(October 14/2010)

1. Well-foundedness

Let R be a Relation on the class $X(R \subseteq X \times X)$. We say that the structure (X, R) is well-founded (wf) if the following holds true:

$$
\forall Y \subseteq X\langle\{\forall x \in X[\forall y(y R x \rightarrow y \in Y) \rightarrow x \in Y]\} \Rightarrow Y=X\rangle
$$

In words: call a subclass Y of X inductive (with respect to the relation R) if the clause in $\{\ldots\}$ holds: $\forall x \in X[\forall y(y R x \rightarrow y \in Y) \rightarrow x \in Y] . R$ is wf if the only inductive class is X itself.
[1.1] Suppose that (X, R) is wf. Let S be any sub-Relation (subclass) of R, and Z any class such that $S \subseteq Z \times Z$. Then (Z, S) is wf as well. (Exercise)

The main example for a wf Relation is the membership Relation $\in=\{(x, y): x \in y\}$ on the class \mathbb{V} of pure sets. Indeed, Y being an inductive subclass of \mathbb{V} means that Y is a subclass of \mathbb{V} that is closed under set-formation. Since \mathbb{V} is a subclass of any class closed under set-formation, an inductive subclass of \mathbb{V} must equal \mathbb{V}.

Suppose that (X, R) is wf, and let Y be a subclass of $X ; Y \subseteq X$. Let us call Y bottomless (with respect to R) if the following holds:

$$
\forall x(x \in Y \rightarrow \exists y(y \in Y \wedge y R x)) .
$$

[1.2] If (X, R) is wf, then every (R-)bottomless class is empty.
Proof Consider the complement of the bottomless Y in $X: \bar{Y}=\{x \in X: x \notin Y\} . \bar{Y}$ is inductive: assume

$$
\begin{equation*}
\forall y(y R x \rightarrow y \in \bar{Y}), \tag{2.1}
\end{equation*}
$$

to see $x \in \bar{Y}:$ if we had $x \in Y$, then, by bottomlessness, $\exists y(y \in Y \wedge y R x)$, contradicting (1). Therefore, $\bar{Y}=X$, which is to say that Y is empty.
[1.3] If (X, R) is $w f$, then $\neg x R x$ for all $x \in X ; \neg(x R y \wedge y R x)$ for all $x, y \in X$.

Proof If $x R x$, then the class $\{x\}$ is bottomless: contradiction. If $x R y \wedge y R x$, then the class $\{x, y\}$ is bottomless.

2. The natural numbers

We define $0 \stackrel{\text { def }}{=} \overparen{O}=\{x: \perp\}$ (the empty set), $S(x) \stackrel{\text { def }}{=} x \cup\{x\}$.
We define the class \mathbb{N} as $\mathbb{N} \stackrel{\text { def }}{=}\{x: \forall X\{[(0 \in X \wedge \forall y(y \in X \rightarrow S y \in X)] \rightarrow x \in X\}$. The elements of \mathbb{N} are called (von-Neumann) natural numbers.

Later on, we will adopt the axiom of infinity: \mathbb{N} is a set. At this point, however, we do not need this axiom.

The letters m, n, p range over natural numbers. This means that the quantified expression $\forall n P(n)$ is to be read as $\forall x(x \in \mathbb{N} \rightarrow P(x))$ and $\exists n P(n)$ as $\exists x(x \in \mathbb{N} \wedge P(x))$.

The principle of mathematical induction:

$$
P(0) \wedge \forall n(P(n) \rightarrow P(S n)) \rightarrow \forall n P(n)
$$

is a direct consequence of the definition: take $X=\{n: P(n)\}$ in the definition of \mathbb{N}.
[2.1] (.1) Every natural number is a pure set: $\mathbb{N} \subseteq \mathbb{V}$. (exercise; hint: use mathematical induction for the predicate $P(n) \equiv n \in \mathbb{V})$.
(.2) Every natural number is a transitive set (a class X is transitive if $\forall x \forall y((y \in x \wedge x \in X) \rightarrow y \in X))$.
(.3) $S n \neq 0$ (obvious)
(.4) $S m=S n \rightarrow m=n$

Proof Suppose that $S m=S n$. This means $m \cup\{m\}=n \cup\{n\}$. Therefore, both of the following are true: (1) either $m \in n$ or $m=n$ (by $m \in n \cup\{n\}$), and (2) either $n \in m$ or $n=m$. Hence, either ($m \in n$ and $n \in m$), or $m=n$. However, by (.1) and [1.3], $m \in n$ and $n \in m$ is impossible. Therefore, $m=n$ follows.

Remark: (.2) and (.3) are (some of the) so-called Peano axioms.
(.5) $m=0 \vee \exists n \cdot m=S n$ (obvious by induction).

The order-Relation $<$ on \mathbb{N} is given by: $m<n \stackrel{\text { def }}{\leftrightarrow} m \in n$.
[2.2] (.1) < is transitive: $m<n<p$ implies that $m<p$ (follows from [2.1.2])
(.2) $m<S n \leftrightarrow m<n \vee m=n$ (obvious from the definitions)

3. A summary of the axioms

Y is a set $\stackrel{\text { def }}{\leftrightarrow} \exists Z . Y \in Z \leftrightarrow Y \in \mathbb{U}=\{x: x=x\}$
Lower-case variables range over sets.
Class comprehension schema: For any predicate $P(X, \vec{Y})$, we have $\forall \vec{Y} \cdot \exists Z . \forall x(x \in Z \leftrightarrow P(X, \vec{Y}))$.

By extensionality, Z is unique; we write $Z=\{x: P(X, \vec{Y})\}$.

The set-existence axioms are:
Axiom of subset: $\quad \forall x . Y \subseteq x \rightarrow Y$ is a set (a subclass of a set is a set)
Define $\oslash \stackrel{\text { def }}{=}\{x: \perp\}$.
Axiom of the empty set: \oslash is a set. .
For sets x and y, define $\{x, y\} \stackrel{\text { def }}{=}\{u: u=x \vee u=y\}$.
Axiom of the pair-set: $\quad \forall x . \forall y .\{x, y\}$ is a set.

For a set x, define $\cup x \stackrel{\text { def }}{=}\{u: \exists y . u \in y \wedge y \in x\}$
Axiom of the union set: $\quad \forall x . \cup_{x}$ is a set.
For a set x, define $\mathcal{P}(x) \stackrel{\text { def }}{=}\{y: \forall z(z \in y \rightarrow z \in x)\}$
Axiom of the power set: $\forall x . \mathcal{P}(x)$ is a set.

The class \mathbb{N} of the natural numbers was defined above.
Axiom of infinity: \mathbb{N} is a set.

A Relation is a class all whose elements are ordered pairs.
$\operatorname{Dom}(R) \stackrel{\text { def }}{=}\{x: \exists y .\langle x, y\rangle \in R\}$, Range $(R) \stackrel{\text { def }}{=}\{y: \exists x .\langle x, y\rangle \in R\}$. A Function is a
Relation R such that $\left.\forall x \forall y_{1} \forall y_{2}\left(\left\langle x, y_{1}\right\rangle \in R \wedge\left\langle x, y_{2}\right\rangle \in R\right) \rightarrow y_{1}=y_{2}\right)$
Axiom of replacement: If R is a Function, and $\operatorname{Dom}(R)$ is a set, then Range (R) is a set.
(The axiom of choice will be considered later.)

4. Transitive models of set theory

Let Φ be any formula in the language of classes. All variables, free or bound, in Φ are class-variables (the set-variables, which are a device of abbreviation, are not used). Given any variable X not occurring in Φ either as a free or a bound variable, we let $\Phi[X$] denote the formula, with the single free variable X, obtained by relativizing each quantifier in Φ to subclasses of X. This means replacing each $\forall Y \ldots$ in Φ by $\forall Y(Y \subseteq X \rightarrow \ldots)$, and $\exists Y \ldots$ by $\exists Y(Y \subseteq X \wedge \ldots)$.

Let us abbreviate $\forall Y(Y \subseteq X \rightarrow \ldots)$ by $\forall Y \subseteq X \ldots$, and $\exists Y(Y \subseteq X \wedge \ldots)$ by $\exists Y \subseteq X \ldots$

Note that if we have a set-quantifier $\forall y \ldots$, with y a set- variable (as usual), this means $\forall Y((\exists U(Y \in U)) \rightarrow \ldots)$. After relativizing to subclasses to X, it becomes $(\forall Y \subseteq X)((\exists U \subseteq X)(Y \in U) \rightarrow \ldots)$, which is equivalent to $(\forall Y \subseteq X)(Y \in X \rightarrow \ldots)$.

Now, from now on, we assume that the class X is transitive: $y \in x \in X$ implies $y \in X$. Thus, $Y \in X$ implies that Y is a set, and $Y \subseteq X$. Therefore, the phrase $(\forall Y \subseteq X)(Y \in X \rightarrow \ldots)$ is equivalent to $\forall y(y \in X \rightarrow \ldots)$.

Another remark. Frequently, we can re-write formulas by using the abbreviations $\forall u \in Y$... for $\forall u(u \in Y \rightarrow \ldots)$, and $\exists u \in Y$... for $\exists u(u \in Y \wedge \ldots)$.

We conclude that, with X transitive, the set-quantifier $\forall y$, after relativizing to subclasses of X, becomes $\forall y \in X \ldots$, and similarly, $\exists y$ becomes $\exists y \in X \ldots$

Moreover, if our original formula Φ contains the bounded quantifier $\forall u \in v_{\ldots}$, or $\exists u \in v \ldots$, then in $\Phi[X]$ the quantifier remains the same: the reason is that
$\forall u((u \in X \wedge u \in v) \rightarrow \ldots)$ is the same as $\forall u(u \in v \rightarrow \ldots)$, with the understanding that $v \in X$, since X is transitive; similarly for $\exists u \in v \ldots$.

Consider the example of the power-set axiom as Φ (this is a senence, without free variables):

$$
\forall y \exists z \forall u(u \in z \leftrightarrow \forall v \in u . v \in y)
$$

(I have re-written the phrase $u \subseteq y$, that is, $\forall v(v \in u \rightarrow v \in y$), as $\forall v \in u . v \in y$).
Then $\Phi[X]$ is (equivalent to)

$$
(\forall y \in X)(\exists z \in X)(\forall u \in X)(u \in z \leftrightarrow \forall v \in u . v \in y) .
$$

Let us examine what this means (of course, it may or may not be true, depending on what X is). The set z said to exist has to satisfy that, for u in X, u is in z iff $u \subseteq y$; that is, $z \cap X=P(y) \cap X$. But since z is to be in X, and X is transitive, $z \cap X=z$. Thus, it is required that $z=P(y) \cap X$. In conclusion: the truth of $\Phi[X]$, the power-set axiom for the transitive structure $(X, \in \backslash X)$, is to say that $P(y) \cap X$ is an element of $X ; \quad P(y) \cap X \in X$.

