f  and  .  g

 
Xx y= : , :x X y X XThe formula    ( ) defines, for any given object  (“set”)  , the identity 

function  id :X X X→ .  
 

hf g
X Y Z→ → →WExtensionality shows that the associative law for composition: in case  , 

with all entities in  M ( )f
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, then  ( )g fh g h∂=
( ) ( ))f x )

: both sides define the function  
 for which  : El( )F X El( )W→ (h gF x = (  for all  El(x X∈ ) .  

 
MWe have shown that every model of FOTAS gives rise to what is called a concrete 

category. The category has objects the elements of  MSet , i.e., what we called objects 
above; and arrows what we called arrows above. Denoting this category by M  too, we 
have the faithful functor  Set, with  Set  the category of sets and functions, 
where  

:F M →
( ) = El ( )MF X X :f X → Y M, and, for   in  ,   the function that we wrote 

as 
( )F f

:f ( ) ( )X Y→ ElEl .  
 
It is far from true, however, that every concrete category appears as a model of FOTAS. 
The axiom scheme of function comprehension will give rise to arrows that would not be 
there without it.  
 
Remark of apology: there are some inconsistencies in the fonts used (and I was too lazy to 
correct it). For instance, I write sometimes  , and sometimesApp App  for the same thing. 
There is no danger of confusion though. There are only two meanings of  :  the 
syntactical one (a symbol), and its interpreted version,  

App
App M , regardless of fonts used.  


