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Computads and 2 dimensional pasting diagrams

by M Makkai

I ntroduction

1. This paper is the second installment of a series whose first item is the paper [M]. In[M], a
paper was promised, [M4] in the references section there, with the tentative title "A
2-categorical pasting theorem: revisiting John Power's paper [P1] of the same title". The
present paper is what [M4] has become.

The introduction of [M] should serve as a general introduction to the present paper as well.
The notions of " w-category" and "computad” come from the work of Ross Street.

The basic notions of and around " w-category” and "computad” will not be recalled here. By
now, these concepts belong (or should belong ...) to the common knowledge in category
theory. For instance, the reader is not far wrong if he/she takes "computad" to mean "free
w-category". However, the ways these concepts are formulated in this paper, and the special
notations used when dealing with them, will have to be gleaned from [M], which is intended as
a "foundational” paper for these concepts.

In the introductory first two sections, two things are done. First, we recall the necessary
background material on computads, mainly by citing definitions and results from [M], but also
by introducing new terms and statements which are in [M] only implicitly. The definitions and
results cited are relevant or valid in arbitrary dimensions. The results cited from [M] are
marked by the symbol [M], and numbered in the style [M](i), [M](ii), ... .

Secondly, in sections 1 and 2, we also state some new results. The theorems and propositions
in sections 1 and 2 marked in the style 1.1, 2.1, 2.2, ... will be proved only later in the paper.
On the other hand, similarly numbered corollaries of the above are proved on the spot.

There is one constraint observed in sections 1 and 2: only such new results are stated which
have straightforward conjectured higher-dimensional generalizations, although the results
themselves are claimed and stated only for dimension 2, and occasionally 3.

In section 2, among others, an analog of John Power's theorem, 3.3 Theorem in [P1], "Every
labelling of a pasting scheme has a unique composite”, is stated (2.12 Theorem).

In the second part, from section 3 on, the concepts and results of a new "geometric theory" of
computads, presently established only in dimension 2, are presented. After the purely
combinatorial and elementary section 3, concerning what we call "planar arrangements’, the
first of two forms of the main result of the paper, Theorem 4.2, is formulated in Section 4.
With the exception of those in section 9, all results of the paper, including the ones stated in
sections earlier than the fourth, are essentially (that is, modulo the basics in [M]) corollaries of
the main result 4.2.

Theorem 4.2 is areconstruction of the "geometry" of a 2-dimensional pasting diagram (2-pd),
valid for the class of 2-pd's called anchored (for the definition, see below; the terminology has
been suggested by Andre Joyal). The geometry in question is given by postulation in [P1];
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here the "geometry" is computed from the algebraic expression of the pd.

2. There are two concerns in the paper, one explicit, the other somewhat implicit: the interest
in general laws on the one hand, and computational procedures on the other.

The "geometry" of a pasting diagram is what we display when we draw the diagram. Thisis
the primary aspect of the subject: it is what we are given, informally of course, when we start
the investigation (witness the first few sentences of John Power's paper). It is a compelling
ideato follow the hunch that there are general laws and procedures behind the drawing of
categorical diagrams.

The theorems of the first four sections state the laws, proved for a small beginning range of
cases and conjectured for others, of pasting diagrams. The computational procedures of the
subject are shown only later; nevertheless, they are the first motivation for the paper.

For example, 2.2 Theorem, part (c), says that there is a so-called planar arrangement of the
occurrences of the indeterminate 2-cells of a 2-dimensional pasting diagram (pd), under a mild,
but important, restriction on the pd itself. Thisis our way of stating that a 2-pd can be drawn
in the plane. But in fact, the complete point is not just that this "drawing” exists, but also that
it can be computed. Namely, given a symbolic representation for the 2-pd, in the form that we
call a molecule -- which is just a somewhat normalized syntactical term in the language of
operations for the notion of 2-category -- we can effectively and "naturally" calculate said
planar arrangement.

This concern for calculation explains a certain repetitiveness in the paper. The calculation just
alluded to leads naturally to atree, depending on the given molecule, that represents the steps
in the calculation. The given molecule stands for a 2-pd that can be defined by numerous other
molecules -- in fact, these latter molecules will all appear at one stage or another in the
construction of the tree attached to the given molecule. The trees induced by these variant
molecules are all different from one another, but they are al, essentially, spanning trees of a
certain graph which is an invariant object attached to the 2-pd itself.

The graph is mentioned early on; 2.4 Corollary is aresult, in the "anchored 2D" case, that
gives an abstract description of it. On the other hand, the trees appear only in section 5. They
are used to prove al the results stated in the earlier sections. The trees would have been easy
to avoid altogether, by somewhat reformulating the proofs, if we had been only interested in
the abstract/invariant laws without the calculations. As things are now, in the preparatory
stages of dealing with the computational trees, we are compelled to state variants of a number
of constructs that had been mentioned in the context of the graphs.

Computads and pasting diagrams serve as the basic carriers of the syntax of higher
dimensional categories, weak and strict, as explained, for instance, in the introduction of [M].
This explains the interest in computational aspects of computads. following the lead of Gottlob
Frege and David Hilbert, we adhere to the doctrine that all aspects of pure syntax have to be
calculable and/or decidable.

3. I will now comment on the two main new concepts of the paper, that of planar pasting
prescheme, related to dimension 2, and the more general pasting prescheme relevant in
arbitrary dimensions.

"P{anar Pasting PreSchemes’, P/PPS's for short, are introduced in section 4. John Power has
"pasting schemes" in both [P1] and [P2]. PZPPS's are different from Power's concept for
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dimension 2 in [P1] (and of course, different from that in [P2] too), but serve in similar roles.
The prefix "pre" is there because the term "planar pasting scheme”, PZPS, is reserved for a
P/PPS which is "complete" in a suitable sense. P/PPS's have unique composites, by design
(that is, the proof that they do is more direct than in Power's case). The composite is a genera
2-cell, also called 2-pasting diagram (2-pd), in (the underlying 2-category of) the underlying
computad.

The main result, 4.2 Theorem, says, in essence, that every 2-pd satisfying a smallish but
essential restriction ("anchored") has a complete P£ZPPS displaying it (the composite of the
P/PPS is the given 2-pd). The uniqueness of the displaying PZPPS is essentially obvious; but
it is returned to in section 10.

Notice the opposite natures of the general outline here and of that in [P1]. In [P1], the 2D
diagrams are defined as those given by a pasting scheme, and the work to be doneisin
showing that they make sense as 2-categorical composites. Here, the 2D diagrams are given in
advance algebraically as 2-categorical composites of indeterminate cells in a computad ("free
2-category"); the work is to show that there are pasting schemes in the new sense that display
them.

The general notion of "Pasting PreScheme”, PPS, is introduced in section 9. It is formulated in
arbitrary dimensions. The main result of the paper concerning this concept is that any PPS has
a unique composite (9.3 Proposition). There is no analog in the paper of the hard work done
for the planar pasting schemes, the construction of them for a large class of 2-pd's; this analog
is planned for the future installments of the series.

Although it is not true that every 2D pasting prescheme is planar, the truth is not far from
saying that. The main result of the paper, expressed in terms of the general notion of pasting
prescheme, is that any PPS of an anchored 2-pd has a planar extension, and (therefore, by 4.2
Theorem) there is a unique pasting scheme (complete pasting prescheme) displaying any given
anchored 2-pd, which isin fact planar (see 10.4 Theorem).

81 Types, shapes and occurrences

Pasting diagrams

Let us codify the concept of "pasting diagram”. A pasting diagram (Pd for short) is a pair
(X, T) where X isacomputad, I isacel of the w-category X, I'0||X||, and

X=Suppy(T) . 1)

Theideaisthat X isthe diagram itself, which pastes (composes) into the composite I . So,
in fact, the expression "pasted diagram" would be more suitable. Fortunately, "Pd" is neutral
with respect to the two readings.

The capitalized version "Pd" is used for the concept that contains it's own "context" as ( X, IN)
contains a referenceto X . A "pd" uncapitalized is an element of ||X|| , with X givenina
larger context.

The equality (1) means that all the indeterminatesin X are used in writing I . This way of
saying the matter is a correct definition if the cells in a computad are taken to be equivalence



classes of terms formed from the indeterminates as "variables' (see [Pe], or [M] where Jacques
Penon's [Pe] definition of computad ("polygraph” in French) viaterms is re-stated). On the
other hand, one can define, for any computad X and any 0||X|| , Suppy(X) ,a

subcomputad of X, whose indeterminates are the ones "used” in I, in apurely algebraic
manner too; see [M].

The datum I, the composite itself, is not a superfluous item. With X* generated by the
single O-cell X, and the single 1-cell f: XX, we have infinitely many I for which

(X ,T) isaPd: al the composites §M (m=1, 2, 3, .. .). The reader will beright if he/she
thinks that we should be interested in when a computad X has a unique composite, meaning
thereisaunique I for which (X, ") isaPd.

The notations (X, ") , (Y, A) will aways mean Pd'sin the sense just codified. We also
write I for (X, ) ,A for (Y, A) .

L et's define the category of pasting diagrams, Pd , to have objects the Pd's, and arrows

(X, ) >(Y, A) those X >Y in Conp for which f(I')=A. Pd has aforgetful
functor Pd—— Conp . ( Conp isthe category of al (small) computads. see [M]).

The dimension of thePd (X, ') isthedimensionof I (asacell of the w-category X). We
have di m( X, I') =max{di m(x): xO X} .
Pdn is the full subcategory of Pd whose objects are the Pd's of dimension n . The notation

Pd <n is analogous.

An Indeterminate (Indet for short) will beaPd x=( X, x) where x0O IX| , thatis, x isan
indeterminate (=free generator; see [M]) in X . I ndet isthe full subcategory of Pd
consisting of the Indets.

If (X, x), (X y) arelndetswith the same underlying computad X, then they are the
same: x=Yy : thisisobvious, since x isthe unique maximal-dimensional indet in X . On the
other hand, two different Pd's may have the same underlying computad.

| ndet isnot only afull subcategory of Pd , butitisasevein Pd : if
=(X, ) —(Y,y) , and (Y,y) isanindeterminate, then I isitself an Indet;
f(r)=y impliesthat I'C [X| :thiswas proved in [M].

| ndet n 1 is defined as the full subcategory of | ndet whose objects x=( X, x) arethe
many-to-one Indets, that is, are such that c¢x isanindet too. | ndet n 1 isasoagevein

Pd .

The Indets play the central role among the Pd's; in fact, in a sense, every Pd can be "replaced"
by an Indeterminate, albeit by one of one-higher dimension. For the Pd '=( X, I') , consider
the many-to-one Indet E:( X[x][y],y) defined, intwo steps, by first adjoining to X the

new indet x of the dimension of I with the specification dx=dI , cx=cIl , and then
adjoining y of one higher dimension with dy=I, cy=x .
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[ is, of course, defined up to isomorphism only, although, as usual, we pretend that it is
strictly specified.

There is an obvious bijection between hon( I, A) and hom( E ﬁ) . In fact, we have an
equivalence of categories

~

(F'—>r):Pd >l ndet 4

Typing and occurrence

Wewill call thePd =( X, I') separated if for all A=(Y, A) OPd andall A f

Pd, f isnecessarily an isomorphism.

>l in

A computope (see [M]) isan Indet ( X, x) such that for all Indets (Y, y) andarrows
(Y, y) >( X, x) , T isnecessarily an isomorphism.

We say that the computad X is acomputope if there is a, necessarily unique, computope
(X, x) with underlying computad X .

From the fact that | ndet isasevein Pd, weimmediately see that an Indet isa
computope iff it is a separated Pd, and the Pd I” is separated if and only if E iIsa
computope.

The category of all computopes, Ct p , is defined as the skeletal full subcategory of Conp
itself, whose objects form a full set of representatives of isomorphism types of all the
computopes. (Thus, we allow all computad morphisms f: A—~B for computopes ( A, X)
and (B, y) ,notjusttheonesin | ndet .)

It is an important fact (see [M]) that Ct p isafinitary one-way category. A category D is
finitary if for all objects X in D,theset {f DArr(D): c(f)=X} isfinite. D isone-way
if there is no infinite descending chain

f
0
XO Xl xn%xnﬂ%...

of non-identity arrows in it. (The finitary-nessof Ct p is not immediate; the one-way quality
is)

In [M], the following are proved.

Theorem [M] (1) For every Indet x , thereis a computope y with a morphism
y—X . B

(i) For every Indet x , there are only finitely many non-isomorphic



Indets y having anarrow y >Xx to X .

((1) is11.(4) in [M]; (ii) is stated in the proof of the same 11.(4) as "the isomorphism types of
resolvents of B form a non-empty finite set".)

Corollary For every Pd I, thereisa separated Pd A with a morphism A——T ; upto
isomorphism, there are only finitely many such A .

A

To get the Corollary, apply the Theoremto I as X .

Referring to the Corollary, A iscalled atypefor I ; amorphism A——T aspecializing
morphismfor I .

We say that the Pd I is uniquely typed if

1) the specializing morphism for [T from any typeof ' to I isunique: for A

ot

g

separated, if A [, then f=g;

and

2) thetype of I isunique up to isomorphism: if A, = are separated, and
AN——>le—=,wehave A=

Note that 1) is equivalent to the seemingly stronger condition

. f
1)forany A,if A~ 7T then f=g .
g

The reason is that, given A, by the previous Corollary, there are separated é and

A h >N\ by 1), feh=goh;but h,asany map of Pd's, is surjective on indeterninates; it

followsthat f =g .

The main motivation for the foregoing notions is the desire to understand the idea of an
occurrence of agenerator xJ [X| inaPd (X T) .

In the example [m:( X*, f n} (m=1, 2, 3, ...) above, itisnatura to say that the O-cell X
"occurs m+1l times', and f "occurs m times', because this way of talking will match the
drawing of the arrow f M asthe composite of a diagram:



f f f f

X X X

X . )

Let A=(Y ,A) besuchthat Y isgenerated by the distinct 0-cells X,
(i=1,...,mmtl) andthe 1-cells fi :Xi exi +1.Let /\m:flm .. Efm. Am is
separated. The drawing of Am IS

There is a unigue map Am—>[m; and, up to isomorphism, Am is the only separated Pd A
with amap Ae[m. These facts allow us to say that the i th occurrence of X in (2) is Xi ,
and the i th occurrenceof f in (2) is f i - We have not only accounted for the number of
occurrences of each generator, but have succeeded in defining what an occurrence is.

We may conclude that if the Pd I" isuniquely typed, by f: A——T say, the notion of an
occurrence of any givenindet xU I['| , aswell as the number of distinct occurrences of x ,

are clarified: an occurrence of x isany element of the set f~ 1( X) ; the number of
occurrences of x isthe cardindity of the set f - 1(x) . The fact that the typing (A, f) is
defined from I uniquely up to a unique isomorphism tells us that we will have a sound
notion of occurrence.

Let us review the low dimensions as to unique typing.
In dimension 0, everything is trivial.
Next, one sees easlly that every 1-Pd is uniquely typed.

However, in dimension 2, it is not difficult to find a Pd that is not uniquely typed. In [M], the
following example is given.

Welet X be generated by the indets X, u and v , where di n( X) =0,
u

di m(u)=di m(v)=2,and 1, 1, .Welet F=uV .Since uv=v [y
\"

>=X

(Eckmann-Hilton), we have the automorphism h: ( X, I) —D>(X, M) that flips u and v .
Since (X, ") isseparated, (X, ') isitsown type, and 1) fails.

Thorsten Palm showed me an example for which 2) fails -- but, unfortunately, | do not
understand it.

On the other hand, every 2-Indet (Indet of dimension 2) is uniquely typed. In fact, if

X=( X, x) isa2-Indet, then (Y,y) >( X, x) isatyping for x iff, with the definitions
Y1=SuppY( dy) , f 1=f rY1 , dy = (Yl’ dy) , etc, we have that




(@) ddy#ccy unless dx or cx , hence dy or cy ,isanidentity; and
f

(b) dy %1d_x and cy >cX aretypingsfor dx and cx , respectively,

and Y isthe pushout of Y1 | ncl Y3 | ncl Y2 where Y3:SuppY({ddy, ccy}) ,
with f defined compatibly with the pushout diagram.

Since '=( X, ) isuniquely typed iff the Indet E is, we have that not all 3-Indets are
uniquely typed.
A large class of 2-Pd's, and the corresponding class of 3-Indets, the so-called 2-anchored ones,

are uniquely typed. We call an indeterminate x anchored if x isof dimenson <1, or, if
di m(x) =2, cx isanon-identity cell, cx;tlccx . A computad X isanchored if al indets

in X areanchored; aPd (X, ) is k-anchored if all indets of dimension k in X are
anchored.

Of course, the dual notion when we disallow identities as domains, rather than codomains, of
indeterminates gives rise to similar conclusions. The "Eckmann-Hilton" example above shows
that bad effect of allowing indeterminates whose domain and codomain are both identities. In
section 4, there will be a (smple) example showing that allowing two indeterminates, one with
an identity domain, the other an identity codomain, is also bad. In other words, one has to
globally exclude either identity domains, or identity codomains, for indets.

One of the main results of the present paper is

1.1 Theorem All 2-anchored 3-Indets, and as a particular case, all anchored 2-Pd's are
uniquely typed.

Shape

The word "shape" instead of that of "type" is appropriate here too.

Let ussay that Pd's [ and A have the same shape if they belong to the same connected
component of the category Pd ; that is, if thereis a zig-zag

EZEO r r r

_1 _2 CR _k :/\

of morphismsin Pd .

Let me remind the reader of the fact that Conp , the category of computads, is alocally
finitely presentable category, in particular, it is both complete and cocomplete; see [M]. In
Conp , the colimits are "easy"; but the limits are only inferred from the "aleph-zero
accessibility" of Conp (which isaso "easy") plus the existence of the colimits. In particular,
Conp hasaterminal object T, the terminal computad, but T isvery far from being a trivial
object. For more, see (also) [M].

Using a fixed copy of the terminal computad T , and the morphism !XZXHT , every Pd



'=(X, ') hasaunique morphism [%g toaPd = where 3=(Z, 2) hasits
underlying computad Z a subcomputad of T . Following Ross Street, we call this % the
shape of I . We mean by a shape, in general, a Pd whose underlying computad is a
subcomputad of T .

Note that this fits the previous terminology: the two meanings of "having the same shape’
coincide -- and in the zig-zag of the first definition, we may always take k=2 .

A type of aPd is also atype of the shape of the Pd.

If two Pd's have the same type (the same separated Pd is a type of both), then they also have
the same shape. | do not know if the converse holds.

The concepts of "type" and "shape" are, in a sense, dual to each other. Obvioudy, the "type"
works less smoothly than the "shape". However, thisis not smply a drawback of the notion of
"type". The non-uniqueness related to "types' is areal difficulty with the idea of occurrence
that cannot be ignored.

Concrete presheaf categories of computads

The guestion whether or not various categories of computads are presheaf categories, a
guestion that has been investigated in the literature, is closely related to the question which
Pd's are uniquely typed. | introduce this subject with some new terminology.

A class C of computadsis said to be standard if

1) itisasievein Conp : whenever X—>Y isanarrowin Conp ,and YUC, then
XOC; and
f.
2) it is closed under coveringsin Conp : whenever (Xi %Y)i 0l isafamily
of arrowsin Conp , Xi 0C for al i 00 , and the derived family of the arrows

\fil
(\Xil > 1Y) .

ig on the sets of indeterminates is a surjective family, then YOC.

There are many important examples of standard classes. The total classis an example. So is
the class of anchored computads; for the term, see above (it is an easy fact seen in [M] that if
f: XY isamorphism of computads, and al||X|| isnot an identity, then f(a) isnot an
identity either). The class of positive computads, in which there are no indeterminates with
codomain or domain equal to an identity, is a natural standard class; in fact, it seems that the
pasting schemes of [P] or [S] are meant to be positive.

An important example is the class of many-to-one computads:. the class of computads X for
which for every x0 [X| , di m(x) =1, we have that cx isan indeterminate itself. (See, e.qg.,
[M] for why many-to-one computads are important.) For any fixed nlN , the computads of
dimension at most n isanother example.

Given any class C of computads, the Pd's associated with C are those Pd's ( X, ') for
which XOC . The class of Pd's associated with C iswritten as Pd( C) . Similarly, we have



| ndet ( C) , the class of Indets associated with C.

If C isstandard, then each of the classes | ndet (C) and Pd(C) uniquely determines C.
Namely, XOC iff for all ro||x||, (Suppy (1), M) OPA(X) iff foral x X,
(Suppx(x) , X) Ol ndet (C) .

For aclass | of Indets, thereis astandard class C with | ndet (C) =I , if and only if the
following both hold:
1) whenever x=( X, x) Ol , and yO X , then y:(Supr(y) ,y)dl

2)  whenever xOI ,and y —>x >z arearowsin | ndet ,thenboth vy, z
belongto | . B B

Note that 2) can be said equivalently in thisway: | is shape-determined: if two indets have
the same shape, and one of themisin | , then so is the other.

1) is a natural "reasonability condition”: if we "accept” an indeterminate, we should also
"accept” al indetsinvolved in it.

A standard class of Indets is one that satisfies the last-listed conditions 1) and 2).

We may say that the standard classes of computads, and the standard classes of Pd's are the
ones that are selected by the shapes, or equivalently, the types of indets involved in them.

A concrete category isapair (A, I-1) where A isacategory, |- | isafunctor

-1: A—>Set to the category of sets. The concrete categories (A, |- | A) , (B, |- B)

are said to be equivalent if there exists an equivalence of categories E: A—= 5B that is
compatibly with the underlying-set functors. |- | B°E - A

. def op
Any category of theform D = Set D , with D asmall category, isregarded as a
concrete category with the underlying-set functor (FDDOp) =l F(X) .

XOb( D)

Every subcategory of Conp isregarded as a concrete category with the underlying-set
functor defined as X}~ [X| =the set of indetsin X.

We say of a concrete category that it is a concrete presheaf category if it is equivalent to the
concrete category D for some small category D.

Any class of computads determines a full subcategory of Conp , and thus a concrete category;
if the class is standard, we call the resulting concrete category a standard category of
computads.

The following is stated with a different wording, and proved, in [M].

Proposition [M] (ili) A standard category C of computads is a concrete
presheaf category if and only if every Indet in | ndet (C) isuniquely typed.
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Remarks 1 The phrase " ( X, x) isuniquely typed" is meant here in the exact sense
stated above, without relativization to the subcategory C -- athough such relativization
would result in a correct statement too.

2 Modulo Theorem [M] (i), Prop (iii) is elementary category theory, involving the

Y oneda functor and the like. On the other hand, | consider the Theorem [M] (i) on the
existence of typing, quoted above from [M], to be areal theorem, requiring for its proof more
than a superficial look at what it says -- at least until | am shown that | am wrong.

3 Note that we have that Conp itself is not a concrete presheaf category since there are
Pd's that are not uniquely typed. In fact, Conp isnot a presheaf category in the usual more
general, "non-concrete”, sense either: see [M]. Although | do not know, it may be true that a
standard category of computads that is a presheaf category is necessarily a concrete presheaf
category.

4 The most important example of a standard category of computads which is a concrete
presheaf category is the category of many-to-one computads. the class of computads X for
which for every x0 [X| , di m(x) =1, we havethat cx isan indeterminate itself.

5 Since every 2-Indet is uniquely typed, Conp <2 the category of computads of

dimension at most 2 is a concrete presheaf category. Thisis an old observation of Steve
Schanuel's.

Incase (A, |-1) isaconcrete category which isequivalent to a concrete presheaf category
op

( Set D , 1-1) ,the category D involved is determined up to isomorphismby (A, [-1)

itself. This contrasts with the "non-concrete" case when the exponent category D is not

determined even up to equivalence (although its idempotent-splitting completion is).

op
When (A, |-1) isequivalentto ( Set D , I-1) ,wecal D the type-category for

(A 1) .

We would like to call it, rather, the "shape-category"; but it is related to the "types' rather than
the "shapes'.

In fact, we can identify what D should be even before we know that (A, |- ) isaconcrete
presheaf category. In particular, we define the type category of any standard category C of
computadsas CnCt p , i.e. the full subcategory of C whose objects consist of exactly one
isomorphic copy for each computope that belongsto C. The type-category, as a subcategory
of Ctp,isawaysaone-way and finitary category.

(I emphasize again that the notion of computope is an absolute notion: whether or not
something is a computope is decided in Conp , rather than some subcategory of it -- although
if you relativize the definition to the standard subcategory, you still have a correct definition.)

We observe that, if D isthe type category of C, then we have a canonical functor E and a
natural transformation ¢ asin

11
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\CJ s ¢: - | oE 5o

Set

defined by E( X) =D(i (-), X) ,where i : D—C istheinclusion, and

¢ (A 1 DA X > Xl ( x=(A, x) acomputopein C).
(f:A>X) —— f(x)

We have (exercise!) that (C, |- | C) is a concrete presheaf category if anonly if E isan
equivalence of categoriesand ¢ isan isomorphism of functors.

What we have said here about concrete presheaf categories and their type categories is general
and simple category theory. On the other hand, the theoretical simplicity of the definition
should not mislead one into believing that it is easy to get a concrete, workable description of
the type-category, or that it is easy to see whether or not the standard category in question is a
concrete presheaf category. For instance, Corrpm 1 the category of many-to-one computads

IS a concrete presheaf category; but the "concrete" description of its type-category, the
category of multitopes, whose theoretical definition we now have as Corrpm 1mCt p , and the

proof that it worksas D in the last "exercise", are far from obvious; see [M] and the
references there.

We write Conp <§' anch for the full subcategory of Conp consisting of the computads of

dimension at most 3 all whose 2-indets are anchored. The following is a consequence of 1.1
and (iii).

2-anch

1.2 Corollary Comp <3 IS a concrete presheaf category.

12



82 Factorization and geometry

Background from [M]

Let usfix adimension n , atleast 1, and acomputad X, to consider the elements (cells) of
X of dimension n , the set of whose is written as [|X| .

For ad||X|| (al pd's, al cellsof the w-cat X), supp, (@) istheset of k-indets
"occurring in a " (more precisely, in \Suppx( a)l ).

We say that ¢0||X|| | isan atom (n-atomif n needsto be emphasized) if it is
top-(dimension)-indecomposable in this sense: whenever ¢=b (& with b, e0|[X|| , then
either b=1,, ,or e=1.,.(Asareminder: ble=e- ,b,snce

di m(b) =di m(e) =n.)

It is easy to see (also, see below) that for an n-atom ¢ , suppn(qb) isasingleton,
suppn(cp) ={u} , say. (The converse is far from being true.) We write ¢[ u] for ¢ to
indicate the nucleus u of ¢ .

Let N be a positive integer.

Let uscal atuple o=( d)l, ¢2, Cey ¢N) of n- atoms qbi such that ¢1 E¢2 a.. E¢N is

well-defined an n-dimensional molecule, or more simply, an n-molecule. The product [®]
of the molecule ® isthe pd 4)1 Dl)z a.. Dl)N. A factorization of the pd a isany molecule

whose product is a .

N isthe length of the molecule ®=( ¢1, ¢2, Cey ¢N) . The top-content of the molecule

0= (¢ lugl, dolusl, ..., opfuy) )

denoted [[ @] ] , isthe multiset of the nuclei involved. In other words, [[ ®]] isthe
function on n-indets whose valueat u is

[[0]](w) =#{i {1,...,Nb:ru=u,} .

Let uswrite [ ®] for the total set of all top-dimensional indets in the molecule @ . In other
words, if (1), [ 9] :{ul, . uN} .

For the sake of completeness, we extend these definitions to include the possibility of length

0 for amolecule. Let n>1 . A length-0 n-molecule ® isgivenby an (n-1)-pd f ; we
def

write ®=(f) . Wedefinethevalueof @, [®]=[(f)] = i d; , theidentity n-pd. The

top-content [[ ®] ] for ®=(f) istheempty multiset; [ ®] isthe empty set.

13



We define the domain d® and codomain c® of the molecule ® by do=d [¢] ,
c®=d [®] . When & has positive length N, and isasin (1), we have de:d(lJl, ch:chN.

When o=(f) of zerolength, then d®=co=f .

Theorem [M] (1) Every pd a of dimension at least 1 can be factored as a
product

a=¢1E¢2D.. DpN

of atoms qbi , usually in more than one way. Here, N is anon-negative integer; N=0 is
allowed.

(If a=1 da’ & is considered to be an empty product of atoms. The empty product is

unambiguously defined only when its domain, which is equal to its codomain, is separately
specified. When N=1 da:dqbl, ca:cqu )

Equivalently, every pd a of positive dimension isthe value [®] of at least one, usually
more than one, molecule .

(i)  Thelength and the content of the factorization of any pd are uniquely
determined by the pd: if ®, ¥ are molecules, [®]=[¥] impliesthat [[®]]=[[Y¥]] .
Hence, we can talk about the length /() and the top-content [[]] of any Pd

def
=(X,r) .Smilaly, [[] = [®] forany ® suchthat I'=[®] .

(i) Every pd has only finitely many distinct factorizations.

(iv) Let f: X>Y beamorphism of computads, and let ¢0||X|| . Then ¢
isan atom if and only if f (@) isanatom.

(V) IffiT A then £(D)=4(A) and [[AI](v)= Y [[T]](u)
ul[ I]
f(u)=v
(vO[A] ).

Notation (iv) allows us to see any computad morphism f: X-—Y asacting on the
moleculesin X, and giving rise to moleculesin Y . For ®=( 4)1 ..... ¢N) in X, f(9)
is defined as the molecule ( f ¢1 ..... f ¢N) . We can aso "contextualize" a molecule, and
N
write ®=( X, ®) , with X = Suppy(®) = \J Suppy( ¢; ) . and have arrows of Molecules
i=1

f:®->W¥, al inthe obvious senses.

Suppose X isacomputad of dimension n (the maximal dimension of anindetin X is n).
We write X for X=X!(n-1) ,the (n-1)-truncation of X, another computad. If f: XY,

14



f: XY isthetruncation of f todimensions <n-1.If f:T >A isamapof Pds, f is
the corresponding map of truncated computads.

(vi) Let f:T —>A, amorphism of Pd's, and assumethat f isan

isomorphism of computads. Then f induces a surjection on the molecules defining ' onto
the molecules defining A . That is, for any molecule ¥ such that [¥] =A , thereisa
molecule ® suchthat f(®) =% and [®]=I .

In [M], "atoms" and correspondingly "molecules’, were defined in a more concrete manner
than here. According to this definition, an n-atom ¢ inacomputad X isa (well-defined) pd
of the form

¢ = bn_lt(bn_zt(...(blmtel)...)Een_Z)Een_l (2
where bi , € Dxi ,and uld |X] n (u isan indeterminate).

(As further reminders. b [& stands for eokb where k=m n(di m(b),dime))-1;
eo b isid{M o i dN where Nemax(dinb). din(e)) ; id{M=e for

. Ca(ptl)
m=di m(e) , and 'de =id (p) for p=m.)

|de

(I note that when n>=3 , the ingredients bi ) € in (2) are not determined uniquely by the
atom ¢ itself; an atom can usualy be written in more than one way in the form (2).)
Using this definition of "atom", for (i), see (12) Prop in section 8 in [M]; (ii) is contained in

section 9 in [M], which contains, more generally, a useful description (see also below) of when
two molecules define the same pd.

Once we have (i) and (ii) for atom asin [M], it is obvious that the new (abstract) and the old
(concrete) definitions of "atom" and "molecule” coincide.

Part (iii) of the theorem is contained in (the proof of) (4) Theorem in section 11 in [M].

The fact that ¢ isan atom impliesthat f ( ¢) isan atom (the"only if" partin (iv)) is

immediate under the concrete definition of "atom". The "if" part of (iv) and (v) are now clear

on the basis of (i) and (ii).

Part (vi) isfairly clear on the basis of the description (in section 9 of [M]) mentioned above of
def

therelation ®[W <= [®]=[Y¥] . Since thisisimportant, | reproduce the description and
give the proof of (vi).

Copying from [M], we define the quaternary relation L on (n-)atoms (in afixed but
arbitrary computad) as follows. For atoms p,0,¢,¢ ,

L(p, g, ¢, ) < thereareatoms a and [ such that
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cc(a)=dd(p) , p=aldp, o=(ca) [B, ¢=(da) [B, y=al(cp)

L(p, g ¢, ) impliesthat plo=¢ [ ; infact, L( p, 0, ¢, ) saysthat the equality
pLo=¢ i) isan instance of the so-called commutative law (see [M]).

Wewrite E(p, 0, ¢, ) < L(p, 0 ¢, ¢) vL(¢, Y, p,0) .

For molecules &=( 4)1 ..... ¢I\/? , W=( L,Ul ..... t,UN) and k{1, ..., N} , let'swrite
def
S (0, ¥) &—— MN, E(¢. 0 1 Y W) ad ¢ =y forall
io{a,..., N} - (k, k+1}
and
def
S(o,¥) & thereis k{1, ..., N} such that Sk(tb, ¥)

S( o, ¥) saysthat the molecule ¥ isobtained from @ by applying an instance of the
commutative law to a pair of adjacent atomsin @ . Since (of course) the relation E on atoms
IS symmetric, the relation & on molecules is symmetric too.

S ftr is the reflexive and transitive closure of &, an equivalence relation.

Theorem [M] wii) [0)=[v) iff /(0w
For (vii), see Section 9 of [M].

Note that (v) isimmediate from (vii).

Proof of (vi) Wehave f: X—Y suchthat f: X—Y isanisomorphism.

We have the lemma: if f(p)=p, f(0)=c and L(p, 0, ¢, ¥) , then thereare ¢ , ¥ such
that f(¢)=¢, f(Y) =y and L(p, 0, ¢, ¥) .

The lemma shows that the set {f () : [®] =} isclosed under the relation S : if

E(f(®),¥) thenthereis ¥ suchthat f (W) =¥ . The assertion in (vi) then follows by (i)
and (vii).

To prove the lemma, we start with o and [ witnessing the relation L( p, g, ¢, ¢) . Let us
denote the inverse image of any cell al||Y|| under the isomorphism f by a . If

a=b, (b, ,0...(byIiley)...) B, ) B .
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we define

a=b, (Ob, ... (byOiE)...)E )& .

where we define U to be the nucleus of f).Since the nucleus u of a isalso the nucleus of
p,and f(p)=p,wehave f(U)=u.Since f isanisomorphism, and o iswell-defined, it
followsthat a iswell-defined.

Similarly, we define 3. Next, from @ and 3, we define the atoms ¢ and ¢ sothat &
and [ will witness the fact that L( p, 0, ¢, 1)) , showing the lemma.

This completes the proof (vi).

To discuss the most interesting aspect of factorization, "uniqueness up to the order of
top-dimensional indets’, we need to take occurrences of n-indetsin an n-pd, rather than just

the indets themselves. To be able to talk about occurrences of the top-dimensional
indeterminates, we have to be able to separate distinct occurrences of the same indeterminate.

Given a Molecule ®=(X, ®) , ®=( ¢1[ ul] e ¢N[ uN]) , we can define the Gi to be
new indeterminates, distinct for distinct i , such that u; [[u; . We put

X=Xuilizg, N

For any fixed i , ¢ =¢, [U;] istheatomin X which is"obtained by replacing u; by
Gi "; we may write d)i [Gi / u; ] , oreven qAbi [Gi ], for ¢| . Formally, we have the

computad X[ui] (asingle n-indet, u; , isbeing adjoined to X ), and we have the map

g: X[ui] ~ X defined to be the identity on X and mapping u; to Gi ; we put
. def .

¢i = o ¢|) ; by (iv), ¢i IS an atom.

Finally, we let ®=($,[U], ..., ¢\[Up\]) .and d=(X, @) . Wehavethat & is

top-(dimensional-)separated, by the definition that its top-content function is zero-one valued:
[[®]](u)=1 for ud[®] (and [[P]](u)=0 otherwise).

We call a Pd top-separated if some, equivalently all (see (i) and (ii)), of its representing
Molecules are top-separated. We will also use " n-separated” for "top-separated” with n the
dimension of the Pd involved, mainly when n=2 .

We have proved

17



Proposition [M] (viii) Forany Pd I, thereis atop-separated Pd [ , with amap
Y- ffe[ such that y isthe identity map.

We say that amap : ﬁe[ is atop-separating map for I if [ istop-separated and y is
an isomorphism. (viii) implies that top-separating maps exist for all Pd's.

Proposition [M] (ix) If, in the diagram
. f )
F--m-—A

b
r A

A

of maps of Pd's, first without f , T istop-separated and A is an isomorphism (in particular,

if y and A aretop-separating), then f exigts making the diagram commute.

A A A

Pr oof Let T=(X, F), T=(X,T) , A=(Y,A) , T=(Y,T) .

Let © represent [, Let O=y( 03) and W=f (®) .o represents ' , ¥ represent A . Using
(vi), choose u representing A such that )\(@) =Y . Writing $:( (fii [Gi 1) .

o=(¢ [u;1) . w=(g [v;]) . ¥=(¢ [V;]) , wenow have, without the top horizontals,
the following three diagrams:

>
>
>

%ty %oty i |--fosv,

yl o Dl yl ° Dl)\ yl l)\

X*ﬁ%? X—Y Ui Ifevi
f f

The first isfilled in by its top horizontal uniquely, by A being an isomorphism. Next, we note
that stipulating that f map the top-dimensional indets as shown in the third diagram is
consistent, for the reasons that, first, the Gi are distinct for distinct | (f IS top-separated),
and secondly, writing 0 for either d or c , we have
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Af ( aﬁi ) =f y(u; ) =dv; =A(v; ) , from which f( du,)=ov; followssince A isan
isomorphism.

Having defined fiXoY , we see that the diagram

A

oty
X— Y
f

commutes since it does when the top dimension is removed, and it does on the
top-dimensional indets. We till need to seethat f isamapof Pd's: f: ® >V ; that is,

f(®)=V,ie, f()=¢ forali.
This may look obvious; but here is a proof.

Let'sfix i and abbreviate p=f(¢,) , o={; ,toshow that p=o.

p and o share the same nucleus, namely u:\?i . Writing Z for \?, AZ—>Y maps p and
o to the same atom, namely n:wi . The subcomputad of Z generated by Z and the single

indet u is Z[ u] , that is, it is obtained by freely adjoining u to Z (such trivial-sounding
facts, ones that are in need of proof for the pedant as | am, are shown in [M]). Smilarly, for

v=A(u) , Y[v] isthesubcomputad of Y generatedby Y and v .

Both p and ¢ arein Z[u] , misin Y[v] .Themap A: Z—Y redtrictsto
:Z[u] —Y[v] ,and pu mapsboth p and o to 7. p isanisomorphismsince p=A is

an isomorphism and thus u- 1 can be defined by stipulating that a1 and

U 1(v) =u . Since the isomorphism p maps p and o tothe same element 1, p=0 as
desired.
This completes the proof of (ix).

Inspired by (ix), we call the domain of a top-separating map for I the top-type of I . We

write f for the top-type of I .
Corollary [M] x) The top-type and the top-separating map are unigque up to

19



f

isomorphism: if A r g = are both top-separating maps for [, then there is an

isomorphism A % >= suchthat goh=f .

Pr oof Immediate from (ix).
Let us note that we cannot, in general, say "up to unique isomorphism” in (x). In 81, we saw
the example of a2-Pd '=( X, I') , with ' XI ={X, u, v} , which had a non-trivia

automorphism h that exchanged u and v . Defining X to be generated by X and u
alone, and '=u [ ,iz(X, f) , we have a unique map y: [et , the one for which
y(X) =X, y(u)=y(v)=u.y isatop-separator; however, yo-h=yeoi dxzy.

Let T=(X ') beany Pd. We say that it has (an essentially) unique factorization if for any
molecules

O=( ¢ [ugl, ..., dfup) » W=(wlvyl, o gV o [©)=[w]=T
and u; =v, for i =1,..., N imply that o=V¥ .
Thus, "unique factorization” is "uniqueness up to the order of the top-dimensional indets".

It quickly becomes obvious that it is reasonable to expect this to hold for a top-separated Pd I
only.

There is a stronger form of unique factorization that also subsumes a cancellation law, and
which, as it happens, | can show to hold whenever | am able to show ordinary unique
factorization. However, | don't know if ordinary unique factorization in fact implies strong
unique factorization.

We say of the top-separated n-pd I that it has strong unique factorization if every time

A1U\2D..U\m= FlEI'ZD..EI'm:F,
the /\i and Fi are n-pd's, and

[Ai] :[Fi] for i=1,...,m,
we must have that A =T foral i=1,...,m.

It is clear that the special case m=2 implies the general case, and that strong unique
factorization for the top-type of I implies cancellation for I :

(F1D'3=F2EI'3=F v F3EI'1=F3EI'2=F) — F1=F2 :
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Remarks It may be objected that talking about unique factorization is reasonable only if
the (ordinary) commutative law holds. Although full commutativity does not hold, the lawv we
have called "the commutative law" is important, in fact, it is the main mover of the algebra of
w-categories. Under the (restricted) commutative law, when for two atoms p[ u] , of v] of
the same dimension the product p[ u] [of v] iswell defined, under certain definite
circumstances, we can reverse the order of the nuclel u and v , and write p[ u] [b] v] as
¢[ v] O u] for suitable atoms ¢[ v] , Y[ u] . The commutative law is the main basis for
the dynamic of the algebra of w-categories.

In [M], the operations of the laws of w-category theory were restated in a way that resembles
the laws for (commutative) rings: we have unit laws, associative laws, distributive laws and the
(restricted) commutative law. It is tempting to consider w-category theory as a kind of higher
dimensional ring theory; the computads play the role of the rings of polynomials.

"Strong unique factorization” would be immediate from ordinary unique factorization if we
had the ordinary commutative law available. As things are, thisimplication is not (yet) seen,
but it is interesting that the strong version is provable in those cases when we are able to show
ordinary unique factorization.

We write Gr for the set of representatives of I : Gr:{ ¢: [®]=I} . Any morphism
f: —>A inducesamap d:.d .d". Clearly, f HGf is functorial.

Let I be atop-separated Pd of length N, and let Nr ,

denoted by [T] , of all top-dimensional indetsin T . For ®0G ,
o=( ¢1[ ul] ey ¢N[ uN]) , let <o be the (irreflexive total) order of the set N for which

u; <uj «i<j (i=1,...,N) .Wedefinethe (irreflexive) partial order < on theset N

or N, denote the set, previously

as the intersection of all <o dJDGr ; thus, <r is the largest partial order on N that al <o
®0G , are compatible with.

The entity <r IS perhaps the main object introduced in this paper. It is called the backbone
order of thePd T .

Note that, for any top-separated ', A, map f: I >A, GJDGr ,and u, vDNI_, u<qVv iff
f u<g q)f {2

For apartial order < onaset N, let'swrite G< for the set of all total orders € on the set
N that are compatible with <, < 0K .
To say that the mapping

def <{r

or = (<D|—><¢):Grf>G (3)
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isl-listosay that I has unique factorization.

Concerning of the functoriality of the mapping (3) under mappings of Pd's, we note the
following.

Given an isomorphism of ordered sets, g: (Nl’ <1) Q( N2, <2) , we have the induced

<5

DeG

<
"direct image" bijection &G 1 for which

(U, V) K < (gu, gv)IF(K)

<
(KOG 1 , u, vDN1 ) . On the other hand, amap f: I ——A of top-separated Pd's ' and A

induces an isomorphism <c 1 (N, <) —=>(Ny, <,) . where < (u)=f (u) (uDN-)
(remember that u isanindet, and f isamap of computads).

Combining these constructions, we have the commutative diagram, induced by a map
f: I —A\ of top-separated Pd's I and A':

<
g r G
<
Gfl o DlG f (3.1)

<
A
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New resultsin dimension 2
The theorems and propositions starting with 2.1 Theorem next will be proved later in the
paper.

2.1. Theorem Top-separated anchored 2-Pd's have unique factorization; in fact, strong
unique factorization.

In the next section, we will give a (ssmple) example of a (hon-anchored) top-separated 2-Pd
which fails to have unique factorization.

ForaPd I of length N having unique factorization, we now have the obvious bound N!
on the number of molecules representing it; it is easy to see that this bound is sharp.

We need more notation.
For atoms p, o, wewrite p— o for:

p—0 <= Ua, B. cca=ddp & p=aldp & o=calp ; 4
and we write ¢« for:

¢y <= Ua, B. cca=ddpB & ¢=da B & yY=altp . 5)
Equivalently, using L from above,

p—0 = 0p, ¥ L(p, 0, 9, ) ,
¢y < [p, o L(p o

Notethat p— o impliesthat plb | , sinceit followsthat cp=caldB=do . Similarly,
¢« impliesthat ¢ [y | . (Notethat ¢« isnotthesameas Yy— ¢ : inboth p— o and
¢« , thefirst term ( p , respectively, ¢ ) is"above" the second term, using the imagery of
vertical compositions pLo, ¢ [y going downward). Finally, note that if p— o, with data
a,B asin (4), and we define ¢ and ¢ with the same dataasin (5), then ¢,y are
well-defined, and ¢ < holds. Of course, the dual statement also holds.

Wewrite p«— o for p—>ov p«o.
Of course, we have that
L(p. 0 ¢ YY) —= p—>0&py. (6)

It is most important to observe that if E( p, g, ¢, ¢) , thenthe nuclei of p and ¢ "change
places: we have

plu] tofv] = ¢[v] LY u]
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Let o=( ¢1[ ul] e ¢N[ uN]) be any top-separated molecule. Let uswrite N for the set
[ D] ={ui ci=1,...,N} ,andforany ulN, let uswrite

def
o%ul = 4 [u]

for the i such that u=u; . For u, vON, define uiv ("u and v are exchangeable, u

left, v right,in ©") and u<v by

def
Uy — u<glv & ¢%1ul »¢%v]
def

Uy — u<glv & ¢%1ul 4% v]

(u<¢!v means that v isthe immediate successor of u in the order <(D).

fo >fv and

Note that, automatically, for any morphism f: ¢ ->¥ u&v implies fu
smilarly for «—.

2.2 Theorem Let ' be atop-separated anchored 2-Pd.

@ The possible orders of 2-indets in the factorizations of I are precisely
those that extend <=<r - The map (3) is abijection.

(b)  The following two equivalent definitions define — r to be an
irreflexive partial order on the set NI‘ :

u—erv = D(DDGr. u<¢!v=>u—¢ev

= DDDGI_. (u<¢!v &) u—q)ev :

(c) For — = —r in (b), the pair (<,—) isaplanar arrangement on the
set N, meaning that for any u#v in N, exactly one of the following four alternatives hold:

u<v , v<Uu , u—v, V—-u.

2.3 Proposition Any morphism f: I —>A of top-separated anchored 2-Pd's
induces an isomorphism

[F1:(N- s 4 —p) De(N{\, =)

of the planar arrangements associated with I and A . In other words, for any u, vDNr ,
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u<£v @)fu<Afv, U— v @)fu—e/\fv.

We consider the set Gr of variants of I the vertices of a (undirected, loop-free) graph, with

edges the pairs (9,¥) such that S( @, ¥) . On the other hand, the set G< of total extension
of the partial order < carries a natural graph-structure: < and <, ae connected by an
edge, &( <y <2) , iIf one is obtained by a transposition of two consecutive elements in the

other.

It is an easy general fact about total extensions of finite partial orders that G* isaconnected
graph.

On the other hand, since, for any © suchthat I'=[0O] , we have Gr:{ o: S” tr (6,0)} ,it
is clear that also Gr IS connected.

2.4 Proposition For top-separated anchored 2-Pd I, in (3), we have an
isomorphism of graphs.

2.5 Elementary Lemma A finite planar arrangement has no non-trivial
automorphism.

(See also section 3 below.) In this, a finite planar arrangement is similar to a finite total linear
(1D) order. A planar arrangement is a kind of total order of a portion of the plane.

f

2.6 Coroallary The category of anchored 2-Pd's is a preorder: if I iA where I,
g

A\ are anchored 2-Pd's, then f =g .

Pr oof Note that by (viii) and (ix), we may assume without loss of generality that I,

A\ are top-separated.

f
Assume [ iA, [, \ top-separated. By 2.3 and 2.5, the effectsof f and g onthe

2-indetsin [ are the same.

def
Let ®=(¢,[uy], ..., ¢fuyd) DG .Wehavethat v; = f(u;)=g(u;)
(i=1,...,N). Therefore, for LIJ=f<D:(fd>1[v1] e ,f¢N[vN]), O0=g® =
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(gc,bl[vl] ..... g¢N[vN]) ,we havethat ¥ and © define the same order <<:<W:<O on
the top indets, namely v1<<v2<<. .. <<VN . They also represent the same pd, namely A . By
unique factorization (2.1) for A, we have ¥=0.

def
This means that g = f((j)i ):g(d)i) for i=1,..., N.With T'=(X,T) , A=(Y, A) ,
xi :SUDDX(¢i ) Yi =SU|O|OY(¢'i ) Qi =(X ¢i ) SUi =(Y, ¢’i ) fi =f [‘Xi ,

f.
i
9; = grxi , we have Qi ispi . The fact that fi =g; follows is the "one-atom"

9i
specia case of the Corollary itself -- but it is something easy to check directly, given that
1-pd's are "obvious'.

N
Since \ J X, =X, and therestrictionsof f and g toeach X, areequal, we conclude that
i=1
f =g asdesred.

2.6 isthe main ingredient of the proof of 1.1; it ensures condition 1*) in section 1 in "uniquely
typed".

2.7 Corollary Let f: I —>A beany morphism of anchored 2-Pd's. f inducesa

bijection d : Gr U >GA between molecules representing ' and those representing A .

Pr oof In the case when both ' and A are top-separated, the result is immediate

from the diagram (3.1) and 2.2(a). Using (ix), we then see that it suffices to prove the assertion
for the case when f isatop-separating map; assume it is.

By (vi), G issurjective. Assumethat G (®) =G (V) | to show that &=¥ . Let

o=( ¢1[ ul] ..... ¢N[ uN]) . W=( Lpl[vl] ..... LpN[vN]) . Our assumption implies
that fui :fvi , in particular, fdui =df u; :dfvi =f dvi ,and since f isanisomorphism,
dui =dvi . Similarly, cu; =cv; . For the underlying computad X, '=( X, I') , we now

have that the mapping h that is the identity on X, and maps u; to v, (ir=1,..., N) is
an automorphism of X.

We aso have h(®) =¥ . To seethis, thereal issueisthat [h(®) ] =[®] =l ; oncethat is
known, it is clear that <h( o) =<y and thus, by 2.1, h( ®) =¥ . But, for any molecules ©
and X in X, f: X—>Y being an isomorphism impliesthat S( 0, X) iff S(f0O,fZX) ,and

thus, by the surjectivity of & (see (vi)), &'/t (0, %) iff S/t (fo,f5) ,andso
[©]={s] iff [fO]=[fs] . Appliedto ©=h(®) and $=¥,since f ( ho)=f d=f ¥ , this
getsus [h(®) [=(®] asdesred.
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Having the equality h( ®) =¥ , we conclude that h is an automorphism

h: (X, T) U >( X, ) . Thisimmediately impliesthat h induces an automorphism of the
planar arrangement ( NI" <r er) of 2-indetsin X . But the map of 2-indets induced by h

isjust Ui v, . By 2.5, therefore, this map has to be the identity; u; =V, for all
i=1,...,N. Thisof course meansthat =¥ , which was to be proved.

f Ly 9 O, thereis

We call a Molecule ®=( X, ®) projective if whenever @

® h >0 suchthat go-h=f . The concept of a Pd being projective is analogous, but
different!
2.8 Elementary Lemma For any anchored 2-dimensional Molecule @, thereisa

projective Molecule é with a map éfeg.

The proof is indeed elementary, since it depends on understanding 1-Pd's that are easy to
understand. See later too.

2.9 Coroallary For any anchored 2-Pd I, there is a projective 2-Pd f with a

map ﬁfa[.

Pr oof Given I ,let ® represent I ; let é be a projective Molecule, with

A f f

®—' 0. Let [ bethePdrepresented by ®;then I —' 5T .l clamthat [ is

h

=. Let W=f( 93) . Then ¥ represents A . By 2.7, thereis
h

projective. Letﬁ g A

©® . Since the

© representing = such that h(©) =% . We now have é 9 Y

Molecule é IS projective, thereis é K >0 suchthat hok=g , which was to be proved.

Recall from section 1 what we mean by a separated Pd; of course, this is something more than
"top-separated”. Recall the notion of "unique typing" also.

2.10 Corollary Anchored 2-Pd's are uniquely typed.

Pr oof Let I be an anchored 2-Pd. Condition 1), uniqueness of the specializing map,
f

is part of 2.6. To show Condition 2), use 2.9 and fix a projective f with f > . Let
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_F%gﬁ beany arrow to ' froma A separated. Sinceﬁ is projective, there is
= h

(B

>\ (suchthat g-h=f ). By the definition of "separated”’, h isanisomorphism. We

have shown that any type A of I must be isomorphic to ﬁ ; in particular, any two types of
[ are isomorphic to each other.

It also follows that we have

211 Corollary "Projective” and "separated” for anchored 2-dimensional Pd's are
the same property.

The obvious idea of unique composability, obvious in our context when pasting diagrams are
defined via computads, was aready mentioned in essence at the beginning of section 1.

We say that a computad X is composable if thereisapd ' in X making '=(X, ") intoa
Pd (that is, Suppx( N =X). X isuniquely composable if said I isunique: there is exactly
one ' suchthat M=(X, ') isaPd. We can extend the terminology by saying that a Pd
=(X, ) isuniquely composed if X isuniquely composable (I isthe only pdin X whose
support is the whole if X .)

The final four assertions are for positive 2-pd's. ones that have domain and codomain both
non-identity 1-pd's. Of course, a positive Pd is aso anchored: positive = anchored and
co-anchored.

Positive pd's are the only ones that [P1] and [P2] deal with.
2.12 Theorem A separated positive 2-Pd is uniquely composed.

Let me point out that "unique composedness' of a Pd in general can fail for at least two
reasons. For one thing, if '=( X, ') isanon-separated Pd, it is "bound" to be non-uniquely

composed -- although there are uniquely composed positive pd's that are not separated: take
O-cells X, Y, Z, W, l-indets f,f’ : X>Y, g:Y>Z, h,h’:Z->W, and the single 2-indet
u:f lgth—>f" glh ;then M=u isnot separated, but it is uniquely composed.

For the smplest example for a non-uniquely composed positive non-separated pd, see the
beginning of section 1.

On the other hand, the simplest non-positive, anchored, separated 2-Pd fails to be uniquely
composed: take the 0-cell X, the 1-indet f: X— X, and the 2-indet u: i dxaf , to form

the computad X=0X, f, ul. u=(X u) and, foreach n, Fnzu ((fu) O.. I(f nu) , al
make ( X, Fn) a separated anchored 2-Pd with the same underlying computad X .
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2.12 is the present paper's version of John Power's theorem of unique composability of
2-pasting schemesin [P].

The proof of 2.12 is by "exhaustion": given a separated, equivalently projective, positive 2-Pd
=(X, I , wecan give an account of all the pd'sin the computad X . This account yields

further results, some of which can be conjectured to be true in higher dimensions.

2.13 Proposition Let T=(X, ') beapositive 2-Pd; assume it is separated

(equivalently, projective). Then every pdin X is separated: for every AO||X|| ,
A=( Suppx( N), N) isaseparated Pd.

Thisis certainly false in higher dimensions. A (simple) example in [P2] of a 3-Indet
X=( X, x) shows that "looping" of 1-cellsin a separated positive 3-Indet is possible: X

contains 1-indets f and g in the configuration X f Y9 .x ; the 1-pd f [g isnot
separated. However, the weaker version of 2.13 in which one requires that A be of the same
dimension as ' may be true for anchored separated Pd's in general.

We also can conclude that, for '=( X, I') aseparated positive 2-Pd, "all pd'sin X are parts
of the full composite I ".

Let T=(X, ) beanyPd. Letuscal apd A in X apartof I if A belongsto the least
class C of pdsin X suchthat I'oC, El [EZDC implies El, EZDC, 1_0C implies
=0C, and =Z0OC implies d=, c=Z0C .

2.14 Proposition If T=(X, ) isaseparated, equivalently projective, positive
2-Pd, thenevery pd A in X isapartof T .

2.14 isfalse for dimensions higher than 2 asthe example in [P2] just quoted shows.
However, once again, the weaker version of 2.14 in which one requiresthat A be of the same
dimension as ' may be true for positive separated Pd's in general.

We can express the idea of "part" used in 2.14 more "geometrically" as seen in the statement
of 2.15 below.

Let X bean n-dimensional computad, ' a n-pd in X, u aparticular n-indet in X . Let
A be another n-pdin X suchthat Alfu (dA=du, cA=cu).Then I'[A/u] ,the n-pd
obtained by substituting A for u in I, isobtained as

DEF
MANul = (),

for themap f: X—X of w-categories (not necessarily a map of computads!) defined by the
stipulation that f istheidentity of [X|-{u} ,and f(u)=A.(Thisislegitimate; X=Y[ u]

29



for some Y with Y| =|X|-{u} ; we can apply the universal property of Y[ u] ;thisis
why we need u to be top-dimensional. As a matter of fact, one can define meaningful
substitution for indeterminates that are not top-dimensional; but this involves suitably replacing
higher dimensional indets depending on the one being substituted for).

Let us say that the n-pd A isapart of the n-pd I if, for u anew n-indet parallel to A,

thereisa 2-pd F* in X[ u] suchthat uOsupp( F*) and I':I'*[/\/ uj] .

Lemma[M] (xii) Let T=(X ') beaseparated n-Pd, and suppose that all
n-pd'sin X arepartsof I . Then I isuniquely composed.

Pr oof Suppose A isan n- pdin X such that Supp(A)=X. Since A isa part of
I, there are approprlate u and I‘ asinthe deflnltlon We are going to show that,
necessarily, F isequal to u, andthus = F [AMu] =A.

Let us write out F* as the product of an n-molecule ®=( qbl[ ul] ey qu[ uN]) .B
assumption, thereis i 0{ 1, .. . N} such that u=u; . Let
F1=01 0. Wy, 0= . Tp7 4 U Doy

Weclaim that N=1 and i =1 ; that is, I'*:qb itself isan n-atom. Suppose not. Then either
Fl or I‘2 is not an identity n-cell; say I‘1 is not an identity n-cell. Therefore there is

vDsuppn(Fl) . We have
r=r [Nul =1 B[N u O,

Since Supp(A) =X, wehave vOsupp(A) .Let v beanew n-indet parallel to v , and let

AN

r’lzrl[\?/ v] . Clearly, T'|[Fy ;thus T'=T, B[ A u] T, iswell-defined in X=X v] .
Clearly, Supp(l)=X.Wehavethe n-Pd [=(X, I) . Definethemap f: XX that isthe
identity on X and maps V tov. Clearly, f maps I to r; f:ﬁe[.However,

obvioudy, f isnot anisomorphism: X has one more indeterminate than X . This contradicts
the assumption that I is separated. The claim is proved.

*
Let'swriteout ' =¢ asan n-atom:

$=b, (Ob, ,0.. Qbye)d.. B, )& .

Let us assume that F* =@¢#u , to arrive at a contradiction. The proof is similar to that of the
above claim. There must be some k{1, ..., n- 1} such that either bk ore e, isnot an
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identity. Suppose the first alternative. Let k be the largest integer <n- 1 such that bk IS
not an identity. We have

¢ = bkE(bk_lm.. E(blmtel) a.. Een_z) Een_l
and

r=¢{AMu] = b b, ;0.. (b Ae)D.. & ,) & ;.

Let v bea k-indetin by ; let v beanew k-indet paralel to v ; let Bk:bk[\?/ v] ; we
have b, ||b, ; let
r=b, b, ,0..0b;A)D.. & ,) B ;;
.DEF .
wehave X = X[v]=Supp(l) because vOsupp(A) , and the only indet that might have

been removed from I is v ; it is not removed; and of course, v has been added. Let
F=(X, 1) .

Define f: X X as the identity on X, and mapping vV tov. Clearly, f (Ié) =l ,and
f: ffe[ , £ isnot an isomorphism; contradiction.

The last lemma shows that the next proposition is stronger than 2.12. It is obviously stronger
than 2.14.

2.15 Proposition Let M=(X, ') beaseparated positive 2-Pd. Then every 2-pd in
X isapatof T .

In fact, for every 2-pd A in X, u new indet parallel to A, thereis F* in X[ u]
such that

@ F:F*[A/u] :

*
(b) u occursin ' exactly once;
and

(c) supp( F*) n supp(A) =supp(dA) Osupp(cA) .
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83 Cutsin partial orders, and planar arrangements

Cuts
Let usfix afiniteirreflexive partial order (N; <) . Weread x<y as" x isabove y " ,"y

isbelow x ". That is, we imagine the order < as going "downward". This may cause some
linguistic problems such as "minimal” in the sense of < means "being on the top", etc.

Acut Cin (N; <) ,orsmply acut,isapar C=(U, L) such that UﬂzN,and

(1) U isup-closed: b<allU= b0OU ;
(i) L isdown-closed: b»allL = b[L .

Note that if Uﬂ_:N , then (i) iff (ii). That is, acut C can be given by asingle set U which
isup-closed; L isthenthe complement of U. Of course, therolesof U and L are entirely
symmetric. | find that it is better to keep both of "sides’ around when we think of a cut.

Let C=(U, L) beacut. Let pU bethe set of al <-maximal (maximally low) elements of
U, vL that of the <-minima (maximally high) elementsof L :

def def
puU = {u0U: OvOU. ~(vHu)} , vL = {¢0L: OnfL. ~(nmK£)}

def )
B = pulvL

is the border of thecut C.
The border can also be described as follows:

WIB &= [Ov[(W<v = v[L) & (wWrv = vOU)] . 1)
A spanning set, or span, X, of C isany subset X of the border B which is a maximal

antichainintheorder <IB: XOB; andforany x,y in X,-(x<y) and -(y<x) ;and X
is maximal among such subsets of B .

3.1 Elementary observation A spanning set X of acut isamaximal antichain
intheorder < on N:if XOYON, Y isa <-antichain, then X=Y .

Pr oof We use the notation associated above with acut C without comment.

Let X beaspanof C.Let z[ON be arbitrary, to show that thereis xOX such that either
X2Z Or X<Z.

Either zOU, or zOL . Assume, for instance, that zOU ; the case z[L issymmetrically
treated. Let u bea <-maximal (maximally low) element inthe set Y={y[OU: y>z} (we

have z0OY); in particular, uxz . We have uOuUIB because if viu , then vOU would
imply vOY , contradicting the maximal choice of u ; we must have vIL , thus uOuU.
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Since X isamaximal antichainin B, we have some xUX suchthat x>u (case 1), or x<u
(case 2). Incase 1, we have x:uxz and x>z asdesred. Incase?2, since xB, x<u
forces u tobein L ; contradiction, since ullU.

Let uswrite C for the set of all cutsin (N, <) .

In what follows, C, D, C arecuts; C=(U, L) , D=(V, M , C=(U, L) ; B isthe border of
C, B istheborder of C, E isthe border of D.
The cuts form a (reflexive) partial order ( C, <) by inclusion of their upper parts:

DEF
C<D < UIV. (C, =) isinfact adistributive lattice, with an injective homomorphism of
lattices C—>U into (P(N), ) . Let uswrite C<D for C<D.

+

The distance p( C, D) between C and D isdefined as the cardinality of the symmetric
difference UnMILAV . p(C, D) =0 iff C=D.

Let B be the border of C. Assume uCB. Either uOB, or uOB. In either case, we can
shift u over to the other side, and obtain a new cut. Let, e.g., ullB. We can form

U=U-{u} , L=LO{u} . Then U isclosed upward: if w<v & vOU, then wOU : indeed, wiU
isclear, and w=u would imply u<v , which, together with vUOU, would contradict ullB.

Thus, é:( U, I:) isacut. Also, we have ulB indeed, w<u implies MU:U{U} since
ubU and U isclosed upward. On the other hand, B can very well be different from B.

We say that C is obtained from C by shifting x , or simply: C isthe x-shift of C, and,

without referring to x , that C isashift of C, if either x=ul0B and C isobtained from C
as described, or x0L , and the dual situation takes place. "Being a shift of" is a symmetric
relation.

Suppose p(C, D) >0; i.e, UnM isnon-empty, or LnV isnon-empty. Assume the first
alternative; the treatment of the second is a dual affair.

| claim that the set ( uU) nM isnon-empty. Let u bea <-maximal (lowest) element of
UnM.u mustbein puU. Indeed, let u<v . vOU would imply vOUNM (since M is closed
downward), contradicting the extremal property of u .

Let ul( uU) nM, and consider thecut C=(U, L) explained above: U=U-{u} ,
L =L0{u} .Wehavethat UnL OUnL ,and (UnL)—(UnL) ={u} . On the other hand,

LnV=LnV, since LaVOLaV,and udLnV, since ulM. Therefore, the distance p( C, D)
has gone down by one with respect to p( C, D) .

In summary, we can characterize the immediate successor (or: Hasse-) relation associated with
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< on C,therelation <! (C<!D < C<D& [IC. C<C<D) asfollows. C<!D iff C<D
and D isasniftof C.Also, p(C, D) =1 iff D isashiftof C.

Suppose C isthe u-shift of C, andlet S beany span for C, that is, amaximal
<-antichainin B, suchthat u0S .| clamthat S isa span for C too.

E.g., ulB, uOB . What we need isthat SOB . Let sOS; if s=u , we know that uCB .
Suppose s#u . But then, since S isan antichain, s is <-incomparable with u( 0S) .
Assume v<s , to show that vOU . We have vOU (snce sB) and v#u ; and this means
that vOU. The implication vs = vOL istrivial.

Signed spans
Let C=(U, L) beacutin (N, <) .

Givenaspan S of C=(U, L) , let'swrite S=SnuU, S=SnvL.Thecut C is, clearly,
recovered from (S, S) in thisway:

uOU «——s ubS VIs0S. u<s 2.1)
(0L — ¢0S Vrsos. s<s 2.2)

Conversdly, let us start with an arbitrary span S in N, that is, an <-antichain, and an

arbitrary partition of it, S= 5% ; we call the data a (up/down) signed span; we use the
symbol S to denote the signed span as well.

Define U by (2.1) above. It isimmediate that U is <-up-closed: ulU & x<u = x0U.
Thus, with L = N-U, wehaveacut C=(U, L) . Using the fact that S isamaximal

<-antichain, we immediately see that (2.2) holds. It is now clear that SO pU and SO VL ;
andthus S isaspanof C.Letuswrite ([ S] for the cut just defined.

We say that two signed spans S1 , 82 are equivalent, SlESZ e Sl] = 82] . Thus,
cuts are in a bijective correspondence with the equivalence classes of [.

Convex sets
We work in afixed finite irreflexive partial order (N, <) .

A convex set (or, in case the reference is needed, a <-convex set) isasubset P of N such
that p, 0P and p<x<q implies xOP .

Let P beany set (subset of N). We derive the following further sets from P :



N

Pt = {xON. OpOP. x<p}
Pl = {xON: CpOP. x:p}
P} = P7-P
P, = Pl-P
thus
Pr = POPY , P = PP ;
P = {XON: OpOP. ~(x<_>p)}
P = PP
By definition,

P 0(PrOPl) = N.
From now on , we assume that P is convex.

We immediately see that thisimpliesthat P71 isup-closed ( x<pOP7 imply xOP7), Pl is
down-closed, and P71 and P/ aredigoint. In particular, we have the following partition:

PP Pt PL = N ; (2.3)

that is,

PP Pl = N . (2.3)

P71 isup-closed, P/ isdownclosed; their complements P7 = N-P7, Pl=NP| are

downclosed, resp. upclosed, hence all are convex. P" isthe intersection of P and PJ,
hence, P" is convex.

| claim that

(P "1 = Pr P
The RHS is clearly contained in the LHS. Let xO(P') 1, that is, let p"OP" and x<p™
to show x[ORHS. Suppose xUP , that is, suppose pUP suchthat p<x (casel), or x<p

?.

(case 2), to show x[OP7 .Incasel, p§x<p+ ; thus p<p+; but pOP, pJ’DP+ and
p<p+ clearly imply that p+DP;then, the convexity of P and p§x<p+ imply xOP,
thus also xDIST . Incase 2, xDﬁ’T by definition. (claim done)
Symmetrically,
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Pl = Pl P
Thus, PT1=PY - P =Pl P - (PP ) =P7 ; smilaly, P =P .
From P* EPJF* EPJFT EPJFL =N, (23) applied to the convex set p* , we get
PP TP PPl =N,
and since PP @PT @Pi = N, we conclude Pt =p . Therefore, pr=ptipt = p

+

Conversely, suppose that Pt=p ; this of course means that P* =0, since P+:Pﬂ3* . We
have shown

P*=p iff P =0 iff [Qconvex. P=Q" .
Let us call the convex set P horizontally full if PT=P . (P isvertically full if P=P )

The operation P}~ P" on convex sets s not monotone, however: if N={1, 2, 3} ,
<={(1,2),(1,3)} ,then {1} "={1,3} ,and {1,2} "={1, 2} .

Asa"lemma’, let usnotethat if VDP* isupward closed in P* that is,

Ox. (x<vDV&xDP ) =x0V, then Pﬁﬁ/ is upward closed (absolutely): theonlythlng to

check isthat if w<v and vOV, then WDPTﬂ/ this is true when also WP ; but if WP :
we have pOP with either w<p (case 1), or p<w (case 2); case 1 implies WDPT , and case

2 isimpossible since it gives p<{w<v and p<v , contradicting vDVDP*

Similarly, if MIP  isdownward closedin P, that is, Ox. (x>vOV & xOP ) =x[OV
then P10V is downward closed (absolutely).

Given two cuts C :( Ul’ Ll) and C2=( U2, L2) such that ClsC , that is, UlDUZ,
L1 2 , the set P—leu2 is obviously convex.

Conversely, given the convexset P,let D=(V, M be any <-cut in the set P : P* :Vﬂ/l,

V closed upward in P (and M closed upward in P ). From (2.3) and the "lemma’" we see
that the definitions

DEF i

L, = POPLEM=Pl M (2.4)
DEF i

U, = PEPTEV=P IV (2.5)
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give P:leu2 , With L1 closed downward, U2 closed upward, thus defining cuts
Clz( Ul’ Ll) and CZ:( U2, L2) ; and ClsC2 . Itisaso clear that any ClsC2 that give
P as P:leu2 arises in this way.

Let us summarize. Let us call apair of cuts C1 and C2 adicing (in (N, <) ) if ClsC2 ;

DEF
the dice of the dicing (Cl' C2) isthe set P( Cl’ CZ) = leu2 . Every dlice (of any

dicing) is convex; and conversely, every convex set arises as the sice of a slicing. More
particularly, the dicings for which aglven convex set P isthedicearein abijective

correspondence with the cuts in ( P < rP ) , according to the formulas (2.4) and (2.5).
Therefore, the convex sets that arise as a dice from exactly one dicing are exactly the
horizontally full ones.

Planar arrangements

A (finite) planar arrangement is a structure N=(N; <, —) with N afinite set, £, —
binary relationson N, such that:

1) < and — areirreflexive and transitive (irreflexive partial orders);
e Ho He = W

2) {O0>0—- 0« =N
here, » = <OP , = 0P , N2¢ = NXI\I-AN, AN:{(a, a) : alN} . We are saying that
for any xzy in N, exactly one of the following four alternatives holds:

X-Y X Yy X<y x>y

Weread x—y as" x is(tothe) leftof y " ,"y is(tothe)rightof x ". Aswe said
before, weread x<y as" x isabove y " ,"y isbelow x "; that is, we imagine the order
< asgoing "downward".

In short, — isthe "left-to-right" (partial) order, < isthe "(from) up-(to) down" order in the
arrangement.

Note the obvious fact that, for a planar arrangement ( <, —) , an <-antichain is the same
thing asa —-chain: a set in which any two elements are — -comparable. Therefore, a span
of (N, <, =) , respectively aspan of acut C, always understood asa cut for (N, <) , is
amaximal —-chain in N, respectively, amaxima — -chain in the border of C.
Further notation
Wewrite — , < for the reflexive versions:

X—=3y & XY VXY,

XLy &= X<y VX=y.

We write «— , <> for the comparability relations:
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XY & XY vXey,
XLFYy & X<y VXrY.

There are obvious versonssuch as <= , <_»> .

All (partial) orders will have finite underlying sets. Thus, we can meaningfully talk about the
"Hasse diagram” of an order. We use the notations —! , <! inthese senses:

Xy & X->y &-lZz.x->z2-y ,
XLy &= x<y &-[Z. x<z<y .

The notations <, &, possibly with a subscript, will be reserved for total (linear, irreflexive)
orders.

Intervals

We are in afixed planar arrangement (N; £, —) .

It is convenient to consider the "2-point compactification” (N°; <, —) of (N; <, =) .

Here, with the new symbols -« , © , we put N°:Nﬂ -0, 0o} ,and declarethat - o0 —<

and -o — u — o foral uON.Then (N°; <, —) itself isaplanar arrangement --
although this is not very important.

In what follows, we try to adhere to the convention that variables a, b, ... range over the
extended set N° , and u, v, X, £, ... range over the original set N.

For any subset S of N, wewrite S° for the set Sﬂ-oo, o} .

Take a and b in N° suchthat a-—>b , and define

[a, b] =[a, b] N ={xON a-=>x—=b} .

(Thus, theset [ a, b] isasubset of N, although a and b may not be elements of N.)
Similarly,

(a,b) =(a, b)_9 ={x:a—->x—-b} ,

and we have the obvious versions (a, b] , [a, b) too. Of course, (-, b) =[ -, b) ,
etc.; and (-, ) =N.

We define the subset | of N to be an interval with end-points a and b (left end-point a

and right end-point b )if (a, b) O O[a, b] ; here, a, bON’ , and it is assumed that
a—b and {a, b} #{- o} ,{a, b} #{«} .

In the notion of "interval”, we must keep track of the end-points; the same set | could be an
interval with two different sets of end-points. For instance, as a set, an interval may be empty;
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as an interval in the full sense, it still retains the information of its endpoints. However, we
make one exception: we do not allow the empty sets (-0,-0) , («0,0) asintervals.

When we denote an interval as, e.g., (a, b) , we automatically mean that the endpoints are
takentobe a and b . Thus, aninterval isaset | , together with two end-points a and b .

Intervals are — -convex sets; asubset | of N isan — -convex iff

OxOl . Oz0Ol . Oy(x—>y—>z == yll ).

Aninterval isa —-convex subset of N; but it isaso convex with respect to < ; in fact, if
| isaninterva with end-points a, b, then

X, zOl , x<y<z == y0(a,b) .

To show this, we (easily) exclude each of the possibilities a<y , y<a, y—a and y=a,
to conclude a—vy ; similarly, we obtain y—b .

The arrangement (N,<,—) induces (by restriction) a planar arrangement on any subset of N.
Forany subset 1 of N,acutin | ,or I-cut, isacut of the arrangement induced on | . It
isobviousthat acut C=( U, L) of the total arrangement inducesacut CM = (Unl, Lnl)
in | ,forany subset | of N.

3.2 Proposition Let C=(U,L) beacutin N, andlet B theborder of C. Let

| be an interval with endpoints a and b , and assume that a, bOB® . Then the border of
CM isequa to Bnl .

Proof Denote the border of CMN by B. Itisclear that Bnl OB . To show the
converse containment, that is, BOB , we verify, for elements w of B, the RHS of (2).

Let wIB and assume w<v , to show vOL (?). Let'scompare a and v (incase a#z-o). If
a<v , we are done, since allB. v—>a would give v-—a-—w (since wll ),

contradicting w<v . v<a would give w<v<a , contradicting a-——>w. It remains to consider
the casethat a—vVv (whichis OK when a=- ») . Smilarly, we may assume that v—b . But
then, a—v—b , hence, vOI ; vOL followssince wOB .

Similarly, we can show, for (1), that whr-v = vOU.

A (signed) span inaninterval | is, of course, a (signed) span of the planar arrangement
inducedon | .

3.3 Proposition Suppose that | isaninterval, S isasigned span of N, and

both endpoints of 1 belongto S° .Let C=(U, L) be the cut determined by S. The
intersection Snl inheritsasigning from S. Then
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) Snl isasigned spanin | .
(i)  Thesigned span Snl in | determines, in the arrangement induced on | , the
cut CM =(Unl,Lnl) .

Pr oof Call the end-pointsof | : a and b .
(i) By Prop 2, Bnl istheborder of CIM .1 clam Snl isaspanin Bnl .To see
?
this, suppose that xO0Bnl and (Snl) 0{x} isa —-chan, wishing to conclude xOSnl .

Since x0I , wehave a——x-—b .Forany yUS-|I ,wehave y—a or b——y ; thus,
y¢=>X : X is —>-comparable with any y[S-1 . By assumption, X is —>-comparable
with any yOSnl . We conclude that x is ——>-comparable with any yS. Since S isa
gpanin B, xOS; xOSnl istrue.

(i) Let (UI , LI) be the cut determined by Snl in | . It isobvious from the
definitions (see (2.1) and (2.2)) that UI dunl LI OLnl . But we have

=Unl , L, =Unl .

U BL, = (Unl) B Lal) =1 . It follows that we must have U |

Intervals | and J are complementary if either | =(—», a) and J=[a. ) , or
| =(—, a] and J=(a. ») , or one of said conditions holds with therolesof | and J
reversed.

Given complementary intervals | , J , and given spans SI , SJ of 1 ,resp. J,wehave

that S=SI @SJ isaspan of N.

Indeed, S certainlyisa —-chainin N. Notethat a must belongto S : (precisely) one of
| and J contains a ; inthefirst case, aDSI , in the second, aDSJ ; thus, at any rate,

alS.
Assume that xS, but SO{x} isa — -chain, to reach a contradiction. But then x is

—-comparableto a (since a isin S), and therefore, it must belong to either | , orto J;
and either case is a contradiction to the "span" character of the two given spans SI , S g - Of

course, Snl :SI , SnJ:SJ.

We have proved part (i) of

3.4 Proposition Let | ,J becomplementary intervals, SI , TI signed spans
inl ; SJ, T‘J signed spansin J . Then
) S=SI @SJ isasigned spanin N; Snl :SI , SnJ :SJ.

(i) Let S=S,05;, T=T, 0T, .Then SOT iff S OT, &S,0T;.
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Pr oof (i) Let CS:( US’ LS) , CT:(UT , LT) be the cutsdetermined by S and T
in N, respectively.

"Only if": Assume SOT . From Prop 3.3, it followsthat Snl and Tnl determine the same
cutin | , namely the cut (USnI : LSnI ) =( UTnI : LTnI ) . Of course, the same thing goes
for J inplaceof | .

"If": Assume SI DTI & S‘J DT‘J . By Prop 3.3(ii), USn(I 0J) = UTn(I 0J) ; thatis, for

every ull 0J CS and CT agreeon u .

Let CI be the cut determined in | by SI aswell as TI ; similarly for CJ . Let BI , BJ

be their respective boundaries. For the common endpoint a of | and J, al{- », o} , and
exactly oneof | and J contains a asan element; call the one K. Then, of course, we
have aDSK and aDBK.

For ull 0J , we have that either u<a or u»a . Since aDBK, in the first case uDUSnK
and uDUTnK, hence, CS and CT agree on u ; in the second case, uDLSnK and
uDLTnK,and again, CS and CT agreeon u.

We conclude that CS:CT as desired.

3.4 Corollary Let 1 ,J becomplementary intervals. Givencuts C on | and D on
J , thereis a unique cut, denoted CID, on N suchthat (CUD) M =C and (CID) 'J=D.

Pr oof The assertion follows from 3.3, 3.4 and the fact that every cut has at least one
signed span determining it.

L ocal fattening of a planar arrangement
Let N=(N, <—) be aplanar arrangement as before.

Let a, b0ON suchthat a<! b (thatis, a<b and -[Ic(a<c<b) ). We describe a new planar
arrangement Na b obtained by modifying N by "turning the fact a<! b into a—b ", thus

"fattening” (extending in the left-to-right direction) the arrangement.

We define
def def tr
—ap - > = (= 0{(a,b)}) (tr :trangtive closure)
" def def o
<ab = <K< = K- (—-=>0¢¢) (¢e—==—-> p)
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As ageneral fact, just on the basisthat — isanirreflexive order, and azb are
incomparablein — , we havethat —> isan irreflexive order; in fact, the least irreflexive

order containing — E{ (a, b)} . Moreover, with the abbreviation

* def
X—=3y &= X-—a&b—=y

we have

*
X=3Y & XY v XY

3.5 Proposition (N; <<, —»>) so defined is a planar arrangement.
Pr oof The fact that ( <<, —>) satisfies2) isclear from the definition.
<< isobvioudly irreflexive; we have to show that it is transitive.

We have

X<y &= x<y /\—-(x—zey) /\ﬂ(y—zex) : 3
Assume
X<<y<<z ,
to show x<<z (7). We have x<y<z , thus x<z . It remains to show that

~(x—a&b-—72) (?4)

and
(z—=a&b-—=x) (?)

Since x<<y<<z , we have

either ~(x—=a) , (6.1)

or “(b—=y) (6.2
and

either ~(y—=a) , (7.1)

or ~(b—72) (7.2)

Clearly, (6.1) implies (4).

(6.1) implies (5): b—x-—a implies b-——a, * toa<b.

Clearly, (7.2) implies (4).

(7.2) implies (5): b——z——>a isfalse
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Therefore, we may assume that (6.2) and (7.1) hold. This means that

b<y (8.1)
or byy (8.2)
or b <y (8.3)
and
y<a (9.1
or y>a (9.2)
or y «a (9.3)
Assume (9.3).
If x—a, Xx—=a—-y *to x<y : (9.3) F (4).
If z—a, z-——=a—>y *to y<z : (9.3)F (5).
Assume (8.3).

If b——z, y—>b-—z *to y<z : (83)F (4).
If b——x, y—>b-—=x *to x<y ; (83)F (5).

Assume (9.1). Since x<y<a<b , thisexcludesboth x—a and b—x :

(9.1 F (4 & (5).
Assume (8.1). Since a<b<y<z , thisexcludesboth b——2z and z—a:

8.1 E (4 & (5).
(9.2) and (8.2) together would mean a<y<b : impossible since we have assumed that a<! b .

This completes the proof of the transitivity of <<, and that of Prop 3.5.

3.5' Proposition For x, yON° , we have:
(1) a—->!b

(i) x—sy & (x#avy#b) — -(x—>!y).
(i) ~(x='ly)& (xzavyzbh) = -(X->ly).

(V) x—sly e—s (x=a&y=b) v(x—!y&-(x—3Yy)) .

* *
Pr oof (1) a—->b since a—->b . The combinations a—z &z—->b,

a—zez &z—-b, a—zez &z—zeb are all impossible, and sois a—z &z—b because
a—!b.Thisshowsthat a—>z—>b isimpossble.

(i) Immediate.

(@iii) If =(x—>y) , weare done. Otherwise, X >y (casel) or x—>y (case2).In
case 1, wehave z with x—z—y ,s0 x—>z—>y ,thus =-(x—>!y) . Incase 2, (ii)
applies.

(iv) The == directionis (ii)&(iii). For the other direction: because of (i), we are

left with showing x—=!y &+ (Xx—>y) = X—>!y . Assume
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x=>ly & —-(x—zey) & X—>>2->5Yy,

*

*
to derlveacontradlctlon Since either of x—eez—»ey X—>z—>y implies x—->y , and
x—eez—eey isimpossible, we must have x -z —y , contradicting x—!vy .

3.6 Proposition Let (<, =) beaplanar arrangement on the set N, now not
assumed to be finite. Define, for x, yON
def
X<y &= XRy VXY (10.2)
def
X<,y &= Xry VXY (10.2)
Then < r <y ae total (irreflexive) orderson N, and
X<y & X<qY &y<2x (11.1)
X2y &= X<p¥ &x<2y. (11.2)

Conversdly, if N are total orderson N, and we define < and — by (11.1) and
(11.2), then (<, —) isaplanar arrangement on N, and (10.1), (10.2) hold.

Pr oof Easy
3.7 Corollary A finite planar arrangement is rigid: it has no non-trivial automorphism.
Pr oof Any automorphism of the structure (N, <, —) isalso an automorphism of

(N, <1) , by (10.1). But afinite total order has no non-trivial automorphism.

3.8 Elementary Lemma Let (N, <) beany finite irreflexive partial order; let
X, YON. Then the following are equivalent:

(1) There is atotal order < on N extending < such that x<*! y .
(i) x<'y v=(y<_»x) .

Proof. (i)==(ii) isobvious.
Assume (ii). Let Vlz{v: v<{Xx} , V2:{V' v<y}-{x} ,

W={w wex}-{y} , Wos{wowhy} L V=V OV, WEWOW, .
Z=N- (VO{x} 0{y} OW . Note that

z0Z = z#x & z2y & ~(z<>X) &~ (z<>y)

The four sets X1:VDZ, X2:{ X}, X3 ={y}, X =W are pairwise digoint; in fact,



Claim: if i <j ,then —|(sDXi &tDXj &t<s) .

We assume sDXi &t DXJ- &t <s , and see that there is a contradiction.

Checking:

Casel. (i,j)=(1,2):
Case 1.1: sDVlz SXX &t=X &t<s: *
Case 1.2 sDV2 . S<y &s#EX &t =X &t <s: x<s<y: * to (ii)
Case 1.3: sUZ: s isincomparableto X &t=x &t<s : *

Case2.(1,])=(1,3):
Case 2.1: sDV1 D S<AX &t=y &t <s : y<Ls<x : * to(ii)
Case 2.2: sDVZ: S<y &s#X &t=y &t <s: *
Case 2.3 sUZ: s isincomparableto y &t=y &t<s : *

Case3. (i,j)=(1,4):
Case 3.1.1: SOV, &t OW :

Case 3.1.2: sDV1 &t DV\é © S<X &y<s : * to(ii).
Case 3.2.1: sDV2 &t DV\i © S<Y & SEX & X<S : X<S<y : * to (ii).
Case 3.2.2: sDV2 &t DV\é D S<X &y<t &t<s: y<t<s<x : * to(ii).
Case33.1:sUZ&t0OW @ *
Case 3.3.2:s0Z &t DV\é Do

Case4. (i,j)=(2,3) : s=x &t=y &t<s: * to(ii).

Thecase (i,j)=(2,4) issmilarto (i,j)=(1,3) ,andthecase (i,j)=(3,4) is
smilarto (i,])=(1,2) .

This checks the Claim.

Let's totally order each of the sets VOZ, {x} , {y} , W compatibly with <, and let us
take the ordered sum of the total orders, itself atotal order < , onthe union VOZ @{ x} E
{vy} @W: N. By the Claim, < iscompatiblewith <. Itisclear that x< !y .

This proves the Lemma.
The next series of technical lemmas will be used in section 6. Their placing in this section is
justified by their elementary nature.

We are working in an arbitrary fixed planar arrangement (N, <, —) . Throughout, the
following additional items are fixed:

a, b, x, yOON such that

a<l b, (12.1)
x=ly, (12.2)
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and b—y. (12.9)

—> isdefined asin 3.5.
391 ©) If b#y ,then x<b .
) uD[x,a]_9 &vD[b,y]_9 &(u,Vv)#(X,y) = u<v .

() [xyl_,=[xal_ Flbyl_ .

Pr oof (0):  Assume bzy , to show x<b .

?2Xx—=b: x—>b—oy (lsnce bzy ):*to x—!y;
72 b-—=Xx: b-——>x—=a:*to a<b;

7. b<x : a<b<x :*to x—a.
This proves (0).
(): Assume LHS of "=———=". Firgt, we show u<b :

?. bLu: a<bLu: * to a—>u;
?. U—>b: Xx—=u-—b: *to x<b if b2y by (0); andif b=y, thenthe

assumption impliesthat u#x , and thus x -u—b=y ,*to x—>!y;
?. b>u: bsu-—a: *toa<b.

Next, u<v :

?. vu: vLu<b: * to b—=v;
?. U>V: X—=U-—>V-—-y &"=" doesnot hold at both places: * to x—>!vy ;
?. vou: b->v-u: * to u<b (known from before).

(i): The fact that the RHS is a digoint union is contained in part (i).
It is clear that the RHS is contained in the LHS.

Assume z isintheLHS, thatis, x—>>z—>y , toshow that z belongsto the RHS.

By definition, we have one of the following four logical possibilities:
X—=2 &z2—=Y
X—=>Z &z—zey
x—zez &z—=y

* *
X—>Z &Z—->Yy .
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The last one isimpossible. Since x —!y , the first oneis possible only if z isequal to one
of X,y , inwhichcase z doesbelong to the RHS. In the second case Xx—z &z—a,

that is, z[[ x, a] N ;inthethird, b——2z &z-—y , thatis, z[[ b, y] N , and we are
done.

def
Define Z = {z:a<z<y} , (13.2)
def
Z, = {z:a<z<'y} , (13.2)
def
For z[IN: V\é = {wx->w->z} , (13.3)
def
V\é = {uxXx—=u->z} . (13.9)
3.9.2 Forany z0OZ ,wehave b—z and x—z .
Pr oof Assume z[OZ . Because a<! b, we must have y#b , and thus x<b by

3.9.1(0).
We show b—z by excluding the four other possihilities.

b=z :* to bOZ.

z—>b: z—b—oy:*to z<y.
z<{b :a<z<b:*to a<!b.
b<z : b<z<y :*tob—y .

N ) ) )

Next, we show x—z inasmilar manner (but alsousing b—z ):

Z-—X ! Z-——X—>al *to a<z .

z<X 1 z<4x<b(1): *to b—z.
X<Z 1 X<4z<y :*t0o X—>Vy .

NN N

3.9.3 If z0OZ and wDV\é , then W<y .

Pr oof To prove W<y :
WY ! X>W-Yy:*to x—!ly.
Yy—=W! Yy—W—2Z D *to z<y .

NI

y<w: z<Ly<w: *to w—z .

3.94 Any —-minimal element of Z, isan —-minima element of Z.
Pr oof Suppose z[OZ isnota —-minimal element of Z . Thereis ul0Z such that

u—z .If ulz, ,then z isnota —-minimal element of Z, , and we are done. Otherwise,
thereis v suchthat u<v<y ; we can choose v so that, in addition, v<!y . Obvioudy,
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vZ, .lclamthat v—z . Indeed:

? z<Vv : z<v<y :*to z<!y;
? V<LZ : U<LVv<zZ @ *to u—z;
? Z—V ! u—ez—zev:*to u<v .

But vZ, &v—z saysthat z isnota —-minimal element of Z, .

3.95 Let z bea —-minimal element of Z, , and uW, . Then u—a.

Pr oof To prove u—a:
? a<u : a<u<y by 3.9.3. Hence, u0Z. By ulW, , u—z. But this

contradictsthe — -minimality of z in Z, given by 3.9.4. .
? u<a: u<a<z :*to u—z.
? a-——Uu: a——u—z:*to a<z.

Thisshows u—a .

3.9.6 Let z bea —-minimal element of Z, . We have that uW, implies
u—a.

Immediate from 3.9.5.

3.9.7 Let z bea —-minimal element of Z! . Then (b, z) _9D(b,y) -

Pr oof Assume b—v—z ,toshow v—-y .
First, we show a<v :

? a——V i a——>V—o2Z ¥ to zUZ

?2v—a: bosv—sa:*to a<b;
?2v<a: v<a<b:*to b—v.

This shows a<v .
Therefore, v<y would imply that vZ ; thenby v—z, z isnota —-minimal element

of Z, contradicting 3.9.4. Thus, -(v<y) .Butaso y<v would give z<y<v ,
contradicting v—z , and y-——vVv would give y—Vv—z , contradicting z<y .

We have shown that v—Yy asdesred.

3.9.8 Let z bea —-minimal element z of Z, . Certainly,

def
V\é = V\énu[x, a) R #0 since x—z (3.9.2), and thus xDV\% . Since Y[ x, a) N is
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linearly ordered by — , we can take the — -maximal element u of V\é . | claim that
u-'!z.

Pr oof Suppose that, on the contrary, thereis v such that u—v—z . Of course,
VDV\% ,andthus v—a by 3.9.6. Let wy[ x, a) N such that v<{w. We must have w—z :

any other possibility leads to a contradiction:

? Z{w: a<{ziw: *to w—a;
? w<z:v§w<z:*to V=27
? Z—>W: V=>Z—-W:*to VIw.

Since y[ x, a) N islinearly ordered by — , we either have u—w or w—u . But the
second possibility gives w—>u—v , contrary to v<w. Thus, we must have u—w. We
now have WDV\é and u—w, and this contradicts the "maximal" choice of u . We have
proved that u—!z .

3.99 Let D=(V, M bea <-cut suchthat bJE=the border of D.

Let'swrite <y for the set {u: u<y} .

Assumethat a<!y . Then, for any WD<ymM,we have b—-w and a—w.

Proof: For b—w:
? b<w: b{w<y : *to by .
? w<b : since bB, it would follow that wJU, * to wiM.
? w—b: w—ob-oy: :*to wy.

This proves b—w.

For a—>w:
? a{w: a<{w<y @ *to a<ly.
? w<a : wLa<b : * to b—w (proved earlier).
? w—a: b->w—a:*to a<b.

This proves a—w.
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84 The 2D case

We start by (re-)stating some properties of 2-Pd's.

First, some trivial, but basic, properties of 1-pd's;

4.0. Proposition Let S, Sl’ SZ’ S3 denote 1-pd's in the computad X, él’ éz
1-pd'sin the computad Y, f: X—Y amap of computads.

S1 [82 =i dx _— 81=82=i dx ;

f(S = S1 [82 = [ (Sl’ 82) : [S=S1 [82 &f(Sl) =81= &f(Sz) =82]

A 2-atom ¢ isa 2-pd of the form
p=blle , Q)

where b, e are 1-pd's, and u isa2-indet. (Foral-pd b anda2-pd ¢, bL§ = ponb:

"whiskering".) The expression (1) is uniquely determined for each ¢ (a special circumstance
for dimension 2). Thus, 2-atoms are the same as well-defined expressions of the form (1).

u isthe nucleus of the atom (1). To indicate that the nucleus of the atom ¢ is u , we write

¢[u] for ¢.
In what follows, a,83,0,0,¢,¢ will denote 2-atoms.

As we know from 82, a2-molecule ¢ isafinitetuple ®: =: (¢l, Cey ¢N) of 2-atoms
such that the composite

def
[¢) = ¢1D-- DPN

("vertical" composite) is well-defined. N iscalled the length of @ .

Every 2-pdisof theform [®] for some, usually several different, molecules ® . The main
concern of the paper is with the question when two 2-molecules define the same 2-pd's. what
is the "concrete" condition on 2-molecules ® and ¥ for [®]=[¥] ?

We use the notation of §2.

4.1 Proposition Let X,Y becomputads, f: X—Y amap of computads. We
assume that, for any 2-indets u and v in X orin Y (whether or not u=v ), we have
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it is not the case that [IX. cu=dv=i dx; 2

this holds in particular if the computads are 2-anchored, or 2-co anchored. p,0,¢,¢ are any
afomsin X, &, ¥, .. areany moleculesin X.

(1) Writing the atoms p, 0 as p=bu e ,a:lSB/EeA

we have

p—s0 & [S e=SMvE &b=bkuls ;
here, the 1-pd S isuniquely determined.

Moreover, if p— o, then
cp=do=bltulSv @ .

(i) L(p, 0, ¢, ¢) if and only if, for suitable 1-pd's b, e and S, we have
p=buBve
o=blEulSy &
¢=buB &
w=blSky @

(" ¢ comesfrom o by replacing cu by du; ¢ from p by replacing dv by cv "). If
L(p, 0, ¢, ) ,thedata b, e, S are uniquely determined.

(i) p— o and p<«—o cannot happen at the same time.

(iv) If p—o,thenthepar (¢, ) forwhich L( p, o, ¢, ) holdsis uniquely
determined. As a consequence, in a 2-anchored computad, there is a bijection between pairs
(p, 0) of 2-atomssuchthat p— o and pairs (¢, ) suchthat ¢« ; the bijectionis
given by therelation L( p, o, ¢, ¢) .

(V) If p«— 0o, thenthereisauniquepar ( ¢, ¥) suchthat E( p, g, ¢, ) .
(Recdl that E(p, 0, ¢, §) <= L(p, 0, ¢, §) &L( 9, ¥, p, 0) )

(vi) p—mo=f(p)—=f(o ; plol&f(p) —=f(o = p—o.

(Vi) S (6, ¥)) &8 (6, ¥,) — ¥ =¥

172 -

Pr oof Using 4.0, the proofs are easy.

Example Condition (2) is necessary. Let the 0-indet X, distinct 1-indets f, g , and
distinct 2-indets u, v be asfollows:

f,g: X=X, u:ffeidx,v:idxag.
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Let p=u, o=v .Then p— o holdswith a=u and B=v (see(4)in 82); but also p«0o
with a=v and B=u in (5)in 82. Thus, 4.1(iii) isfalse now. We have L( p, o, f [V, u[9)
and L(v,glu,p, 0) and v #f v, ulg#g U . Therefore, 4.1(v) is false too.

Planar pasting preschemes

Let X beacomputad. A planar pasting prescheme on X issix-tuple (N, <, —», M P, §)
where

N isafinite set of 2-indetsin X,
(<, =) isaplanar arrangement onthe set N,
MP are O-céllsin X,

and

— Xy C. ;
S= [(Sy) D XY, Cacutln(x,y)%D
isafamily of 1-pd's (S§)C in X, one for each pair (x,y) of elementsof N° such that
x—Yy ,andforacut C for (<, —) restrictedto (x,y)% ,

these data are required to satisfy conditions 1) and 2) below. To formulate them, we extend the
notation (S));) ¢ toany x,y andcut C for the whole arrangement ( N,<, —) such that
x and y areontheborder of C, x,yOB[C] , by the definition

CDEF . CH(x,y)

X
(S)) (S))

The data are required to satisfy the identities:
D d(s)) Cocex c(S) Cddy (XY, X, yOB[ C] O{ - o, 0} )

(we have made here the convention that cc(-») equals M, and dd( «) =P (note that
-0, o arenot 2-indets, and c(-») , d(«) arenotdefined at al));

and
2)(compositionality)

(Sg) C_ (S)e(l) C& E(S)t()) =
(a—>x—b &a, x, bOB[ C] I{ - w0, o} )

C def C def
(here: with C=(U, L) , 7 x = cx if xOU, 7 = dx if x0OL).
Remarks
1 For x—!y , let uswrite S)); for (S§) D,where D isthe unigue cut in the empty
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interval (Xx,Y) N . It is clear that the subsystem of the S§ for x—!y determinesthe

whole system S, by the formula

a,C _ -a C X1
(Sb) —leEB x1[SX2

C

C
X2

X
m

[0 O.. [ xm[Sb

where C=(U, L) isacutin (a, b)_é, xl—»!xz—»! N —»!xmisaspanof C,and

0Cx=cx for xOU, dCx:dx for xOL .

2 We can put the definition of a planar pasting prescheme in the form of a functor. First
we define two categories C1:Cl[ N, <, =] and C2=[ N, <, —] , with the same objects.

The objects in both will be the distinct symbols - « , © , and all "signed” 2-indets u=(x, €) ,
where x isaZ2-indetin N, and ¢ iseither "up" or "down"; (x,"up") iswrittenas X ,
(x,"down") as X; Xx=[ul ; [-w]=-0w, |0 =0,

Anarrow u—v in G existsonly if (ul — Iv[.If ul=Iv| , thenan arrow existsonly

if u=v ,anditisthe unique identity arrow. If |ul — |v| ,anarrow u-—>v isacutinthe
interval (u, v) - The composition of arrows makes use of the signing: given non-identity

arrows u—>v-—->w ( lul=x, Ivi=y, |wl =z) intheform of cuts u & v D w,

with C=(U, L) ,weput C=(UJ{y}, L) if v=y, C=(U, LO{y}) if v=y . Obviously,

C isacutin (x,vy] - , and y ison the border of C. By 3.4', we have the cut COD in

def
(x,2) N , whichisanarrow D-C = CID:u-——>vVv in Cl.Obvioust, we have a

category in this way; in fact, C1 isafinite 1-way category.
As before, we introduce the conventions cc( - ©) =M, dd( ») =P.

When, for |ul=x, [vli=y,wehave xzy ,anarow f:u—v ( ul=x, vVI=y) in
02 isal-arrow f:ccx—>ddy inthegiven computad X (underlying I ); the only other

arrows are identities. Given non-identity arrows u f v—9 w, the composite
gof : u—w is gof =goodvef ,where dv=dv if v=y, and dv=cv if v=y.

A planar pasting prescheme is the same thing as a functor S: C1 %CZ which is the identity
on objects.

The main result
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We now fix a 2-separated anchored 2-Pd '=( X, I') . We use the terminology and notation of
§2. Wewrite N, <, etc. for N-, <, etc. Recall especially the definition of < asthe

intersection for all dJDGr of the total orders <<D on N

For dJDGr , We use the notation
o%1x1 = (s %xasH® . 3

that is, in the expression b [k [& for the atom ¢¢[ x] , with b, e suitable 1-pd's, we write
(5;")® for b,and (S5)® for e.

We repeat the definition of the relation — o abbreviated — , asin the second statement in
2.3(c). That is, for x, yON:
def
x>y —— DPOG . x<q!y & 9% x] =97 y] (4)
For any GJDGr , and any Xx0ON, we define two cuts of the order <, Cl:( Ul’ Ll) and

sz( U2, L2) : C1 denoted also as 20, C2 as iCD,asfoIIows. yDUlﬁygq)x (and
yDL1:>X<¢y ) ; yDU2<=>y<(Dx (and yDLZ@xgq)y ) . Itisclear that C1 , C2 are
cuts, and, with Bl’ 82 their respective borders, we have x[0B

B, , xOB, ; for instance,
x<z implies X<pZ , that is, zDL1 .

For the statements 4.2, 4.3 and 4.4 that follow, '=(X, I') isa 2-separated anchored 2-Pd;
<=<r , =

4.2 Main Theorem Let T=(X, ') bea2-separated anchored 2-Pd; N=N
<=<r , =

r 1

() (N, <, =) isaplanar arrangement.

(i)  There exists a planar pasting prescheme
(N, £, —,ddl, ccrl, §) with the part (N, <, =) givenin (i), and such that for any
dJDGr and any x[N, we have

-0, @ -ooéd)_ -oo_q)
(S, = (S = (59"



—
(899 = (897 = (9%

[04]

Note that the expressions (S, ™) €, (SX) © in (ii) are well-defined for either C=%0 or C
= ;(D since x ison the border of C. Note also that the cuts %o : ;(D differ on the

particular element x only ( x being "up" in Xo , "down" in ;(D ), and therefore

-0 X 0)

)X and (89 7= ()X

—00

. —00 éd)
automatically (SX ) = (SX

0 0

On the other hand, the expressions ( S(:iw) , ( Sg) are to be recalled from (3).

The proof of 4.2 isthe main task of the rest of the paper.

For any GJDGr ,and any (x,y) such that x<q)! y , let uswrite X oY for
0% x] — 8%yl ,and x —gy for ¢°[x] «—¢%[y] asinsection2.

4.3 Corollary Let [ beasin4.2.

(i) We have, with the notation of 4.2,

X X =0 =0
o%x1 = (5 P s P=(s)* xasH* |

X —0®
c(¢%x1) =(s,"7%, d(¢%x]) = (s, X

() Let OWOG ;let XON.Assume OyON. (y<gX < y<x) . Then the atoms
® v
¢ [X] , g [x] areequa.

>G< isone-to-one: I has unique

(i) The mapping OF:( <DH<(D) : Gr
factorization.

(ii)* " has strong unique factorization (see section 2).

(iii) Forany 60G ,andany (x,y) suchthat x<g!y
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X oY iff x—vy ,
X oY iff Xe—y ,
—-(xe—eq)y) Iff x<y iff x<ly .

As a consequence, if x, yON, 090G and x<q!y ., x<y!y bothhold, then x— gy iff
x—ewy,and X Y iff Xy -

(iv) The mapping ol-:(<DH<q)) : Gr NS IS a surjection.

(v) Forany x, yON,
x<ly iff DDDGI_.X<(D! y &—|(xe—->q)y) .

5GY isan isomorphism of the graphs Gr

(vi) The mapping OI‘:( <DH<(D) : Gr
and G° .

(vii) Any morphism f: [ —— A of top-separated anchored 2-Pd's induces an
isomorphism

[F1:(NE 4p =) > (Ny < =)

of the planar arrangements associated with I and A . In other words, for any u, vDNr ,

u<£v @)fwAfv, U— v @)fu—e/\fv.

(viii) The planar pasting prescheme for ' with the properties in 4.2(ii) is uniquely
determined.

Proof of 4.3 from 4.2 (1): immediate from 4.2(ii) : by 4.2(ii), the ingredients
(S;™®, (S5H® of ¢%[x] (see (3)) are determined by what the cut £ is

(i1): immediate from (i).
(i) : see section 10.

(iii): Let d)DGr ,x<¢! y , and assume x—Yy , to show X= Y - Let C=%o= ydb. Aswe

ssid above, xOB . yOB for the border B of C. By 2),(s§)C:(s§)CmyE¢s}fo)C.On

def
the other hand, (SX) “=(S%)®, () C=(8Y)® by 42 (ii). Thus with S = (S§)C,
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we have (SX) ® = sy (sY) ® . similarly, we show that (S, ®= (5" %mxs. We

have verified the condition in 4.1() for $¥[ x] — ¢®[y] ; we have x— 4y .

The second item in (iii), of course, proved in the same way.

For the third item: the first "iff" is a consequence of the first two items and the fact that
(N, £, =) isaplanar arrangement. Since < 0 <o and

x<¢! y &= X<gpy &-[k. X<pZ<¢Y
XLy &= x<y &-[Z. x<z<y ,
X<y &x<¢! y implies x<!ly .

Before turning to the rest of the assertions, we introduce some more notation. First,

def
(X, ¥): S0, %) = x—-oy &L(¢%x1. 6% yv1, 9*1y], 07[x]) &

OUON-{x, y}. 6®[ul =¢ [ u] .

This should be compared to the definition of the relation S( ®, ¥) early in section 2. Clearly,
we have S( o, V) iff [k, yON. (x,y):S(o,¥) .

Note that

X=qy & (N.(Xx,y):S(9, V) (5.1
and

Xé—qy & W.(y,x):S(D,¥) : (5.2
indeed, if x— 4y . thetis, L(#%[x], ¢®[y]., p, o) for some p,o, we can define ¥ by

o [u] =0®[u] for UON-{x,y} , ¢'[x] =0 and ¢*[y]=p: V¥ iswell-defined and
(x,y):8(0,¥) .

On the other hand, for total orders <* , <** of the set N, we write

v def

(X, y):S8(<. <) e (x,y) 0< &< =< -{(x,y)} D{{y,x}) .

Wehavethat S(< ,< ) iff Ox,yON. (x,y):8(< ,< ) :here, S isthe
graph-relation for G< ad < ,< 0O G<.

(iv): Since G< Is a connected graph (an elementary fact, true for any partial order <), and
Gr IS hon-empty, it suffices to show that, assuming dJDGr , < DG< and 8(<¢, <) (<<D
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and < are connected by an edge in the graph G< ), there is lPDGr such that < =<y -

S(<g <) meansthat thereare x, yON suchthat (X, y): S(<q < ) . Bt then, since
<0 < and (y, x) D<* , we must have that -~ ( x<y) . Looking at (iii), we see that either
X—=gy OF Yy —4X. If, e.qg., X—> Y , then ¢¢[ X] —»d)q)[ y] . Thus, we can define

- - Y ®
w0G by stipulating ¢°1x1=6"(y] , ¢*1y1=¢°[x] and ¢*[ul=¢°[u] for
uON-{x,y} ,and get (x,y):S(®,¥) ;inparticular, <y=< - This proves (iv).

(v): The"if" part is contained in (iii). Assume x<!y , to show
DDDGr.x<¢! y & (X e—eq)y) . Apply 3.8 Elementary Lemma, to obtain atotal order < on

N extending < such that x<*! y . By the present (iv), there is dJDGr such that <¢=<* :
We have x<¢! y . Since x<y , it follows from (iii) that we have —|(xe—->¢y) .

(vi): The fact that the mapping in question is a bijection is (ii) and (iv). The obvious fact that
the graph-relation is preserved by the map ( ¢H<¢) was noted earlier. To see that it is

reflected, assume that &( <o <LP) ysay (X,y): 8 <o <W) ; hence, in particular,

(x,y) D<¢! , (Y, X) D<q}! . Thus we cannot have either x<y or y<x , since X<pY and
y<yX , and both <o and <y ae compatible with < . Therefore, by 4.2 (i), either x—y or
y «—x , which, by (iii) and X<<D! y , implies that X gy OF Y =X . By (5.1) and (5.2),
thereis W suchthat (x,y):S(®,9) if x>y, and (y,x): S0, ¥) if yeyx . But

then clearly, < =<, , which, by (ii), systhat Y=V, and (@, ¥) , aswas to be shown.
U]

(vii): Thisis consequence of 4.1(vi) (especially the second part), and the preceding parts 4.3
(i), (iii), (iv) and (v).

(viii): see section 10.

For the record: 2.1=4.3(ii), 2.2(a)=4.3(iv), 2.2(b) is part of 4.3(iii), 2.2(c)=4.2(i), 2.3=4.3(vii),
2.4=4.2(vi).
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85 Thetree of variants of a molecule

The proof of the main theorem 4.2 is by an induction. We recursively construct the items of
the structure mentioned in 4.2. Starting with a molecule © , the recursion builds a tree, which

tree, when completed, becomes a spanning tree for the graph G[[G]] used for 4.2. It is
therefore no surprise that the formulation of the statement proved by induction repeats several
aspects of the statement of 4.2.

Let ©=(X,0) be an anchored 2-separated (2-)Molecule; O=( 91[ ul] e 9N[ uN] ) . We
write N={ Ugo s uN} .Wewill use a, b, u,v,w X, y, z ... to denote elementsof N.
We write x<y to mean that X=u; u:uj and i <j ; we have the natural order < of the
indetsin N.

Recall therelations p— o, p«0o, p«— o for aioms p,o.

For variants ® , ¥ of O, we write SX(GJ, Y) ("¢ isswitchableto ¥ a x (ON) ") if x is
not the last element in the order <o and for the y for which x<¢! y , we have

0°1x] — 6%y
0 1x1=6%y] . ¢'Ty1=6"[x]

o [u] =¢%[u] for UON-{x,y} .

and

Thisis the same as Sk(dJ, ¥) usedin section 2, where k=h_ (x) with
0]
[l

he T (N <¢) >({1,...,N}, <) theunigue isomorphism as shown. To avoid any
0]

misunderstanding, we discontinue the use of the notation Sk( o, ¥) with k aninteger.

Note that if x<q!y and ¢%[x] <= ¢®[y] |, then thereisaunique ¥ such that

S5,(0,9) .

For total orders ((1, ((2 of N,and x, yON, we write SX(<<1,<<2) for
x<y & x&4'y & & =& -{(x,y)} O{(y. x)}

(snce y isuniquely determined by x if it exists, it does not have to be mentioned in the
notation).

We define T=T[ O] , thetree of variantsof © . T isalabelled tree. At each node t OT , we
will have labels as follows:
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U= (¢}..... 9y .amoleculeof length N, avariant of © (thatis, o' and ©

define the same 2-pd).
<t atotal order of theset N;

¢ : relationson N (set of ordered pairs of elements N)

We define thetree T by recursion: we define the root; and having defined anode t with its
labels, we define what the (immediate) successors (or "children") of t and their labels are.

Theroot r haslabels:

o =0;
< =

, the natural order of the 2-indetsin O .
will be explained as a special case of the general definition below.

=

<
—9r,é—r

Suppose we have defined t ol

are.

, and <t . First, we explain what — = — — = «

t’ t

t
Let uswrite ¢t[x] for ¢¢ [ X] (the component ¢L whose nucleus is x ). We define

def

X—y ; X<y & X<y ly &8 [x] —9'[y] | )
def

Xy & x<y&x< 'y&¢ [ X] e—cp [y] . 2

Note that for both XY, Xey,we have as prerequisite that x<y holds. In other

words, the construction of the tree proceeds in steps each of which is the act of passing an
indeterminate x ahead past its successor y in the correct order ( X<y l'y ) (if and) only if x

precedes y in the natural order and the atoms in question are exchangeable
t t
(¢ [x] «—=¢ [y]).

For an arbitrary total order € of theset N, the inversion number of €.inv(K) , isthe
number of pairs (X, y) suchthat x<y but x>y . Letthelevel /(t) of the node t be

the number for which £(r) =0, and z(t) £(t)+1 for asuccessor t of t . The
previous paragraph says that z(t)—l nv(< ) ingenera.

To continue the construction of T : the successorsof t in the tree are, by definition, in a
def

bijective correspondence with the elements of the set o = oy @e—t . We write

A

t[x,y] for the successor t of t corresponding to the pair (x, y) O« . Then ol is

t
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the (unique) molecule for which SX( d)t , d)t) , and <, isthe order for which
t
t
Note that

<7< 4 impliesthat <, =< {
0] t (0]

and therefore, by atrivial induction, <7< 4 for al t .
0]

This completes the definition of the labelled tree T .

We will use the notation
o' [x] = (S0 xasHt 3

that is, in the expression b [k [& for the atom ¢t[x] , with b, e suitable 1-pd's, we write
()" for b,and () for e.

In what follows, a tree of variants of © , or simply: atree, isany subtree of T ; that is, any
subset T of (the set of nodes of) T which contains the root r , and for which, if {OT , and
{ isasuccessorof t in T , then t 0T . The labelling of atreeisinherited from T .

Of course, T itself isatree; and sois {r} , consisting of the root only.

Let T beatree. We define

0 def

o1 = 00y (o) Do &ty o
0 def

o = o0y oy Dey &yl 0T

(Note that e?r}ze—{ ?} =0 )

def
soo= (=lo(9ontr

(tr is"trangitive closure")
def op
o1 T og O ( —9T)
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Next, we state an equivalent versionof the concept of planar pasting presceme of the last
section, in aform that is most suitable for the procedures of this and the next two sections.

T isannotated if the conditions and data (that are soon seen to be uniquely determined if they
exist) listed in (i)-(iv) are present.

0) (N, <1 —eT) is a planar arrangement.

Notation In what follows, we write < for <T,and — for -1

(i)  With N°=N% - 0, 0} and -w—sw ,-0—x, y—o foral x,yON, for

every x, YON° suchthat x—!y , we have a specified 1-pd S§ such that

d(s§) =cc(x) , c(s§) =dd(y) . (Conventions. dd( - «)=dd( [0]) ,
cc(-%)=cc( [0]) .)

We call the S* the basic 1-pd's.

y
Notation For any open interval ( a, b) N of (N < —), (a=-o, b=wo are
allowed), and for any signed span
¢ = azxo—el xl—el x2—9! ce—! X- 1—9! xn=b

in (a, b) N with appropriate signs for each X; , we define

def X
(3¢ "= 2 wix, 5,1 mix

Xn-l
X1 2

3
O.. "%, 15

1 1

Here, 0€xi =X if X; is signed Xi 0€xi :dxi if X; is signed Z in &.

(S3) ¢ iswell-defined by (ii).

We have the following obvious (de)composition equation: whenever a, b, x arein the signed
span ¢ , then

(3¢ =(s?) ¢xsp) ¢ . (4.0)
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(iii) For any two signed spans ¢ and { of the same open interval | =( a, b)_9 ,if
é~( (they definethe samecutin | ), we have

(sht=(she.

def
Notation Foracut C of |1 =(a,b) N , We write (S‘g)C = (Sg) ¢ for some (any)

signed span ¢ defining C; by (iii), (Sf;‘)C is well-defined.

Let C=(U,L) beacutof |I=(a,b) R ,and x aproper element of the border B of C

(in particular, x01 ). Let 8% = cx if xOU, o5
(iii), we have the all-important decomposition equation

=dx if x[OL . Asaconsequence of

(s3) = (Y o xash)© . (@
Indeed, it suffices to take any signed span ¢ of B containing x (such exists!), and apply
(4.0).

Condition (iii) and the relation (4) allow us to ignore "signed spans’, and use exclusively the
notation ( S));) ¢ relatively to acut C . Without talking about signed spans and the like as we
did in (iii), we could have formulated (iii) by saying that we have an operation

b, CO > (SH)©

satisfying (4).

Notation Forany t OT , and any x[UN, we define two cuts of the order <,

- _ X
Cl—( Ul’ Ll) and CZ'( U2, L2) , C1 denoted also as =t , C2 as ot , as follows.
yDU1¢>y§t x (and yDL1<=>x<t y); yDU2¢>y<t x (and yDL2<=>x§t y).ltis
clear that C, , C, arecuts and, with B, , B, their respective borders, we have x0B, ,

xDBZ.
(iv) Forany tOT andany x[ON, we have, for both c%t and Czs(t :
-0yt _ -0, C
Xyt _ Xy C
(S =(S) ™

(Here, we have related the notation introduced in (3) above, and the one introduced after (iii).)
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Theorem 5.1 Every tree of variants of O isannotated. In particular, the full tree
T[ ©] isannotated.

Proof of 4.2 from 5.1
We apply 5.1 to the full tree T=T[ O] .

Let [=(X ') bea2-separated anchored 2-Pd. Let © be any molecule such that [O] =I" .
We use the notation developed above, and Theorem 5.1, in relation to © . Note, especially,
that we have the natural order < on N, the set of 2-indetsin O .

It clearly follows from 5.1 that, for s, t OT[ O] ™% implies oS=ol .

Let — denote -1, < denote <T.

By inductionon /(t) , we seethat for every t 0T, <t is compatible with <.

The same argument that gave 4.3(iii) from 4.2 gives, using 5.1, that, for any t OT ,
X<y &x<t l'y &x—y implies (and, of course, is equivalent to) XY, and
X<y &x<t ly &y —x implies Xy (Claim 1).

| claim (Claim 2) that for every total order € of N compatible with < thereis t OT such
that <t ={ . The proof is by inductionon i nv(<) . When i nv(£) =0, €=<, and < =X.

Assumethat i nv(€) >0 .Let (x,y)ONxN besuchthat x{!'y and x>y ; there must be
such apair, because if x&'y awaysimplies x<y , then clearly €=< follows. But then, we
must havethat x and y areincomparablein <: x<y would imply x<y since <=<, is
compatible with < ; and y<x would imply y<&x . Therefore, <2 =&-{(x,y)} O{(y,x)}
isatotal order of N, still compatible with < . Clearly, i nv(<2) =inv(€)-1.

By the induction hypothesis, there is t OT such that &=<._. Since -(x<>y) , by (i), we
t
have x <>y ;sncealso x<y &x<_!y , by Clam 1 we conclude that x <— .y . Therefore,
t t

by the definition of thetree T, thereis t OT , successor of t , such that S (< <)
t
clearly, < =X.

Next, | claim (Claim 3) that for every variant ® of © (every ® suchthat [®]=I ), thereis

t OT such that ol =0 , and, as a consequence, also <t =< - We prove this by showing that

the set {<1>t : t 0T} isclosed under the "switching” relation &; recall that [®] =l iff
(0, 0) DS” tr ; and, of course, O ol t aT} .

Suppose t OT, ¥ amolecule, and (th,lP) 0S8 (in particular, ¥ isavariant of @), to
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show that there is t OT such that p=g! . The fact that (d)t , ¥) S means that there is x[N
suchthat S, (', ¥) .Let y betheelement for which x< !y, thatis, x<,!y . There
0]

are two cases. x<y (casel) or y<x (case2).In casel, the definition of thetree T
immediately entails that, for a suitable successor { of t , p=o!

Suppose case 2. Then x and y areincomparablein <: x<y would entail x<y , and y<x
would entail y<g x . Therefore, <<:<t -{(x,y)}{(y, x)} isalsocompatiblewith <. By

Claim 2, thereis t OT suchthat €=<_ . Consider ®! . Since y<x & y<.!x & ~(y<>X) ,
t t

we have (by Clam 1) y<x &y<_!x &y <— X ; thus, thereis { , successor of t , such
t t

that Sy(fbt o'y and 8,(<..<,) . From the latter, it follows that < =<, . Therefore, by
t t

{ t

(i), o' =o' | Sy(tbt,fbt) gives S, (0", o) . Sinceaso S, (o', ¥) , it follows that

y=o' .
This completes the proof of Claim 3.
By claim 2, the set {<t :t OT} equalsthe set of all total extensionson N of <, hence, in
particular, [\ {<t : 1 0T} =< . By claim 3, the same set {<t :t 0T} equals {<¢: CDDGr} :
Therefore,

4r=<= NS tOT) ={<4 600G } =<,
the last equality being the definition of <r-

Next, we go back to the definition of —r in section 4 (see (7) there). | claim (Claim 4) that
—r = U (=,0() %) (5)
tOT

Thisisvirtually obvious from Claim 2. In particular, that the right-hand side of (5) is
contained in the left=hand side is clear.

For the converse, suppose x — Y that is, we have ¢, avariant of O, such that
x<g!y &¢%[x] > ¢%[y] . Either x<y (casel), or y<x (case2). Incasel, teke t OT

such that p=0! ,and (x,y) isclearly in the right-hand side of (5) . In case 2, we can pass
to the unique ¥ suchthat S, (0, ¥) ; wewill have y<x &y<,!x &¢°1y] «¢'[x] ;
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now, take t OT such that lP:th

DEF
| claim (Claim 5) that — = —p= \J (=, 0( ) °P) (which means, of course, that
t 0T

\J (=, 0( <) °P) isaready transitive). Assume that x—y . Either x<y (case 1), or
toT
y<x (case?2).lnany case, x and y areincomparablein < since x —y and we have (i).

In case 1, find, by 3.8, atotal order € of N compatible with < for which x{!y ; by Claim
2, let t OT be such that <<:<t .since x<y &x<t 'y , by Claim 1, we have X—,y &s

desired. In case 2, we proceed by exchanging therolesof x and vy .

Claims 4 and 5 say that B il with the latter as defined in section 4.

4.2(i) is now the same as 5.1(i).

It is clear that clauses (ii), (iii) and (iv) of the definition of "annotated” 5.1 add up to what is
contained in 4.2(ii).

Proof of 5.1 modulo 7.1 Lemma from section 7.

The proof of Theorem 5.1 is an induction on the number of nodes of thetree T .

For the smallest tree T={r} , — = -1 isempty (on N, noton N°); <7< , the natural
order. For xON, we write S;(°° for (S;(oo)r , Si(o for (Sii)r

#" [ x]1 =9 x] =S, * X [SX ; we have -w—!x, x—!w, andtheseareall the —!
relations; the basic 1-pd's are the S;(°° , SZ(O (xON) ; the cuts of the planar arrangement

(<, =) aethecuts X and <" , the N+1 cuts of the total order < (if x<!y , then

Xy :)—/r ). It isclear that thetree {r} isannotated.

For the induction step, we assume that we have an annotated tree T, t 0T , and a, bON
such that a<b &a< I'b & d)t [ a] e—ed)t [ b] , but the corresponding successor { =t [ a, b]

of t inthefull tree T[ O] isnotin T (yet). We consider the subtree T= Tﬂt} of

T[ ©] , and we prove that T is annotated, that is, we have the data and conditions for T as
set out in clauses (1), (i), (i) and (iv) above.

We write £, — for 1 o1 respectively, with the giventree T .

A remark is, perhaps, in place here. The assumption ¢t [a] «— ¢t [ b] , whichisthe
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disunction ¢'[a] —¢'[b] v ¢ [b] «—o'[a] , isnot directly related to the notations
X—Yy , x«y fornuclei x, yOON. The latter refer to the induction hypothesis on the
"locally" given tree T, giving a meaning to the relations S, =g on N. On the
other hand, d)t [a] — d)t [ b] isaninstance of the notation p— o for atoms p,o in

general, and it is an "absolute" concept, the truth or falsity of p— o depending on the atoms
p and o solely.

Henceforth, we assume ¢t [a] — ¢t [ b] ; the other case ¢t [ a] e—qbt [ b] is, of course,
symmetric.

Thefact ¢'[a] —¢'[b] , viathe notations ¢'[a] = (S,")' msH",
o' [ b] :(S[)°°)t EbE{SE’o)t , and via 4.1(j), trandlate into the two equations
a,t _ca b, t mooyt _ om0t a
(s{' =2 mb s (550 =) wasd

with a new 1-pd that we have denoted by Sg . If it so happensthat a—! b holds ( with

reference to the given planar arrangement (<, —) ) then Sg had a meaning prior to our

new notation, as one of the basic 1-pd's of the system given with T ; as we will immediately
see, the two meanings must in fact coincide.

Note that d( sg) =cca, c sg) =ddb .
Let us denote the cut 2t = pt for (N, <, =) by D.With B theborder of D, alB,
bOB .
Using (iv) for the old system for T , we have that

at _,.a,D byt _,byD mooyt _ om0 D mooyt _ om0y D
(Sg) ' =(SD) ", (S)" =(S) ", () =(,M "7, (S, =(s;) ",
thus,

D D -0y D -0y D
(%) P=sPrbs?) (5, P=(s,” Prearsy ©6)

If a—!b,andthus Sg isgiven asabasic 1-dp for T, then, clearly, (Sg) D iswell

defined, it equals Sg , and by (iii),

(s P=sPrbs?)P (s, P=(s,") Prears? ;
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comparing these with (6), we see that, indeed, now the two meanings of Sg coincide.

There are two cases as to the position of a and b in the planar arrangement given with T ;
inCasel a«—b,in Case2 a<b ; notethat b<a isexcluded by a<, b.

We are going to define the planar arrangement (clause (i)) and the system of 1-pd's (clause

(i1)) for the tree T separately for the two cases. Next, we look at the invariance property (iii)
for the new system: in Case 1, this will be immediate; in Case 2, it will take us two more
sections, 86 and 87, to prove. Finally, we complete the proof of clause (iv) for the new tree

T in essentially the same way for the two cases.

As areminder: we have assumed that c,bt [ a] —ec,bt [ b] .
Cael.a<—b.

We note, first of all, that we must have a—b ; a«b isimpossible. The reason is that
a«—b would entail ¢'[a] «—¢'[b] : one sees this by the same argument that was used in
the proof of 4.3(iii) and Claim 1 above. Remember that ¢' [ a] — ¢'[b] and

¢l [a] «—o'[b] cannot hold at the same time.

Looking at the definitions above, we see that —»9 = —»gﬂ(a, b)} ., J}_ = e—g.
T T

Because, however, (a, b) D—eT dready, — , remansthesameas — . Thus, the planar
T T

arrangement ( —, <) remains the same for T asitwasfor T.

The system of basic 1-pd's
X
[Sy 4, yON®, x =1y
is, by definition, identical to the old one as given by (ii) and (iii) for T . We have clauses (ii)
and (iii) established in Case 1.
Case 2: a<b .

From the fact that a<t I b, itisimmediate that we must have a<! b .

We clearly havethat — . = (—H (a, b)}t" |
T
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We apply 3.5 Proposition, and its accompanying notation. Thus, (N, — ,, <,) isthe same
T T
as (N, —»», <<) ; itisaplanar arrangement by 3.5(i).

By 3.5(i)), a—>>!b.

Recall from (6) the definition of Sg ; NOW, Sg is"new"; it did not appear as a basic 1-pd in
the system for T.

Recall 3.5'. We define the system of basic 1-pd'sfor ( —>, <<) as

X a

[Sy 5, yON®8x — 5! y&( x#avyzb) 05,0 (7)
(the S§ are given in the induction hypothesis; we restrict the given system, and augment it by
a single new element).

The proof that clause (iii) holds for T and the new system (7) is hard work: it will occupy
sections 6 and 7. At this point, we assume that (iii) has been shown (thisis 7.1 Lemma in
section 7).

We turn to the (easy) proof of clause (iv) for the new systems in both cases simultaneously.
For ssimplicity of notation, we write ( <<, —>) for the new arrangement in both cases, not
justincase2;incasel, (<<, —>) isthesameas (<, —) .

An"old" cut C,acutof (<, —») isautomaticaly acut for ( <<, —>) . Moreover, the

border of C inthesense of (<, —) iscontainedin the border of C in the sense of
(<<, —>») ,asitiseasy to see (see aso section 7). Thus, if [CI( X, Y) _9]] is well-defined,

0is [[CP(x,y)ﬁé]] . By 7.1 Lemma (b), the values [[C?(x,y)ﬁ]] and
[[CP(x,y)_ﬂ]] are in fact the same; we denote it (S§)C,unambiguouslyforthetwo

arrangements.

It follows that clause (iv) for elements of T isinherited from T to T . It remains to show
clause (iv) for t .

A A

The construction gives ol as the molecule for which Sa( ol , (Dt) .

A

Thus, in the first place, for x#a, b, ¢'[x] isthesameas ¢'[x] , (S ™)' thesame

as (S;m)t, (S;)t the same as (Si(o)t ; moreover, clearly, i f x#a, b, thecuts Xy
and ;tA (XON) are the same as 2t and <t , respectively. Therefore, when x#a, b , the

equalitiesin (iv) for { areinherited from t .

69



We abbreviate the cut 2t = pt @ D (this was done before), and atA =B 5 D. Disa

cut for (<,—), hence for (<<,—>) aswedll; D isacut for (X<<,—>) only. D and D
differ only in the positionsof a and b , which are the reversed in D with respect to D.

It remains to show that

(9 = (5P, (sHt = (sHP, 8.1

(55" = (5P, (Dt = (sHP. (8.29)

Let's abbreviate p=¢'[a] , o=¢'[b] , ¢=¢'[b] , LLI:(btA[ al .

To connect up with 4.2(i) and (ii), we use (iv) and write (b in 4.2 was changed to b to
avoid the clash with the present b)

def def

e = (sh'=(shHP, b= (50! = (5", (.
. def . def
6z (D =(HP, 6= (50 =500 ©2)
def
S = (3P . (9.3)

The choice of the notation makes the following hold:
p=blle, o=Db.vE. (10)
By (6),
e=Sb@, b=btals . (11)
Aswe said, we have S, (@', ') , thus, in particular, L(p, 0, ¢, 4) . By 4:3(ii), (10), (11),

¢=btlaShE , W=bASBkb@
This means that

A

. t/\. N N . . v N .
(S0 =b, (SH'=seb®, (5, '=bmars, (s))'=¢. (12)

Since D and D agree on the interval (- o, a) = (-, a) , we have

—>
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(57" P=(5;%) P=b . By (12), we have the first of the four desired equalitiesin (8.1?).
Since a—>b, b isin U I§] ,and b ison the border of I5,by compositionality,

(53 P=(s3)Preb(s?)P.on (a,b) . C and D agree (s3)P=(s?) P=s . Also,
C and D agreeon (b, ®) _ (since al(b, ») _ ), thus (S2) P=(sP) P=¢ . we have

assembled all that is needed to conclude, also using (12), that ( S2) D_seb é=( 3t the
second of the equalitiesin (8.17).

The rest of the questioned equalities are dealt with "symmetrically".
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86 Continuation of the proof of 5.1 Theorem

We continue the following notational conventions. C, C, D denote cuts; C(uy L) ,
é:( fJ, I:) , D=(V,M ; B, I§, E are the respective borders of C, é, D.

In this, and the next section, we have a more restricted context than in section 5.

We assume a planar pasting prescheme (N, <, -, M P, §) asin section 4. In addition, we
assume to have the following data:
apair of elements a, b of N suchthat a<! b ;

aparticular cut D of (<, —) suchthat allE, bCE;
aparticular 1-pd Sg ;
and decompositions
(5,") P=(s,") Prears? 0.1)
(s P=sPrbs?)P 0.2)
((0.1) and (0.2) are equivalent, on the basis of the rest of the conditions; see also below.)

(In Case 2 of the induction step of the proof of 5.1 Theorem these data and conditions were
present; note, however, that we do not need the 2-pd, the tree and the molecules now.)

The issue is adding the pair (a, b) to — , and the datum Sg to the given system, to get a

new planar arrangement ( <<, —>) and a new compositional system on it. The new
arrangement ( <<, —>) wasdefinedin 3.5.

6.1 Lemma Supposethat C=( U, L) isan (arbitrary) cut for (<, —) with border B
such that alB, bOB. (Since a<b , obviously we must have alB, bUB). We have

(s} C=sPrbys)© (1.1)
and, equivalently,
(5, C=(s”) Carsd . (12)

and, as a consequence,

(5,%C=(s,") Crast b s © (1.3)

Pr oof Note that (1.1) is not a special case of the decomposition equation 5.(4), since
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Sg isnot abasic 1-pd for the given arrangement ( —, <) .

First, let us show that the two assertions (1.1), (1.2) are indeed equivalent.

Assume (1.1), to show (1.2) (the converse is obviously symmetric). We have
(5, C= (s, Crans?) C=(s,”) Cubs) © .
substituting for (S2) € from (L.1):
(5, Crrarsd b)) © = (s, Cmbs) © .
From this, by cancellation (4.0), we obtain (1.2).

The assertion (1.1) will be proved by induction on the distance

o(C,D) = #((UnM M LnV)) between C and D, When p(C, D)=0, C=D, and
(1.1) is (0.1).

Suppose p(C, D)>0; i.e, UnM isnon-empty, or LnV isnon-empty. Assume the first
alternative; the treatment of the second is a dual affair.

In section 3, we saw that there is uBnM. Asin section 3, we consider the cut C whichis

the u-shift of C.We havethat p(C, D)=p(C, D)-1 .
Since allunV, bOLnM, wehave u#za, uzb.

We have that uB by what we know about "shifting". Furthermore, aDI_§ and bOB . The

first fact is clear, since U has become smaller than U, but a stayedin U . For the second
fact: since uOM, and bOE, u<b isnot possible. For vOL , v<b isnot possible since

bOB . Thus, for vOL=LO{u} , v<b isnot possible; which meansthat bOB .

From the factsthat a and b are on the borders of both cuts C and é, it follows that for

any u that positioned differently for C and C (that is, u isin the set UnL O Lan) must
satisfy

(a—»ué&b—-u) v(a«u&be«u) . 2

Thisis because, firstly, a<u would force uDUan,and a>u would force uDLnﬁ;
therefore, we must have a<«—u and b «—u . Secondly, a pair of opposite relations such as
a—u and u—b isclearly impossible.
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We see that the induction hypothesis applies to C; we have

(Sg)ézs‘f)‘[djb[(sg)é | 3)
Assume the first alternative in (2) :

a—ué&b-u ;
of course, the other alternative is treated similarly (although the "dua™ form (1.2) would be the
one to directly tackle).

Remembering that uB and uDI§, by decomposition, we have:

(s C=(sd) CrugsH©, (3.1)

(s C=(sD) Creurrsh© . (32)
and

(s C=(s) Craunsh © (33)

(s C=(sD) Craursh© . (3.4)

Substituting (3.3) and (3.4) into (3), we get
(s Crugst) ©=s2rb(sD) Crurst) © .
By cancellation,
C_ .a by C
= Sb [dlb [( Su) .

(s9)

Clearly, the cuts C, C restrict to the same cuts in either of the intervals (a, u) o
C_,bC
=(S)

(b,u)_, ;hence, (53 C=(sHC, (D) . Therefore

C

a _ ~a b, C
(Su) —SbEtble(Su) .

Multiply by the factor cu[{SY) © (du  has been switched to cu)
a, C uC _ a b, C u, C
(3 Creunsh © = stmbnsy) “reumst) ©.
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By (3.1), (3.2), this means that

(s} C=sPubqs) .

This completes the proof of Lemma 6.1.

Let u and v be arbitrary elements of N, and assume that u——v . Consider the cut
Cu V:( U, L) inthe (open)interval (u, v) - for which L=0, U=(u, v) - It's border
is B=pu(u, v) N , the set of <-maximal (lowest) elements of (u, v) N . It has a unique

signed span, the set of whose elementsis B itself, all signed "down". Let us write §\lj for the

C
i . u _ u, u, Vv
vaue [[Cu,v]] : that is, §v = (SV) .

- , V
Entirely analogously, we define S, = (s.\Lj)Cu ; CcV=(0, (u,v) )

Assume now, in addition to what we haveon a, b, D and Sg , that we have elements
X,y ON such that

x—!y, x——a and b—y . (4)

The pairs (x,y) satisfying these conditions are the ones for which we have a basic 2-pd S));

in the arrangement ( <, —) , but which no longer appear as pairs x —>!y . Therefore, S§
isno longer abasic 1-pd for (<<, —>) , and it must be expressed in terms of the new set of
basic 1-pd's. Lemma 6.2 below does this job.

Note that this is the context which the group of lemmas starting with 3.9.1 in section 3 applies
to. In particular, by 3.9.1(i), we have that x<b and a<y , and since a and b are on the
border E of D, wehave xOV and yOM.

6.2 Lemma Assuming (4), we have

X _ X a =D

Sy—_SaEd:aESbEdbESy :

Pr oof Assume u, VON, u<v . Let usdefine 5<(u, v) asthe maximal integer n
for which thereisa <-chain u:u0<ul<. - AU EV connecting u and v . (When
-(ugv) , 6<(u,v) = o .) Note that 5<(u,v) =0 iff u=v, 5<(u,v) =1 iff u>'v,
and u—v-—w implies that 5<(u,vv) < 5<(v,vv) .
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The proof of the lemma is by induction on

(%, b) + 5 (ay) =0, .

More precisely, the induction statement P(n) is: for every pair (X, y) such that (4) holds

and 5X y:n , we have the identity in the lemma.

The more detailed plan is as follows:

Basis: 5X y = 2 (the minimal value!); that is,

5,(x,b)=1 and & (a,y)=1

Within the Basis, we distinguish the cases:

P IM & < 0V Case B1.1

 IM& ~(X,0V) Case B1.2

A(rOM &< 0V Case B2.1

(5 OM & 2(<,0V) Case B2.2
DEF

(I have used Y = {z:z>x} , etc). The cases B1.2 and B2.1 are dual to each other; it suffices
to look at one of them only.

Induction step: o > 2.
Casell: 6<(a,y) >1
Casel2: 6<(x,b) >1.

Of course, cases |1 and 12 are dual to each other.

When we deal with case 11, we will make a reduction of the pair (x,y) toapar (u, z)
such that

34(a,2) <& (a,y)
and

54(u, b) <3 (x, b)

in particular, 5u ;< 6X y -

(end of plan)
Case B1.1:
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This hypothesis means (since xOV, yOM) that x and y areon the border of D: xUE,
yOE . Remember that alE, bOE.

We have, by decomposition,

(9P = (spPraqsh)® = sfmyas)®; ©)

by x—!y , wehave (S§) D_ S§ , the latter a basic 1-pd for the given prescheme.

By (0.2) and by decomposition of ( Sg) D , We get

(s5)® = sprabrs) Prays) P, (6)
We substitute the value of (S2) P in (6) into (5):
Xy D a b, D YyD _ X yy D
(sp) Prearsfwb(s)) Py (s)) © = Sy ns) .
By cancellation,
Xy D a byD _ X
(spPreasjubs) = S -

Finally, we note that the cut D, when restricted to ( x, a) o has its upper set equal to the
whole of (x, a) N (and its lower set is empty). Thisis because, by 3.9.1, for every u in

(x,a) _, »one has u<b . Therefore, (Sg) D is the same as what we wrote as §§.

Similarly for (s;’) D

This completes the proof in Case B1.1.

We skip to

Case B2.2:

Let
U= (vl <y) -y
L = (MD>X) - <y :

def
One notes that <y n >X =0, andasaconsequence, C = (U, L) isacutfor <.Bythe
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case hypothesis, we have some vD}XnV , and V\E<ynM. Clearly, we may, and do, choose v
and w "extremally" so that, in addition, also w<!y and x<!v .

6.2.1 Sublemma [ B denotes the border of C] We have
x0B, vOB, alB, bOB, wiB and yOB .

Proof of 6.2.1 Assume a<s toconclude sOOL . s[M holdssince allE. s<y would
entail a<s<y , contradicting a<!y (Basisassumption). Also, allV, and aD>X ; thus

alu. Thisshows alB .

If x<s,then sOL by > OL. xOV and xU> ;thus xOU. Thisshows x0B .

Since vD>X by choice, and >Xn<y =0, wehave vlL . Assume s<v . Since x<!v , we
must have sD}X .Butsince vV, dso sO0V, sOM. Thissaysthat sOL, sOU. This

shows that v(IB.

The other three similar claims are dual statements. (End of proof of 6.2.1)
By 3.9.9, we have a—w, b—w. Dualy,aso v—a, v—b.
6.2.1 is used to ensure that the border of the cut C contains various elements so that

decomposition can be applied at those elements as dividing points.

The conditions for Lemma 6.1 are fulfilled to conclude (1.3), and as a result, that
vViC_ v, C a b, C
(SW) —(Sa) Eta[SbEdbE(SW) :

On the other hand, by decomposition,

- 00
(o4}

(5,9 C=(5) Crex Xy qs) €= (5™ Crv i sY) Cew 5% ©

y
thus, by substitution,

-0, C X C_ ,a0C vy C a b, C C
(S, Ed:xtsymyt(s};) = (s, “hv(Sy) “eals b (S,) Ewl{( Sy ~.

By decompositionsof CI(-, a) andof Cl(b, ») :

[04]

(539 = (5,9 “mivisy) © = (5. “rexas) ©,

(s0)© = (sp) Crewr(s) © = (sH) Crysh) ©
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and thus,

-0, C X yyC _ -0, C Xy C a b, C C
(SX) Enbx[SyEdyE(SOO) —(SX) Enbe(Sa) Eta[SbEdbE(Sy) Etbly[(SXo) :

By cancellation on both sides, we obtain

X _ Xy C a b, C
Sy = (Sa) Ed:a[SbEdbE(Sy) .

We have seen before that ( x, a) N OV.Itisobviousthat (x, a) Ny = 0 . Therefore,

(x,a) _, OU. Thus (SY) = sk, Dually, (SS)C:Sb

Y - We conclude the desired
equality

X _ <X a =b
Sy = §aB:a[SbEdbESy .

This concludes case B2.2.

The (similar) cases B2.1 and B1.2 are left to the reader.

def
Case |1: We now assume 5<(a, y) > 1 .Itfollowsthattheset Z, = {z:a<z<!y} is

non-empty; let us choose and fix a —-minimal element z of Z, . Note that
6<(a, z) < 6<(a, y) .

def
By 3.9.2, wehave x—z and b—z . Thus, in particular, for V\é = {uX—=>u->z},

def
and V\é = V\%nu[x, a) N , we have XDV\% , and V\é Is non-empty. ( [ X, a) N isthe
set of <{-maximal elements of the set [ x, a) N ,and x isclearly <-maximal in
[ X, a) N .) Besides, V\é islinearly ordered by — . Let uschoose u to be the

— -maximal element of V\é . By 3.9.8, we have u—!z.

Let us summarize. Wehave x and y suchthat x—!y, x-——a and b—=y . In
addition, we have u and z suchthat uOy[ x, a) o u-lz, u<b (by 39.1),b—z,
a<z<'y ,and z isan —-minimal element zOZ, . By 3.9.7, we have

(b,2) _, O(b,y) .

def def

Let U = VO<, .With L = M- <, C(U L) isa <
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6.2.2 Sublemma We have
x0OB, uOB, bOB, z0OB and yOB .

Proof of 6.2.2 X0V, hence xOU. Assume x<s . Then s[IM, since xXE. x<s<y

contradicts X -y ; SD<y , sOL . Thisshows x[B.

Next, we show that ullB .

Since bOE , and u<b , we have ullV,and uJU. Assume u<s , to show that s{L .

S—>X isimpossible since it would imply s—>x-—u,* to u<s . Likewise, s<x is
excluded: u<s<x ,* to x—>u . Thus, either x<s (casel),or x—s (case?2). Incasel,
x0OB implies sOL as desired.

Assume case 2. Let'scompare a and s . s—a isimpossible: we would have s[[ x, a) ,
with u<s , contradicting uOuy[ x, a) _, - a—>=s wouldsay u—a-—s,* to u<s.

s<a would entail u<{s<a,* to u—a . We have proved a<s .

It followsthat sOM (since allE). If -(s<y) ,then sOM <y = L ; therefore, we may

assume that s<y , with the intention to derive a contradiction. We do so by making a
comparisonof s and z .

Since a<s<y ,wehave s0Z (see 3.(13.1)). Since z isa —-minimal element of Z
(3.9.4), weconclude -(s—z) . s#z since u<s and u—z .?s<z: u<s<z: *to
U—2Z. ?22<4S: z<4s<y :*to z<4!y .?z—s: u—z—s: *to u<s . Contradiction!

This completes the proof that ulB .

b isin E, and bD<y . It follows that bB.

Since zD<y ,wehave zOU. If z<s ,then a<z<s ,thus sOL ; but sO<  , since
otherwise z<s<y ,* to z<!y . We have proved that sOL . Thisshowsthat z[OB .

The definition of U as VD<y , together with y[OM, directly shows that yOB . (End of proof
of 6.2.2)

6.2.3 Sublemma We have
6<(u,b) 56<(x,b) (7)

Proof of 6.2.3 If u<!b,since x<b, (7) holds. Otherwise, there is ujp u<! u1<b ,
with 6<(u, b) :6<(ul, b) +1 . We have u, »a, because
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u,<a: ufu,fa: *to u—a;
? a—eul: u—eafeul:*to u<ul;
? a<u1 : a<u1<b :*to a<k!b.

We have x<u1 , because

? X—Uy ! x—eul—ea(!)&u<u1:*to uy[ x, a) ;
? ug2x: U<u X0 10 X—=u ;
? ug—=Xx: ul—ex—zeu:*to u<u1.

x<u1<b says that 54( X, b) = 54( Uy, b) +1:5<( u, b) . (End of proof of 6.2.3).

Since 54( a, z) < 54( a,y) ad 6<( u,b) < 6<(x, b) (6.2.3), the induction hypothesis
can be applied to the pair (u, z) in place of the pair (X, y) . Accordingly, we have

b

u_ ou a =
SZ = §a [ca ESb [db [SZ : (8.2

Applying decompositionto CI'( x, «) N in two ways,

(sH€ = s§myus¥°)cz (s Crumsiez sy C. 82)
Substituting (8.1) into (8.2):

X yyC _ Xy C u a =b z, C

Sy Ly [(S) ~ = (Su) [cu E§a [ca ESb [db [SZ [ez[(S,) ~. (8.3
Looking at Cx, a and noting that CX, ar(x, u) = CX, '’ CX, ar(u, a) = Cu, a-

X _ X u
Sa T Syteuls, -

(x, u)_9 a(x, a)_9 D<b by 3.9.1; hence, by bOE, (X, u)_9 0V 0OU. Therefore,
_ X_ X C .

we have CX, u—Cr(x, u) N , and so §u = (Su) ;
¢ = (8% Creurs! 8.4)
=a u =a '

Look at Cr(b,oo)% :

b, C

(s0)© = (s)) “ryash) © = (s) Crezsh) © .

(b,y) _, 0%, by 39.1; hence, by allE, (b,y) _, UM, andthenalso (b,y) , OL.
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Therefore, dso (b, z) - OL (see3.9.7), ad

byC_ b (bC_ b
and
sty () © = Sez(s)©

Comparing (8.3), (8.4), (8.5):

y y
Canceling:

X _ <X a b

Sy = §aE¢aESbEdbE§y
as desired.

6.2 Lemma.is proved.
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87 Completion of the proof of 5.1 Theorem

71Lemma a) Suppose T and 6 are signed (<<, —>3) -spans,
(<<, —>) -defining the same cut of (<<, —>) . Then

M (=Y 1)
and more generally,

(i) if u—»>»>v,andboth u and v areinboth 7 and 0
(including the possibilities that u=-w or v=e), we have (S) '=(S,) 0

b) Any cut C of (<, —) isacutfor (<<, —>) (obvioudy); the value
(s (C< _,) intheold sense relativeto (<, —) equalsto thevalue ()
in the new sense relative to ( <<, —>) .

(<<, =»)

Pr oof Let's note that, for (a), (i) is sufficient to prove. Namely, assuming (i) proved,
for the general case of (ii), with data as given, let us define the signed ( <<, —>») - span {
by the equalities

def def def
(M-0,u] = TM-0,u], {MVv,0) = TMV,0), {MNu,v) = 6IMu,vV) .

Then, first of all, { is (<<, —>) -equivalentto 6 aswell asto 1, by 3.4 applied to the

arrangement ( <<, —>) . Apply the present (i) to 7 and { . Then, appropriately using (4.0)
in section 5, and by cancelling on both sides, we get (ii).

Any (<<, —>) -span consists of a sequence D(i Ei:O such that

- oozxo—eel xl—eel xz—eel cee ! Xh- 1—99! Xq=%

Recall (3.5) that

X—=>3ly & (x—e!y&—-(x—*eey)) \/D(xza&yzb) ;

thus, in particular

X=3ly = x-=ly \/D(x:a&yzb) :
In other words, a ( <<, —>) -span consists of "links' x—->!y that are either "links" of the
form x—!y (satisfying afurther condiiton), or else equal to the one proper —->! -link
a—->!b.

Assumethelink a—>!b does not appear in the signed ( <<, —>) -span 1. Then,
obvioudy, T isasigned (<, —) -span aswell. As such, it determines some ( £, —) -Cut;
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cal it C=(U, L) .Infact,
U={u: IxOtr. u<lx} O T ;
L={u: XOtr.x<v} OT .

Let the (<<, —>)-cut (<<, —>) -determinedby T be C =(V, M . We have
V={u: XOr.u<<x} O 1 ;
M= {u: IXO1. x<<v} O 1 .

Since << 0 <, weclearly havethat VOU, MIL . But also: N= VM= USL . It follows that

V=U, ML ;thatis, C =C. We concludethat 17 determinesthe same cut, acut of (£,—),
in both arrangements. (<,—) and (<<,—>) .

Let us turn to the proof of (1).

Casel. Both t and 6 are"old spans': thelink a— ! b do not appear in them.

Since, by assumption, T and 6 (<<,—>)-determine the same (<<,—>)-cut, by what we
justsaid, T and 6 (<,—)-determine the same (<,—)-cut; i.e., they are equivalent in the
sense of the arrangement (<,—) . Therefore, (1) holds by the properties of the given
preschemeon (<, —) .

Case 2. Both t and 6 containthelink a—->!b .

e have (S,) '=(S,”) T a B2 Db (SD) T and

(5,7 O=(s,”) P % 2 % (D) @ since 1 and 6 define the same

(<<, —=>)-cutin (—o, ) NN , they define the same (<<, —>)-cutin (—w. a) NN
and (b, ®) .Butin (—w.a) ,  =(—»,a) _, and (b,©) =(b, ) _ , the
arrangements (<<, —>) and (<, —) coincide; therefore, T and 6 define the same
(<, =)-cutsin (—. a) N and (b, ») N . By the properties of the given prescheme on
(,—) therefore (S,) "=(S,™) ¥ and (D) T=(s) ¢ . since t and 6 are equivalent

for the particular elements a and b, dTa:dGa and 0Tb=09b . It follows that

(5. T=(s.™ 9.

Case 3. Say, 1 does, and 6 doesnot, contain thelink a—->!b .

As before, now 8 both (<<, —3)- and (<, —) - determinesthe same (<, —) - cut
C=(U, L) ; hence, in particular



(5,97 = (00, ) = (89 @

and also, C is (<<,—>)-determined by 1.

From now on, we may forget about the span 6 . Instead, we havethe (<, —)-cut C, and
thesigned (<<, —»)-span 1, (<<, —>)-defining C.

What we want is

2 (™) T=(s.C. 2.1)
where (S;o°°) c Is meant, of course, in the sense of the given preschemeon (<, —) .
Note that both a and b areon 1. We use the notation dCu:cu if udu, dcuzdu if

ullL .

Note that this will prove part b) of 7.1.

We make a series of preparatory remarks.

Let B bethe (<, —)-border of C, E the (<<, —>) - border of C. | claimthat BIE .
This becomes clear from the expresssions

ulB &= (ulOU&DOx(u<x = x0L)) v (ulL & Ox(x<u = x0OU)) ,
UDE &= (uOU& Ox(u<<x => x0L)) v (ulL & Ox(x<<u = x0OU)) ,

and the fact that << 0 <.

By assumption, a and b belongto E. Do they belongto B too? Not necessarily!
However, we can say this much: if alE, then aOB, andif bOE, then bOB . Namely, if

v<a , then v<<a ;if dso alE, then vOL ; which shows the first assertion; the second is
similar.
Taking contrapositives, we have

b0B — bCE,

alB — alE.

Accordingly, we distinguish the exhaustive, but not necessarily mutually exclusive, subcases:

Case 3.1 b(B.
Case 3.2 allB.

85



Case 3.3 alE- B and bUE- B .

Case 3.1 Assume bOB.
Let us note first that, since bB and a<b , it immediately follows that alJU. On the other
hand, it will remain throughout undecided whether b isin U or L . Also, we do not know if
allB (probably, allB). On the positive side: we have that a, bUE .
Let us consider the restriction of the arrangement ( <<, —>) totheinterval

[a,®) ,,=[a®) _ 0[bw _, .

We have, in generd

X<y = X<Y &=(X—3Y) &~(y—>X)

For x, yO[ a, «) NN , dlso assuming x<y , we have
x—zey & X-mad&b—=y & x=a&b—=vy,

and
y—zex & y-—a&b-—x : fasby x<y.

Thus, for x, y[[ a, «) s
X<y &= x<y &-(x=a&b—=vy) ,

in particular,
X<y & XZa — X<<Yy
As a consequence,

[b.w) =[b,&) , =[bw)

and the arrangements (£, —) and (<<, —>) coincideontheinterval [ b, «) .In
particular, the notions of "cut", "border of a cut”, "signed span defining a cut” for (<, —)
and (<<, —>) ,whenrestricted to [ b, ©) , mean the same things.

Similarly, we can see that the relation x —:ey isidentically false when restricted to the
interval

(-wa] = (-wa] ,, =(-wa]

as a consequence, we have that the two arrangements (<, —») and (<<, —»>) , when
restricted to (-, a] , are the same.
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Next, I'll defineanew (<, —)-cut C=(U, L) . The motivation isto modify C minimally
so that a becomes a member of the ( <, —) -border B of C;notetha a may very well
not belong to B . The definition of C isasfollows.

U=U- {ulU: a<ku} ;

ulU «—— ulU & -(a<u) .
U is up-closed: assume x<vOU. Then vOU and xOU. If we had a<x , then a<x<v , and
a<v , contradicting vOU; thus, xOU & (a<x) , and x0U .

| claim that

uu & a<u == b-—=u . (2.2

*
Because: we have ~(a<¢«——>>u) , thatis,

_'(a—:9a &b—:9U) &"(U—:9a &b?a)

7

1

unless b—su . Otherwise, a<u implies a<<u , which, together with uCU, contradicts
allE.

Note that b—u isincompatible with both u—b and u-—a . We can conclude that the

(<<, —>) -cuts C and C coincide when restricted to the (<<, —>) - interval
(-, b) _%z(-oo, a] N O (-, b) N In particular, E and E coincide on the same

interval. Since alE , we have aDE.
7.1.1 Sublemma

el(- o, b] — (ellE & elE e eD|§)

-5
Proof of 7.1.1 Let's take the point of view of trying to show that B=E .
Of course, BOE by the same general argument as before for C. Assume

elE, e<u, ulU, (3.2)

or
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~

elE, u<e, ulL . (3.2)

to get (hopefully) a contradiction. e<<u would be a contradiction in case (3.1); and u<<e
would be a contradiction in case (3.2). So, we assumethat e ««—>u,i.e,

e?a&b?u (41)
or

u—aé&b—e (4.2

Assume (3.1).
The second alternative (4.2) is an impossible picture:

U—a&b-—e&e<u&a<lb;

as we see by making all possible comparisonsof a and e :

ra<e: a<e<u: *to u—a;
re<a: e<a<b: *to b——>e;
ra—e: U—a—e: *to e<u,;

NN ) N

re——a: b-——e-——a: *to a<b.

Let'slook at the first alternative (4.1).

In this case, we must have that a<u . (Namely, ?: u—a gives b-——>u-—a, * to
a<b; ?:a—u gives e-——a—u, *to e<u;?:u<a gives u<a<b, *to b——u )

However, with a<u , we cannot have uou (=U-{u: a<u} ) aswe do. We are done in case
(3.1.

Assume, second, (3.2).
Now, (4.1) is an impossible picture:

e—a&b-—-u&u<e &a<!'b,

exactly as before. Thus, we have to deal with (4.2).

Alas, however, we cannot exclude this. We are left with the following conclusion, weaker than
what we tried to show first:

eDE- B — b-—e.

In turn, this implies that
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el( - », b) —— (elE & elE « elB)

—>

(here, we write A«<=B«=C for (A<B) & B&<C) . Thefirst"<=" on the right was
noted before).

In fact, we can extend this to include the element b :

el(- o, b] —— (elE & elE « elB) (5)

—>
since bOE, bOE and bOB; only bOE requires checking.

We have bOL=LOX, X={ulU: a<u} ; each xOX satisfies, in particular, that b—x (see

(2.2)); b itsdlf belongsto X . Assume v<b , to conclude vOU. Since bOB, vOU. But
vOX since v<b and b-——v areincompatible. Thus, vOU- X=U as desired.

(End of proof 7.1.1)

Since bOB and a<b , we have allU, and also anJ.
By definition, we have that

00

(5,77 = (5, Teast D% us) T ©

aso, since bB,

(5,7 = (5, Coas) © . ®

Since b(B, (S?o)C makes sense; and in fact, since (<<, —»>») and (<, —) coincide
on [ b, oo)_éz[b, oo)_99 , we have

(ST =(sHC. (©)
On the other hand, alB and bOB by (5). Therefore, by Lemma 6.1, we have

(5, = (s,”) “as? . (10)

The crucia facts are the following two:
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(T = (59C

3 2A11)

-0, C _ -ooé
($59C = (5,7 2A12)

(notice that ( S(:iw) c does not make sense since, very likely, aliB).

For (11): By assumption, Tl(-®, a] (<<, —>)-definesthecut CI(-», a] . But
Cl(-, a] isthe same as ér(-w, a] . Therefore, Tl(-w, a] (<<, —>) - defines the cut
ér(-w, a] . However, the (<, —) - border I§m(-oo, a] andthe (<<, —>) -border
En(-oo, a] of ér(-m, a] coincide (see (5)). T isaspan for En(-oo, a] ;thus, 1 isa
gpan for ér(-w, a] . The assertion follows.

For (12), one notesthat C and C coincide on the interval (=, b) N

We have enough:

(s, 7 0 (s, Tarsd s "
O s.%) Cea SR b s ©
(1 (S Crp% D) C
(129 (5, C s ©
® o C

(S, )

This completes the proof in Case 3.1.

Case 3.2 is"dud" to Case 3.1.

Case 3.3: Assume allE- B and bOE- B.

Now alU since alJE, and bOL since bUE.

For any pair (x,y) forwhich x—vy, 5%(x,y) denotes the maximal n for which
thereisa —-chan X=Xg=X = 2XGEY 6_9(x,y) =0 iff x=y, 6_9(x,y) =1
iff x—>ly.
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Since allU- B, thereis yOB such that a<y . Since allE, we must have -( a<<y) ;
a—zey vy—zea; (a—2a&b—=y) v(y—a&h-——a) ; b—=y ; therefore, b—y
since bOL, y#b .

Similarly, let x be suchthat x<b ,x0B and x—a .

Note that since x0OL and y[U, we cannot have x<y . But y<x isexcluded since it would

give y<x<b , contradicting b—y ; y—x isoutsince y—x—a contradicts a<y . We
conclude that x—vy .

We have shown that there are pairs ( X, y) with the properties
xOB, yOB, x—a<y, x<b—-y and x-vy . (13)

Call such pairs appropriate. We minimize first the distance o %( b, y) , then the distance
6_9(x, a) , for an appropriate pair (x,Yy) ; let the appropriate pair (x,y) beso
minimally chosen.

7.1.2 Sublemma x—!y.
Proof of 7.1.2 Assume otherwise. We can take a span (maximal — -chain) entirely

within B (see section 3); therefore, there must be zOB suchthat x -z —y .

Note that each of a——z and z<a isexcluded: a——z gives a——>z—Y , contradicting
a<y ; z<a gives z<a<y , contradicting z—Yy . Hence, either z—a or a<z .

Similarly, either z<b ,or b—z .

Assume z<b . Wemust have z—a , since a<z gives a<z<b , contradicting a<! b . But
now we have

zOB, yB, z—a<y, z<b—y and z—vy ;

thatis, (z,y) Iisan appropriate pair; however, since x—z—a, 6_9(2, a)<6_9(x, a) ;
thus, we have gotten into contradiction with the minimal choice of o ﬁ(x, a) (given that
6_9(b,y) have remained the same).

Finally, assume b—z . Now, we must have a<z , since z—a gives b—»z—a,
contradicting a<b . In this case,

xOB, zOB, x—a<z, x<b—z and x—z ,

and a contradiction is reached, since 5ﬁ(b, z) < 5ﬁ(b,y) , to the minimal choice of
5_,(b,y) .
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(End of proof of 7.1.2).
We have (13) , and x—!y ;inparticular, x—a and b—y . Thisisthe situation that
Lemma 6.2 and 3.9.1 apply to. We obtain

X _ <X a =b
St = §aB:a[SbEdbESy .

" (14)

(Here, S§ isabasic 1-pd of the assumed prescheme on (<, —) , on the bass of the fact
Xx—=ly)

Let'slook at (13) again. Since a<y[B, we have allU; since x<b, x0OB, we have b[L .
More generally,
Let us repeat what 3.9.1 says.
ul[ x, a] N &vl[ b, y] N &(u,Vv)#(X,y) == u<v . (15)
[x,y] _,, =[x.al_ Elbyl_, . (16)

We want to show (2.1). Notethat x, yUB ; thus,

(5,0 = (5 ‘o sy ash ©

thus, by (14),

(s, €= (s, “ s} Eta[SbEdb[SyEB SYash©

On the other hand, the case assumption for Case 3.3 says, in particular, that a issigned a ,

b issigned b, for T ;thus
00\ T _ ;-0 T a b, 1
(S, ) =(S;) als b S))

Therefore, for (2.1) , al | need is

(550" _(s *) Cop% 8% (17.1)
(SHT = S;’ % qsY) © (17.2)

We show the first of these equalities; the other one is symmetric.
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Consider the interval 1 =(-», a) _ of (N, <, —) .Definethecut C=(U, L) in
(1,<M, = M) by U=sUnl , L=Lnl ; C=CHM .

First notethat a isontheborder E, inthesenseof (N, <<, —>») , of thecut C.

Therefore, Enl isthe border for C=CM in (1, <<M, —s M) (3.2 applied to
(N,<<,—>) ). However, <<M =<M1 , —>IM =1l . Therefore,

(*)  Enl istheborderof Cin (I, <M, —M) .

Since xOB, we have xUE, and xOEnl . Therefore, (*) lets us write

(S, ) (S ) EﬁxE(S)

by section 5, clause (iii) for the given prescheme . But x[B, thus ( S;(oo) c makes sense,
and equals (S;(°°) C

>

What is (sg)
By (15), every element of J=[ X, a) N is <y ; since yOB, with B the (<, —) -border of

C, it followsthat JOU, and thus JOU. Since J=[ x, a) NN ,and a isonthe

(<<, —>)-border E of C, by 3.2, appliedto (<<, —>) ,the (<<, —>) -border of
CMN is EnJd ,andsince (<<, —3)=(<, =) on J,

(**) the (<, —) - border of CM is EnJ .

But éI‘J:(J, 0) . Therefore, EmJ=u<[x, a) - . It follows by (**) that (Sg) C:S

We conclude that

(S )'—(s ) EBXES . (18)

In (N, <<, —>) , Cisacut,and 1 isasgned span for it; also, a ison the border, in
def
thesense of (N, <<, —>) ,of thecut C. Therefore, £ = 1nl isasigned span for the

cut C=CM in (1, <<M, =3 M) by33, appliedto (N, <<, —3) . However,
LM =<M , —=>M=="M .Therefore,

(***) é=tnl isasigned span for C in the sense of (I, <M, —=TI) .
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It follows by section 5, cluase (iii) for the given prescheme that

DEF 2
)T = (0% =(s0°C.

(s,”

) (19)

(18) and (19) entail (17.1).
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88 Proof of Theorem 1.1 and Corollary 1.2

Since we have to deal with "supp" and "Supp" often, | will abbreviate the former by s ,
the latter by S.

Let a=(X, a) beal-Pd. | will write s°(a) for the"inner support” of a that ignores the
end-point zero-cells. More precisely, we can write a as the composite of 1-cellsin a diagram

r r
3 m 1
3 Xm. D

Here, al displayed items are uniquely determined from a itself; in case m=1 , the minimal

value, a is i dx : X1 fexl . Notethat a itself isnot aformal entity like a molecule, or a
1

diagram, it is an actual cell in an actual w-category.

We make the definition

DEF
s’(a) = {X:1sisn} O{r;:1<i<m1}

si(a) (the subscript 1 indicates we take 1-indetsonly) isempty if and only if a isan
identity.

DEF
It may be temptingto say that s“(a) = s(a)-(s(da)Os(ca)) ,except that it would
?

be incorrect. However, we do have s°(a) Os(da) Os(ca)) =s(a) .

The 1-Pd a displayedin (1) is separated (as defined in section 1) iff the zero-cells
Xl’ Ce Xm are (pairwise) distinct; note that as a consequence, the one-cells

Moo -slpq @€ (pairwise) distinct as well.

| will say that a asin (1) is semi-separated if Xi ;txj whenever i # and
{i,]}#{1, m} ;inother words, we allow the end-points X Xrn to coincide. If (1) is
semi-separated, the rj still will necessarily be all different.

1 1

We have discussed what we mean by the fact that 1-pd's are uniquely typed. To repeat, in
down-to-earth terms, this means that for any a asin (1), there is a diagram, unigue up to
unique isomorphism, of the form

>

r r r r
1 ¢ 2 3 mil . A
. X, Xy o o o)

x>

)/\(.
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A

of O-cells >A(i and 1-indets rAj , Where the zero-cells >A<1, ce Xm are pairwise distinct,
and, as a consequence, theone-cells 1, ..., f _, ae pairwise distinct. For the composite
(i), a , we have a unigue morphism éeg of Pd's. (This fact looks so trivial that is hard to
see why one would even mention it ... .)

A molecule (or Molecule) here always means a 2-m(M)olecule, and atom a 2-atom.

Let either

O=(dq, .. ) =(dg[uql, .. O upl) (1.1
be a Molecule of positive length N=1 , or

o=(do) , (1.2
one of length N=0 .

def

N
We want to make a simple observation. Recall from 81 : s( ) \J s( ¢i ) when n>1,
i =1

def
and s(®) = s(d®) when N=0 . The observation isthis. writing subscript <1 in S in
the sense of restriction to <1-indets only, we have

N
S.(®) =s(d®) 0 \Js"(cu;) . 2)

(when N=0 , we just have s<l( ®) =s(do) ).

Of course, it isessential for thisthat ® is, by definition of "molecule’, composable. In the
"composition” of the atomsin @ , going from left to right (actually, from up to down), we
obtain new 0-and 1-indets only because the next 2-indet u; introduces new inner 0O-indets

and (all) 1-indets within its codomain, cu; . The formal proof of (2) is a straight-forward
induction on the length N.

It is clear that (2) says something directly about the 2-pd ' defined by ® . We have, for any
2-Pd [=(XT), N=IXI, ,that

*

Xlgq = s(dn O u\Djl\ls"(cu) : 2)

From now on, we assume that molecules and atoms are anchored; our subsequent definitions
would be incorrect (because of not serving the purpose at hand) otherwise.
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We say that the (anchored) molecule @ in (1.1) or (1.2) is separated if

1) ® is 2-separated (the u; are pairwise distinct),
2) the union in (2) isdigoint:

N
s_,(®) =s(do) Ei@Os%cui) ©)
and
3) do® isseparated, and each cu; @i=0,..., N) is semi-separated.

(In particular, alength-0 molecule ¢, given by al-pd do® , isseparated if the 1-pd d® is
Separated).

We cannot fail to see that this directly gives a definition of "separatedness’ for a 2-Pd.
However, we aready have a notion called "separated” for Pd's (see section 2). Although the
one being suggested now turns out to be equivalent to the original one (in the case of an
anchored 2-Pd), we distinguish the new notion, at least temporarily, by calling it *-separated.
Thus, an anchored 2-Pd '=(X,I") , N=[X| X IS *-separated if

1) [ is top-separated,

2" theunionin (2') isdigoint:

X4 = s(dn) 0 s (cu) . 3)
- ullN

and

3*) dlr isseparated, and each cu ( UCIN) is semi-separated.

Alternatively, the definition for a molecule can be put in a recursive form.

A length-O0 molecule ®=(d®) isseparatedif the 1-pd do isseparated. A length-N, N=1 ,
molecule (1.1) is separated if

def
@ the molecule ®M(N-1) = (qbl, C ¢N_ 1) IS separated,

(b) s°(c(uN)) isdigoint from s(®MN N-1)) ,
(c) c(uN) IS semi-separated,

and, finally, o
(d) N is distinct from each of Ugr-- U g

An (anchored) atom is separated if it is separated as a 1-term molecule.

Asan example, let X bea O-indet, f: X->X a 1-indet, and u: i dxef a 2-indet. Then
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u isan anchored, separated 2-indet, the 1-pd cu is semi-separated, but not separated.

Extending the example, let, in addition, g: XX and v:f —g be additional indets. Then
the molecule (u, v) isseparated, but the atom v is not separated.

The following proposition is easy to prove; still, we give the details, since we are interested in
what we are up against in a future generalization to higher dimensions.

8.1  Propostion ) For every anchored 2-Molecule @, thereisamap @»d)

from some separated Molecule @ :

(i) Every separated anchored 2-Molecule is projective.
(For "projective Molecule", see 8§2.)

Pr oof ) Since for length O the assertion is obvious, we may assume that the
length of @ ispositive. Assume @ given asin (1.1). To define the separated
o=( cfil[ Gl] e cfiN[ GN]) andthe map ® >® ,for i =1, ..., N, by recursion we

construct the atom qAbi [ Gi ] , together with a map

f; def
9(1)' = (¢1[u1]”¢l[u|])

& = (qldg]. . 9 [0G;1)

We start by letting fo: I§f>d<D:d¢1 be a map from a separated 1-Pd D to do. By

. def def
convention, (DO = (D , (DO = (do) .

Suppose i=21,and f; _,: éi .1 % _ 1 have been defined.

Drop the subscript i -1 : write iﬁ[ G] for (i)i _1[ Gi _1] , @[ u] for ¢i _1[ui _1] ,
050 for f, 10 ;& ;. Write g{v] for ¢ [u;] .

Themap f: |é| — |©]| of underlying computads restricts to a map f: QH% . But
c¢=dy, athough ¢ isnotin |©| . With y=b [V [& , and, as a consequence,

co=dy=b v e ,in |O| wecanwrite cé=by[& uniquely suchthat f(b)=b,

f(y)=dv, f(€é)=e.In particular, we have the zero-cells X=cb=dy, Y=dé=cy in
9] .
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In a computad X extending |é| , we construct a 1-pd C suchthat C has the same length
as cv, dC=X, cC=Y, C issemi-separated, and s°(C) isdigoint from s( |©|) . This
is done by successively adjoining to |é| new O-cellsand 1-cellsforming s°(é) ; the

result isacomputad X for which [X| = | |é| \ Es°( é) . Note that the only obstacle to this

would beif cv were of zero length and, at the same time, )2#\?; however, since cv isnot
of zero-length ( @ is anchored), this does not occur.

By the universal property of adjunction of indetermi nateﬁ, we have the unique map
9: X—>|®; | extending f: |®| — |©| such that 9(C) =cv .

In X, we have that the 1-pd's y and C are paralel; hence, to X, we can adjoin the new

2-indet v with dv=y and cv=C; we obtain the computad X[ V] .In X[ V] , we have the
def R def . | X
atom ¢i b v [ , and the molecule <D = ¢ = (¢1, e ¢i 1 ¢i ) . Clearly,

X[V1=|9; | .

Since g(y)=f(y)=dv and g(C)=cv ,wecanextend g to h: X[ V] —> |9, | such that
h(v) =v . The construction ensures that h( cfii ):c,bi , and thus h( d3i ) :<Di ; we have our
desiredmap h: ® —®. of Pds

The construction ensures that Qi is an (anchored) separated molecule, according to clauses
() to (d) above.

This completes the inductive proof of 8.1(i).

(i) By induction on the length N of the separated Molecule é .

Let O=( ¢y, ... B =(dgluql. ... S upN) -
0=y, G =G0 U] L U)
O=($q. .. O =(PylUg]. ... LUy
O=(X, ) , O=(X, &) , O=(X, B)
Suppose é is separated, f:éfeg and g:@eg,to show the existence of h:éfeé such

?
that goh=f .
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If N=0 , the assertion follows from unique typing for 1-pd's.

Assume N=1 . Denote the operation (-) M N-1) by putting a bar on top. We have that é

is separated, we have f: &> and g: ¥—® . By the induction hypothesis, we have

k:®>® suchthat gok=f .

Drop the subscript N; let ¢=¢, u=uy;, $:$N’ ete

Letthe 1-pd's b, é bedefinedby ¢=bM & ; b, e by ¢=bie; b, & by ¢=b i &
Claim () Wehavethat b, dii, é belongto |[X||, b, du, e to ||X||,and b, di, & to

||X|| ; moreover,
()  k(b)=b, k(dd)=du, k(e)=e .

(Inthelist
f(b)=b, k(b)=b, g(b)=b,
f (du) =du, k(du)=du, g(du)=du,
f(e)=e, k(e)=e, g(e)=e,

the equalitiesinvolving f and g hold true, since f and g are defined on the levels of )A(',
X , hot just their restrictions; only the ones involving k are still to be shown.)

For the proof, note first that

>

c($p. 1) =d(9) =b@ILE,
c(¢y 1) =d(9) =bEULE,
c(9y. 1) =d(9) =blHule,

4

A

and the items subscripted with N- 1 are in the corresponding restrictions X, )N(, X ; this
shows (). Since k maps c(cfiN_ 1) to C(&’N- l) , we have

k(b) Tk(du) k(€) = bHUE . (4)
On the other hand, k( 6) and b are both mapped to b , thefirst by f , thesecond by g ;
and similarly for the other pairs of factors in the last equality. Now, consider the following
obvious fact for 1-pd's, that, alas, is less obvious in higher dimensions: with r, s, r, s
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1-pd's, suppose r 5=r [ inacomputad Z, g: Z—>W is a computad map, and
g(r)=g(r) , g(s)=g(s) ;then wemust have r=r ,s=s ; in fact, one of the equalities,

say g(r)=g(r) ,isenough; onenotesthat r and r must have the same length, and an
initial segment of a 1-pd is determined by its length.

The fact just mentioned implies, by the presence of the map g: |<13| — |®] , that, in (4), the
factors on the two sides have to be pairwise equal. This proves part (f) of the claim.

We need to extend k toamap h: XX such that g-h=f . We need to define the effect of
h ontheset s°(cu) ,asetdigoint from s(don{h)) .

A

Look at the zero-cdlls X=dd( 4) =c(b) , Y=cc(U)=d(e) in X, X=dd(U)=c(b) ,
Y=cc(U)=d( &) in X, X=dd(u)=c(b) , Y=cc(u)=d(e) in X.Since k(b)=b,
k(€) =6 by the Claim, we have k(X) =X, k(Y)=Y. Write cU in the form (1) above; we

A A

have )A('lzx, Xm:\?;theother items in (1) are the dlements of the set s °(cd) .In X, cu

has the same form, with "~ srather than " s, with the same length m, and )N(1:>N(, )N(m:\N(.

There is a unigue extension k of k tothe computad )A([s°(cﬁ)] ,

k: X[s°(cl)] S X
such that Iz(cﬁ) =cu :for i =2, ..., m1,wedefine 12()A(i ):)N(i ; we then have
k(X )=X for i=1,2,..., m1, m;afterwhich, for j=1,...,m1, wedefine

|
k( fAi ) =f -

Finaly, we adjoin the new 2-indet U , and define h: X=X[s " (cU)][U] — >X
extending k , by setting h( () =U ; thisis legitimate since k( du) =k( dd) =du , and
Ig(cﬁ) =cu by construction. Clearly, we have made the extension h sothat goh=f .

The fact that h isamap of Molecules, h: —® , follows from h( ¢) =¢ , whichisa
consequence of the Claim.

This completes the proof of 8.1(ii).

We have proved 2.8 Elementary Lemma; and now we know the results of section 2 up to and
including 2.11.
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Before turning to the more mundane task of proving assertions made in section 1, we make
some general remarks.

The notion of projective Pd is very general: aPd I, of an arbitrary dimension, is projective if
h

whenever A f r 9 =, wehaveat least one [ >= suchthat g-h=f . Note
that if " isof dimension n , then, for testing projectivity of I, it suffices to look only at
A, = asoof dimensonexactly n;andif I isanindet (I itself isanindet), then A, =
can also be restricted to be Indets of the same dimension as I" . When one restricts Pd's
further, such as "anchored”, or belonging to a "standard class' (see section 1), the definition
further relativizes to the class.

In section 1, we mentioned separated Pd's, and computopes; the two are closely related. We
note here that every projective Pd is separated: let I be projective; by the Corollary to

Theorem[M](i) in section 1, there is a separated [ with a morphism f: ﬁa[ ; by
projectivity of I , thereis g: [ef ; but by definition of "separated’, g must be an
isomorphism; thus, I, being isomorphic to a separated Pd, is itself separated.

| do not know whether the converse is true.

Moreover, if [T has a"projective cover" fe[ , the condition 2) in section 1, "uniqueness of
the type" in [T being uniquely typed, is satisfied, since for any separated A , if thereis
A—T , A must beisomorphicto I .

Let us now restrict ourselves to the anchored 2-dimensional case.

We have seen, in the proof of 2.9, that if @ is a projective (anchored 2-)Molecule, then the
2-Pd [®] defined by @ is projective aswell. The converse is also true: if [®] is

projective, then @ istoo: by 8.1(i), there is a projective cover f: é—» ®, inducing a map
f: [@]] —> [®] ; [®] being projective, it is separated; hence, f is an isomorphism;

f: é —>® being an isomorphism, and é projective, @ is projective.

We now see that the notions "projective" and "separated” for anchored 2-Molecules coincide;
and the three notions "separated"”, "projective”, and "*-separated” for anchored 2-Pd's coincide.

The following proposition and its proof could have been included already in section 1. Itisa
general categorical argument based on the universal property defining the notion of computad.
It infers the existence of enough projectives among ( n+1) -Indets, on the basis of the same
assumption for n-Pd's (the latter is a special case of the former), plus strong properties of
(n-1) -Pd's. Since the hypotheses are verified for n=2 , we will obtain that there are enough
projectives among 2-anchored 3-Indets, which, in turn, enables us to infer 1.1 and 1.2 from
2.10.
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We fix a standard class of computads (see section 1). All computads, Indets and Pd's are to be
taken from the fixed class (which will remain nameless).

8.2 Proposition (We restrict ourselves to a fixed, although arbitrary, standard
class of computads.) Let n be afixed integer at least 2 . We make the following
assumptions:

€] All (n-1)-Pd's are uniquely typed.
(b)  There are enough projective n-Pd's: for any n-Pd I, there is a projective

n-Pd f together with a map fa[.

Then:
There are enough projective ( n+1) -Indet's: for any (n+1)-Indet U, there are a

projective ( n+1) -Indet 0 and a map _LAJeg.

Pr oof For this proof, I'll smplify the notation somewhat. | will drop the underlining
from Pd's; thus, e.g., given U=( X, U) , U may ambiguously mean either U=( X, U) , or U
as an element of X. On the other hand, I'll write |U| for X, the underlying computad of
U.

For any Pd =, we have d=, both asapd and as a Pd. If we return to our pedantic ways, we
have ==(Z,z) (Z=|z]).,and d= apd in Z; we put

def
d= = (Suppy(d3),d3) ;

smilarly for c= . We again drop underlining, and just write d= in both senses involved.

Note that we have the inclusion map | d= IJ , ; but writing d= »—— = is(too)
incorrect; f: I —>A asoimplies that f( ) =N ().

Let U bean (n+1)-Indet; dU and cU are n-Pd's. By assumption (b), there are projective

n-Pd's ' and A, with maps F%du, A—9 5cU. We have theinclusions

|dl | £>|r| ., |cr] £>|F| ldA] Y AL, e é>|/\| :
lduj & U, jeu) b
The composites gof oa: |dI | H|Ul gof oy |dA| — |U| giveriseto (are) the
respective maps £f a: dI' —ddU Y- d/\—ech of n-Pd's. We have ddU=dcU.

Since (n-1)-Pd'sare uniquely typed (assumption (a)), with D the unique type of
ddU=dcU, D must also be the type of dI" and dA ; we conclude that there is a separated

(n-1)-pd D with maps D—¢>dr, D—w>dA suchthat gof caecg=nogeoy-.

Similarly, we have a separated (n- 1) -pd C with maps C%cl‘, c9 scA such
that f cBop=Qgecd-0.
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We define the computad X by the following colimit diagram:
¢ —[D|_ ¥
7 \
dr [ € 2 [dA|
a y
T —S—xe—<—|al
B 5

lcl | 2|cA|
%\ |C| ///‘6-

We have taken the colimit of the diagram which is the one above without the items X, ¢ and
{ ; X isthe colimit object, ¢ and { are colimit coprojections (and so are the composite
arrows from the objects other than | Al).

. def . def
In the computad X , we have the n-pd's I S &, A S {(N) . Let
E:)'=(ano¢)(D) =(Zoyow)(D) , an («n- 1)«-pdin XA-Since dr=(a-¢) (D) ,
D=&(dl) =d( &) =d(T) . Similarly, D=d(A) . For C=( &+B-p) (C) =(Z+d-0) (C) ,we

smilarly have é:c( f) :c(ﬂ) . We conclude that the n-pd's I ,/Q are parallel. Therefore,

we may adjoin a (n+1) -indet U to X with the specification d(U) =l , c(U) =A , and
form X[ U] .1 clamtha U= (X[ U], U isthe desired item.

The commutativity of the following diagram:

- D -
dr | 9 . v |dA|
a o Yy
T sjdul & sjule T jeule 9 A
B 5
M« P o 5 |cA]
o | —

and the colimit property of the previous one shows that there is a unique arrow h: X— |U|
such that the following commutes:
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7 S~
/6// — R lh \
r sy —& 5 U e jcuj 9 A

From these two commutativites we infer that h( Iﬁ) =dU, h(/A\) =cU. Therefore, it is
legitimate to require of amap k: X[ fJ] ——> |U| thatitextend h andmaps U to U; wedo
so! We have obtained the map k: U>U of (n+1) -Indets.

To verify that U IS projective, assume we have U ¢ Ve MW, to show that there is
U™ 5w suchthat mon=¢.
?

We have the induced maps

r— £ av, aw Msav, A < scv, ew Moev.

I and A are projective: there are I‘de, A—9 5 cW such that rAnopzﬁf,
meq=£ . Let'swrite 6: [dW — |W , T: |cW — |W for the inclusions.

The following diagram commutes:

— D| .
drje—— ¢ o da

a ° y

) —Psjaw—% s we T jew 9 |a|
B o

— o

el

The reason is that, for instance, the two upper composites, ¢ 1=Go peac¢ and

czzroqoyotp,when applied to the element D in |D| , give the same value, namely D

def 1 .
= ddW=dcW; we have two parallel maps D iD of (n-1)-Pd's, they must be

c
2
equal: c,=Cy (follows from assumption (a)).
We again apply the colimit definition of X : we obtain r: X-—— |W such that the following
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commutes:

- 6
r|—P 5 |dw W et jeW 9 A

It follows that r(r) =dW, r(/\) =dW,; we have n: |U| X[U] —> |W extending r and
mapping U to W. We have n: U>W.

When the maps men and £ (whose equality we want) are restricted to X, they are equdl,
by the uniqueness part of the colimit definition of X, and rAnop:KE, ﬁbq:ZZ.Asaresult,
men=/{ holds since the one remaining indet U in |U| ismapped by both to W.

The proof is complete.

| repeat that for the standard class of 2-anchored computads, and for n=2 , we have (@)
trivialy, and (b) by 2.9. Therefore, the conclusion holds for 2-anchored 3-Indets.

2.6 (that we already know) immediately implies

f

8.3 Proposition Parallel maps V :y of 2-anchored 3-Indet's must coincide:
g
f=g.
f 1S(dV)
Proof The reason is that we have the induced maps dV
grS(dVv)
f 1S(cV)
cV cV of anchored 2-Pds, which, by 2.6, must pairwise coincide; f =g
gfS(cV)

follows since the only item beyond s(dV) Os(cV) on which they act istheindet V itself,
which they both mapto U.

We have now proved 1.1 Theorem and 1.2 Corollary. Indeed, consider conditions 1) and 2) (in
section 1) defining "uniquely typed" for 2-anchored 3-Pd's. 1) is a specia case of 8.3; and 2)
holds by 8.2 and the remarks after 8.1.
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89 Higher-dimensional pasting preschemes

Substitution and up-substitution

We need to recall some things essentially dealt with in sections 8 and 9 in [M].

Suppose X isacomputad of dimension n, I isan n-pdin X,and u isan n-indetin
X.Wesay that u occursin I' exactly once if, for some, or equivalently, for all, n-molecule
o= ¢1[v1] ..... ¢I\/[ VI\/] ) representing I, thereisexactlyone j {1, ..., M such
that vj =u . (By section 2, it is indeed true that if the condition holds for @, it holds for any
Y suchthat [®)=[¥] .).

Assume that, indeed, u occursin I' exactly once. Now, let u be a (new) indeterminate of
dimension n+1 attachedto X by dul|cu’, both n-pd's du,cu in X, such that, in

addition, ddu=du and ccu=cu . We are going to define the result of substituting u for u
in I, despite the fact that u is of one-higher dimension than u . | will denote the result of

this substitution by I'[ u/ u] , or sometimes, sloppily, [ u] ,when u in '=r[u] is
"understood”. I'[ u] isgoingtobean (n+1)-cell in X[ u] . Moreover, we will have that

d(lfu]) =r[du] and c(lfu]) =T[cu] ; (1)

where [ du] , I'[ cu] areordinary substitutions, defined by the universal property of
X=Y[ u] , viathe mappings
f
Y[ u] X
g
which are the identityon Y, f maps u to du, g to cu ; these are legitimate by
def def
du=ddu, cu=cdu(=ccu) ,etc.; I'[du] = f(r) ,Mcu] = g(lN .

The definition of '[ u] seemsfairly obvious, at the first sight at least. Take any
o= ¢1[ Vl] ..... ¢I\/[ VI\/] ) representing I ; let j be the one subscript for which

vj =u ; write ¢:¢j ; write /\=¢1[v1] a. . Edpj i 1[vj i 1] :
== j +1[Vj +1] a.. DPN[ VI\/] ; thus T=[ u] =A0p[ u] [E . Recal that, as an atom,
¢[ u] can be written in the form
¢[u] =b  Hb, .. .byule,...) ,) &, 4 (2.1)

for some bi , € such that di n(bi ) =di n(ei ) =i . Therefore, we can define
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olul = b, Ob, >H...bjWE...)R )&, , 2.2)

M u] AL u] [E . (3)

Although this calculation will be important, as a definition it has the fault that it is not clear
that the value I'[ u] isindependent from the choice of the molecule representing I'[ u] , and

worse, from the choice of the presentation of the atom ¢[ u] which we used.

However, in section 8 of [M], there is a construction of the so-called collapse of the
(n+1)-dimensional computad X[ u] toan n-dimensional one, X[ u] . The set of n-indets
of the latter is Xn @{ u} ; aso, X isasubcomputad of X[ u] . Moreover, asan n-cell in

X[u] , u ispardlel to u (since d (u) =ddu=du , and similarly for c ). Thus, we
X[ u]

canmap X=Y[u] to X[ u] by mapping Y identically, and mapping u to u ; write

f: X—>Xu] forthismap, ¢[ u] isdefinedtobe f(¢) ,and [ u] isdefinedto be
f(l) .Once N u] isthuswell-defined, we see that, with the data for the molecule ® and

for theatom @[ u] in (2.1) chosenin any way, (2.2) and (3) are true, simply because f isa
map of w-categories.

Moreover, the equalities (1), with d and ¢ understood now in the sense of X[ u] of
course, are true too: clearly, since di m{A) =di (=) <n , d(Ap[ u] [E) =
ATd(¢[u]) [E; and by (2.2), d(¢[u]) = ¢[ du] , etc.

Expected factssuchas (b ) [u/u] =bTu/u]) ( bDXn, roXx
before) are immediate from (2.2) and (3).
There are certain obvious commutativity and associativity rules concerning substitution,

including up-substitution; they follow directly from the universal-property-induced definition
of substitution; we tend to use them without comment.

Pasting preschemes

Let X beacomputad, N afinite set of (n+1)-indetsin X. Asin section 9 of [M] , we
associate with the elements of N appropriate new n-indets in a bijective manner: we have a
map (UuON) ——u suchthat u isan n-indet, ud (X| ,and du=ddu, cu=ccu .We
write N for theset {u: uON} ; N has the obvious attachment to X ; we can consider the

computad X[ N] .

The elementsof N are called niches. They are to be distinguished from the other
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n-indeterminatesin X . The set of nichesinapd I iswritten n(I) .

For asubset S of N, S (of course) denotes { u: udS} .
Suppose that we have an irreflexive partial order < on N.
Let S bean (unsigned) span of (N, <) , that is, amaximal <-antichain.

Let I bean n-(dimensiona) pdin X[ N] . Wecal I an S-frameif n(I) =S and every
udS occursin I exactly once.

Let ' bean S-frame. Consider any signing of S : a partition S:§@§; let'swrite S for the
signed span so obtained. For UON, letswrite d>u=du if udS,and d>u=cu if ulsS.

Let R beasubset of S; of course, R isnecessarily a <-antichain. We are going to define
an n-pd, denoted by I Eé[[ R] , inthe computad X[ N] ; it will be obtained by "partially
filling" the frame T . The notation indicates that we will have n(IF (S R]) = R.

Define TSR] by:
DEF &

rSOR = Moo e g

(repeated, or simultaneous, substitution; it is legitimate since dul|u ).
We have

QIR — r80Q =rBOR 1 r o (4)
When R=0 , we omit it from the notation: I [é[[ ] =T S0= M 0Su/ u] uls rsois

an n-pd. The n-pds of the form I (S0 are caled the n-cuts, or the hyperplanes, of the PPS
r.

We are ready to define the notion of an (n+1)-dimensional pasting prescheme, (n+1)-PPS. It
is an object of the form O=(Y, N, £, 0[50 S <- span ; itisgiven by

a n-dimensional computad Y ;
afiniteset N of (n+1)-indeterminates attached to Y ; we write X=Y[ N] ;
an irreflexive partial order < ontheset N;
and
for each span (maximal <-antichain) S in N, an S-frame O[S0, an n-pdin the
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computad Y[ N] ;

such that the following condition, the "matching equality”, is satisfied:

dsS] =T —— OBOST]=0TqST] . (5)

(we have abbreviated OSSO as OC50; and Similarly for T).

As a consequence, we will have

RIS&RIT&CS] =T —— OBOR=00T0OR : (5)
thisis because of (4): notethat if <[ S] = C[ T] , then for any uOSAT, d°u=a'u .

Let's note that the case of (5') when R isamaximal antichain is vacuoudy true: the
antecedent of (5) impliesthat R=T and S=T .

Using the matching equalities, we can define, foracut C of (N, <) and R an <-antichain
in the boundary B[ C] of C, the quantity O©CC R] by
- DEF .
O[COR = 60OB0OR

for some/any signed span S such that =@ §] and R asubset of S, the underlying span
of S.

Wewrite OLCO for OLCI 0] .0[CO= oS0 for any signed span S defining C.
[Before proceeding, let us (again) adopt the following notational conventions. C, é, D

denotecutsin (N, £) ; C=(U, L) , é:( CJ, ﬁ) , D=(V,M ; B. I§, E are the borders of
C, C and D, respectively,]

There is a further equality implied by the logic of the situation.

Suppose R isa <-antichain, C, D cuts. Let ussay that C=D(npd R) if R isa subset
of the boundaries of both cuts, and the cuts coincide outside R: RIB, RJE and U- R=V-R
(and, equivaently, L- R=M R). Note the special case when R ismaximal: in this case, if
both RUB and RIE, we always have C=D (nod R) .

We claim that

9.1Lemma C=D(rmpd R) implies O[COR = OMDIR] .
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Pr oof To see this, first note

9.1.1 Sublemma C=D (nod R) impliesthat, for any x suchthat RO{x} is(till) a
<-antichain, xOB iff xOE.

As we know
xOB = [OyON [(y<x = yOU) &(y»>x = y0L) , (5.2
XOE <= 0OyON [(y<x = y0OV) &(y>x = yOM . (5.2)

Assume C=D(nmod R) , RI{x} isa <-antichainand x[B, to show xUE.If xOR, the
assertion istrue since RIE . Assume X[ON- R. The RHS of (5.1) holds. Then the RHS of
(5.2) holds, since if either y<x or y»x , wemust have yOOR ( RI{x} isa <-antichain),
thus, yOU iff yOV,and yOL iff yOM. ( End of proof of 9.1.1)

Assume R isanantichainand C=D(nod R) . Let S be any maximal <-antichain such
that ROSOB.By 9.1.1, ROSTE . Let S and T be the signed spans with underlying span S
suchthat S defines C, T defines D: to each element of S give the sign according to
where it lies with respect to the cuts. Smce C=D (nod R) , the signing of each ulS-R is
thesamein S asin T and thus aSu a u for uS-R. Looking at the formulas for
@ESDESE[ Rl and @ESDDTE[ R] , we now see that these two quantities are equal. This

means precisely that @[CJ R =0[DJR] .
The following is an elementary fact, properly belonging to section 3.

9.2Lemma Let < beanirreflexive partial order ontheset N. Let S be a maximal
<-antichain, and let §1 , §2 be signed spans, both with underlying span S, given by the

partitions S=§1%1=§2%2 , and let CI =( Ui , Li ) be the cut determined by éi . Then
Clzc2 (rmod S) .

Pr oof Immediate from the equivalences
U0U  — uS, Vv'OsOS. u<s

ull;, & uDéi Posos. uss

Note that an (n+1)-PPS isentirely given within the context of the n-computad Y . Although

there are references in it to the n-indets u , which are not in Y, they are purely formal, and
derived from the (n- 1)-dimensional information inherent in the (n+1)-indets uCN. In the

definition of the @EéD, we use the n-dimensional information given in the ulIN ; that
information is part of Y .

On the other hand, an (n+1)-PPS's can be pasted to obtain a well-defined (n+1)-pd in the
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computad Y[ N] , the pasting of the PPS. This, of course, is the justification of the expression
"pasting scheme". We will arrive at the pasting of the pasting prescheme in due course.

Examples and constructions of PPS's

It is easy -- in fact, "too easy"; thisis the reason for the "pre" in "prescheme”; see also below
-- to give examples for PPS's.

[1] Molecules are PPS's

The simplest ones are the top-separated molecules. In fact, in the next few paragraphs, we
realize that an (n+1)-PPS whose underlying "backbone" order < isatotal order isthe same
thing as a top-separated (n+1)-molecule.

Let's start with atotal order < ontheset N of N distinct (n+1)-indets, with an
enumeration N:{ul, Ce uN} chosen so that u; <uj i <j . We have the following:

There are N+1 <-cuts Ck:( U Lk) , Uk:{ui »1<i <k} , Lk:{ui s k<i <N},
k=0,...,N, and N spans Sk:{uk} , k=1,...,N;

each span S, has two signed versions Slf and SE: §£=D, §£={uk} ,
u_ <U_r .
S 3=
Slf defines the cut Ck 1 SE the cut Ck ; the pairs of signed spans defining the

same cut are (SE, Sfﬂ) , corresponding to the cuts Ck yk=1,..., N1 (al cuts except
the top and the bottom).

Therefore, for aPPS © based on (N, <) , the data will consist of frames @ESk O

(k=0, ..., N) . The matching equalitiesfor R anon-empty, necessarily singleton,
<-antichain are vacuous (since they are maximal antichains); the remaining matching equalities
are for R=0 , and they are

u- _ { _
@ESkD—@ESk+1D (k=1,...,N1)

We have Ck 1ECk (mod{ uk}) ; and these are the only non-equality instances of the
relation C=D (nod R) .

What we have is precisely an (n+1)-molecule

0= (@lugl, ... B up)

where

¢k[uk] :@[SkE[uk/Jk] =@ESkE[uk] :@ECk_lE[uk] =@ECkE[uk] :
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In terms of the atoms qbk , the frames are

ors, 0= ¢, [U,] .
We have
OB (= 05, 15, 0) =d( 9 [uy]) = g [du] ;
Or8, 0(= 0085, 5, 0) =c(g[u]) =g lcuy] ;
and the matching equalities become
(chy =) dlou] =9y qldu ] (=ddy,q)

which are the defining property of a molecule.

[2] Planar PPS'sare PPS's

The planar pasting preschemes of sections 4 and 5 also give rise to pasting preschemes, in this
case 2-dimensional ones.

Let (N, <, -, MP, §) be a planar pasting prescheme (see section 4). Let S be any
maximal <-antichainin N. S isamaximal — -chain, pictured as

-oo=u0—9! ul—el u2—9! cee ! uml—el Uz ;
(S isthe set {ul, co U 1} ; Ug and Umn are mere symbols.)
Foreach k=0,..., m1, for X=Up s Y=U g and the empty interval ( x, y) _, »we

DEF
have the 1-pd S§ = (S§) c given in the planar pasting scheme, with the unique cut C in

(x,y) N (thanks to the empty set!). For our new notation for PPS's, we define the S-frame
O8O0 by
DEF u u u u
ors0 = s 0my s ta,0.. m, ,5,™%m 5™ 6)

1 2 m 2 uml mil um

Note that under this definition, with any signed version E:§ of S, weobtain

u
mil
ml[Su '

u u u
o0 = s 9méu, s L méu, 0., ®éu_ 3 ™2miy
u 1 "u 2 m 1 m

1 2 m2—u

a quantity that was denoted by (%) ¢ in section 5 (after (ii)).
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Moreover, forany u and v suchthat u—v , for

| | | | |
U—é.Vl—é.Vz—é. Ce —9.V£—9.V

aspanintheinterva (u, v) N and ¢ asigned span with underlying span {Vl’ . .vz} :
the quantity

DEF u \Y \Y \Y
OEMu,v) = S, v, wév,0.. wév, ,5,2wév, s 0t
1 2 -1

equals (S\lj) § . Thus, if ¢ and { definethesamecutin (u, v) N , then, by the definition
of "planar pasting prescheme”, we have @[ [{u, v) =0 [[{ u, V) .

Now, let ROS, ROT, &, { sgned spans with respective underlying spans S, T, and
assumethat é~¢ (¢ and { define the same cut). Let {wlewze. .. ewn} enumerate
theset S- R. We have, directly by the definitions, that

OEOR]
O OR]

OLE (-, wy) Eﬁfwl[(DEE[(wl,wz) a.. Eﬁfme(DEEE(Wm ®)
OLL (- o, wy) (9w O {wy, wy) .. W BT ) ;

hence, by the above, O[E[J R =0 [ R] (note that Er(wj W ) " Zr(wj W +1)

and a‘fwj :dZV\ﬁ ). This shows that the matching equalities hold, and we indeed have a
2-PPS,

[3] Restriction by extending the backbone order

We construct a new PPS out of a given one by restriction.

Let <, < betwo irreflexive partial orders on the same finite set N, € extending < ;< 0K.
Obvioudy, any antichain for € isan antichain for < ; any cut for € isacut for <.
However, amaximal <-antichain is not necessarily a maximal <-antichain.

Let © denotean (n+1)-PPS; we use the notation developed above. Let € be any
(irreflexive) partial order on the set N extending < : < 0« . Then one canrestrict © toa
new (n+1)-PPS denoted

O =(Y,NK (61K (RO R¢-span
the frames (© 1K) (RO are defined as follows.

Let R beamaxima <-antichain, and choose an arbitrary signing R of R , given by a
partition R:Bﬁi. R ¢-determinesa ¢-cut C.Butthen, C isalsoa <-cut. Moreover,

B<<[ Cl O B<[ C] ; thisisclear from (5.1), (5.20, applied to both < and < . Therefore, R is

114



an <-antichain such that RO B[] .
Since C isa <-cut, R isan <-antichain contained in B<[ C] , OCOR] iswell-defined.

Moreover, if ﬁl and ﬁz are both signed «-spans with underlying €-span R, and CI is
the €-cut «-determined by ﬁl , then ClsC2 (mod R) with referenceto (N, €) : see 9.2,
appliedto (N, €) ; since R isan <-antichain such that RO B*[ Cl , we have that
Clzc2 (mod R) holds with referenceto (N, <) ; by 9.1, @ECl OR = @EC2 OR .

We conclude that, for any €-span R, the definition

DEF . VP
(014) [RO = OCOR (C=CY R , R signed «-spanbasedon R) (7)

IS unambiguous.

To verify the matching equalities, let us calculate the quantity ( © 1<) EI?QE[ Q provided
QR, R signed span based on the €-span R. Let C bethe {-cut &-defined by R.

As we noted above, B<<[ Cl O B*[ C] : the «-border of C iscontained in the <-border.
since ROBS[ @ D B[ , we can take the maximal <-antichain S in B[] such that

ROS.Let S bethe signed version of S corresponding to C; clearly, S extends R.We
have

(014 RO Q = (01) R a7/ U]
! N & " _
= o8] 0Sv/\7]uDS_Q=@ESE[q - orcqq .

= 0050 0™/ V] o f 97U/ U]

ulR- Q UlR-Q ~

The {-version of (5,
@R, & QR, &R 1=C R =C —— (01¢) R, TR=(614) R, Q
is true, since both quantities in the last equality are equal to OCCI Q .

The pasting of a pasting prescheme

Start with an (n+1)-PPS O=(Y, N, <, @ESEé < span) . Recall the operation

(604 01K of regtriction. Recall that we concluded that if € isatotal order extending
<, then 01K is, essentialy, an (n+1)-molecule; let uswrite © MK too for the
(n+1)-molecule which is "essentially" the restriction 1< .
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9.3 Proposition Let © beany (n+1)-PPS.

(i) © definesaunique (n+1)-pd [O] , the pasting of the pasting scheme © , by the
formula O] =[01K] for some/any total order € extending < .

(i)  Wehave d[O] =0l rolcyan] ., c [e]=r [C. 0, where Cy, C. are
the cuts Cd:( 0, N , CC:( N, 0) (these are equalities of n-pd's).

(iii) All frames ©[B0 are parallel to each other: dI' (5G=dd [O] ,
cl [BG=cc [O] (theframesare n-pd's; we have equalities of (n- 1)-pd's here).

(iv)  For any partial order << extending <, theredtriction ©1'<< has the same
vaueas O: [0] = [O1<<] .

Pr oof We have to show that
O] = oK ] (8?)
for any two total orders €, € extending < .

Let us say (again?) that € isswitchedto € at (u, V) ,in notation Su V(<<, ) if
u'v and

€ =€-{(u,v)} B{(v,u)} . ©)
Write 8(£, <) for EU,V.SU,V((, <) .

Note that if € isatotal order on N and ug! v , then (9) defines another total order on N:
thereisunique € towhich € isswitchedat (u, v) .If Su V(<<, <) then

S, u(<<’ , K L If Su V(<<, € ) , € iscompatible with the partial order <, and u, v are
incomparable in <, then € isaso compatible with <. It isan elementary fact that for any
two total orders €, & on N, both compatible with <, there is a finite sequence

<<=<<1, <<2, Cee <<m=<<’
of total orderson N, all compatible with <, such that 8(<<k, <<k+1) (k=1, ..., m1l) .

(Proof: define the distance of € and € , (<, € ) , asthe number of pairs (u, v) such
that (u,v) € and (v, u) <€ .Notethatif S(& € ) ,then (& € ) =1 .Moreover,
if (&< )>0, uw!v, (v,ulk ,and Su V(<<, ") , then

oK, € )=0(£ <K )-1.Assume £, K are’compatiblewith <,and (¢ < )>0,
that is, €#< . Theremustbe (u, v) suchthat u'v, (v, u) K ;otherwise, the
list u1<<! u2<<! & SN enumerating all of N inthe order € isalso a correct order for

€ , which then must be the total enumeration of N intheorder € , and € =€ . Take such
(u,v) .Sinceboth € and € are compatible with <, we must have that -( u<v) and
-(v<u) ;thus, forthe € for which Su(<<, "), " isdsocompatiblewith <.<" is

((2 in the the sequence above; clearly, in fact, mFo( &, € ) +1 .)
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Therefore, it is enough to show (8) when Su V( £, € ) ; we assume this now. We have that
u and v are <-incomparable.

Let Ugs o un be the enumeration of N such that uj <<uk@j <k .Let i besuch that
u=u; ; then VU g

We now put together what we have in [3] on arestriction © MK , and what we know from [1]
about a PPS such as @ '€ whose backbone-order is total.

The molecule ®=01K isof the form ®=( ¢1[ u ¢N[ uN] ) , with the already fixed

DEF
indexing u; 1=1,..., N . With any WIN, we use the notation ¢W:¢W[vv] = ¢j [uj ]

for the specific j such that W:uj )

Joo

The molecule ¢’ =0 I’ :(¢’l[ u’l] ..... ¢’N[ u’N]) has ujf =uj except for j =i and

DEF
] =i +1; ui =U; 417V ui +17U; =U. ¢{N:¢{,\,[V\ﬂ = qu [uJ? ] for j such that uJ? =W.

We have
W W
o AWM =0 OwW =0X"OwW ; (10.1)

w w
(wehavedropped { , } in KX [O{w}] ); here, the <-cut € =(U, L) istheonefor

which zOU«=z€w, z0OL<=z)w; and <<‘7V:( V,M has z[OV&=z4w, zOMe=z2w.
Similarly,

w w
vl =0 wl =0 VI (102)
W J—
with the appropriate meaning for the cuts € , & w.
w w = =
Clearly, € =« and &V=¢ " unless w=u or wev . Therefore,
¢;N[V\ﬂ =¢W[M unless w=u or w=v . (11)

u - Vv -
Let usdenote & =&Y by C=(U, L), € =X u by D=(V, M . They are both <-cuts.
To repeat, we have

U= {x:x€u} ={x:xKv} ,
V={x:x£ v} ={x:x< u} ,
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L={y:y2v} ={y:ydu} ,
M={y:y2 v} ={y:y> u}
C and D are obtained from each other by "switching”" u and v :

V=U-{u} O{v}, M=L-{v} O{u},
U=V-{v} O{u}, L=M-{u} O{v}

u and v areon the border of both C and D.
By (10.1) and (10.2),
g Lul =orcriu]l ,  ¢,[v] =6rcuy]

¢, [v]l =0DIv] , ¢,[u] =6 u]

Let S beaspan (maximal <-antichainin N) suchthat S isa subset of the border of C,
and S containsboth u and v (see section 3). Let S bethe signed span with underlying
span S that defines C: S=SnU, S=SnL . Of course, udS, vOS. We have (see section
3)

XOU &= x0S Vs0s. X<s

xOL e x0S VB0S. xbs .

Let us"switch” S to S by putting S =S-{u}0{v} , S =S-{v}{u} ; S isa

signed span with the same underlying span S ; S and S areidentical except on u and
v , on which they are of opposite signs.

When we take the definition of thecut C =(U , L’ ) defined by S , we see that we get
C =D:

xOV e« x0S VI50S. x<s

yOM «—— y0OS Yrsos. y>s .

The definitions tell us that

¢, u] =@ESE[08w/\7\ﬂV\DS_{U} 9 IV] =@[SE[08w/\7\ﬂV\DS_{V} 121

¢,[v] =050 08""”‘7‘4\,@5-{\/} . ¢,[u] =ems0 aS’w/M\M]S_{U} (122

Consider the frame ©[50. We have an n-molecule W=( wl[xl] ..... L,UN[ xN]) such
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that @[850= [¥] ; for every sOS, s occursas x . for exactly one p ; and

p
{xq, - xp nN=S . In particular, we have unique q and r in {1,..., M such that
xqzﬁ, xer.

We have two cases to distinguish: q<r or r<q ; the two, however, are mirror images of
each other; thus we may assume q<r .

We have the n-atoms
LUl = yglxgl
avl = ¢ [x,]
and the n-pd's

A = Yqlxq] 0. D.Uq_l[xq_ 1
/\2 = wq+1[wq+1] L D‘Ur-l[wr-l] ’
A3 = wr+1[wr+1] L D'UI\/IWI\/] !

of course, any of the latter may be equal to an identity n-cell. Thus,

o500 = Ay [plu] I\, B[ v] (A .

u and v do not occur inthe n-pd's /\l , /\2 and /\3 .Let, for i=1,2,3,

. & s
N = NETWW yag ey vy = AT WW yms 1y vy

~N

Then, by (12.1) and (12.2), since dsuzcu , ds =dv , 081 u=du , 081 v=cVv , we have

d Lul =Applu] Dy o{dv] g, ¢, [v] =Ay ol cu] DA, To{v] DAy

#,[v] = A pldu] Ay o{v] Dy, ¢ lul = Ay p[u] Ay Cofev] Qg
DEF A A DEF A A A
Let a = /\1Eb[u] U\Z, and B = ofv] U\3.Then da:/\lEb[du] U\Z,and
similar equalities hold for ca, dfB, cfB.We obtain that

¢,Lul =aldB, ¢,[v] =calp, ¢,[v] =dalp, ¢ ,[u] =alep,

and the equality
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¢ Lul B, [v] =¢,[v] [p,[u] (13)
becomes an instance of the commutative law

(aldp) Wcalp) =(dalp) [ alep) (14)

(whose precondition, cca =ddf3, holds as a consequence of the fact that the two sides of the
equality (14) are known to be well-defined).

(12) and (13) tell usthat [®] =[® ] , and therefore that (8?) isindeed true.
This completes the proof of 9.3(i).

9.3(ii) and (iii) are consequences of (i). 9.3(iv) is obvious.

(Constructions of PPS's, continued)
[4] Slices of a PPS

There is another way of restricting any given (n+1)-PPS O=(Y, N, £, 0[50 X this time to
the dice of adicing (Cl’ CZ) of (N, <) (see"Convex sets' in section 3). The result

depends not only on the dice, however, but also on the dicing itself. The result is called the
(Cl’ CZ) -diceof O, and it is denoted or(cl, C2) . The set of ( n+1) -indets of

@r(cl, CZ) will, as expected, be the dice P( Cl' C2) of (N, <) .

As particular cases of the construction, we will be able to restrict © to any upward closed set
U, and to any downward closed set L ; letting C=( U, L) , Cm' n:( 0, N) ,

Cop=(N D), wewill have ©MU=0M(C: |, O , OIL=0NC C )

Let (Cl’ CZ) beadicingin (N, <) , P=P( Cl' C2) =L1er2 the corresponding dlice.

Let R beamaximal antichainin (P, <'P) .Let D=(V, M beany cutin (P, <'P) such

that RDE:B[ |5] ; any two such D are =(md R) in (P, <IP) . Define Vzulﬂl

Nbﬂ/lﬁ_z . Then V isup-closed, M isdown-closed in N, and Vﬂ/I:N; D=(V,M isacut
in (N, <) .Anytwosuch D obtained from R are =(nmod R) in (N, <) .

R isasubset of E=B[ D] ; indeed, if u<r OR, then we must have ullV, and if v>r OR,
then vOM. Therefore, the expresson O[D[] R] iswell-defined.

Abbreviating LIJ=G)P(Cl, CZ) , we define

DEF
WRO = OMIR]

In thisformula, D isdetermined upto = (nod R) ; therefore, Y[R is unambiguously
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defined.

As to the matching equality, let FNQl and FNQZ betwo signed <-spansin (P, <IP) with
respective underlying spans R1 and R2 ﬁl and Iiz defining the same cut D in

(P, <tP) , and let Q:leR2 . Let §1 and §2 be signed spans containing Igel and ﬁz
respectively, defining D, where D is derived from D as above. Then

wtﬁaiqq=wERiE[aR‘u/u]uDRi_Q:@[éiE[R][aR‘u/u]uDRi_Q:
s I
—@[SiE[d v/v]vDSi_R[d u/u]uDRi_Q—@ESiE[d V/V]VDSi-Q
T

85

Jd u=0d u

=005 Q =omI g

independently from i =1, 2 . This shows what we want.

Furthermore, we have the following expected equalities:

(@ruz) rul = @rul :

(@rLl) rL2 = G)PL2 :

@r(cl, CZ) = (@ruz) r(LanZ) = (@rLl) r(LanZ)
(leu2 is up-closed in U2 , down-closed in L1 . However, as we said, it is not possible to
write Or(LanZ) , Since for ageneral convex set P, OI'P isnot defined unambiguously);

(014 r(cl, Cz) = (@P(Cl, CZ)) r(<<r(Lan2))
where € 0 <, and ClsC2 arecutsfor (N, €) (and, hence, for (N, <) aswell).

Moreover,

d[eNC;, Cy)) = o, O,
c[0N(C;, Cy)] = OC,0,

[e]=[ery) OerL J (15.2)
(U, L) isacutin (N, <))
[e]= [[@rul]] e Cy, CZ)]] D[[@PLZ]]

[e)=600 when N=O ; (15.2)
[©)=6 u} O u/ u] when N={u} . (15.3)
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9.4 Proposition Under the indicated definitionsof @MU, OML (U upclosed, L
downclosed), but with the definition of [-] for PPSs removed, the equalities (15.1), (15.2),
(15.3) define a unique evaluation operation O+ [O©] from (n+1)-PPSsto (n+1)-pds.

[5] Substitution of PPS's
The most interesting construction of a new PPS is by substituting one into another.

Let 0=(Y, N, <, 0080 g 4 gpqp bean (1+1)-PPS; W=(Y, P, & YIRD R¢- span

another one. Let ulIN be a particular indet; we are going to substitute ¥ for u in ©.We
assume the framing condition: d [W]=du, c [W]=cu (for d[¥] and c [¥] , see 9.3(ii)
and 9.3(iii)).

We will define the PPS ==0 W/ u] = (Y, Q <<, =00 5 44 span -

DEF
Q = N {u} @P;weareassumingthat N and P aredigoint.

For vOQ, x0Q:

(v, X)X — vV, XON-{u} & v<x
v Vv, XOP & v<<x
v VON-{u} &x0OP & v<u (!)
vOP & xON-{u} & u<x.

In other words, two elementsof N-{u} arerelatedin << asthey arein < ; two elements
of P asthey arein € ; and an element of N-{u} and another one of P are related as the
first isrelated to the fixed "dot" u in <. Itisclear that << isa partial order on Q.

Asfor cuts, we have a similar "substitutional" situation. A cut C=(U, L) of (Q <<) may
be of two kinds. A cut C=(U, L) of (Q <<) ,isgiven asfollows:

either thereisacut D=(V, M of (N, <) andwehave ullV & U=(V-{u}) ﬂD&

L=M or uOM& U=V &L=(M {u}) ﬁb [" C does not cut through P "]
or thereare: acut D=(V, M of (N, <) andacut E(WN) of (P, <) suchthat

u belongsto the border B of D, and we have U:(V-{u})ﬂN, L:(M{u})ﬂl. (The
two cases are not exclusive of each other: the one asin the first case is obtained in the second
caseonly if ulB; inthat case, we take W= when ulOM, and N=0 when ullV .)

Similarly, aspan S of (Q <<) iseitheraspanin (N, <) suchthat udS (casel) or
S=Q'R, where Q% u} isaspanin (N, <) ,and R isaspanin (P, <) (case?2).

DEF DEF
Incasel, =[50 = OB incase2, =[80 = O u} JARI U] .

9.5 Proposition The substitution operation is well-defined. Moreover,

[ew/ ul] = [enf [¥1/ul
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The proof is left to the reader.

The name "pasting scheme" should be given to a pasting prescheme © only when © is
"complete” in some sense. Let me say that a pasting prescheme © is complete, and that isa
pasting scheme, if every molecule ® which represents the value of ©, [®] =[0O] , appears as
one of the restrictions @1, for atotal order € extending the backbone order < of O.
(Note that since € isthe order of indeterminatesin O, for two different € and & ,
O and O are different; there can be at most one € suchthat 1€ isagiven @)

A pd is displayable if there is a pasting scheme, a display of the pd, defining it; | don't know if
the display is necessarily unique if it exists.

Note that, in particular, a top-separated pd © can be displayable only if ' has unique
factorization (see section 2).

Let uscall the PPS ¥ an expansion of the PPS O if © isarestrictionof Y :0=WYI<,
where < isthe backbone order of @ ; ¥ isaproper expanson of © is W£0 , thatis
<KL, where << isthe backbone order of WV .

Let uswrite © « ¥ toindicate that ¥ isaproper expansion of O .
Let'scal aPPS © maximal if it has no proper expansion.

Note that "complete” implies "maximal”, or, what is the same, "non-maximal" implies
"non-complete™: if << <, then there is at least one total extension € of <<, which is not
total extension of <, giving rise to a molecule representing W] which is not among the
restrictions of O .

It isatriviality that every pd has at least one maximal PPS representing it: a chain of PPS's
@1 < @2 <..< @k <. .. induces adtrictly decreasing sequence of partial orders

<1D<2D... D<kD... on the fixed finite set N.

The top-separated 2-pd p Lo of the Example after item (vii) in section 4 cannot be
displayable, since it is not uniquely factorable. In particular, "maximal” for PPS's does not in
general imply "complete".

9.6 Proposition (i) For © acomplete PPS, every dlice er(cl, C2) IS
complete.

(i) A displayable pd has strong unique factorization.

Pr oof (i): Let [®]=[01(C;, Cy)] ,andlet ®, , ®, bemolecules such that
[, 0=101U;] . [®,]=[©1U,] . Then for the molecule ¥=®,"0"0, ,  [®] =[] . By
the completeness of © , thereis € suchthat ©1&=® . Then

®=WI(Cy, Cy)) =(014) N(Cy, C,y) = (0N Cy, Cy)) MLIP)
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where P=L 1" U2 . This compl etes the proof.

DEF DEF
(i): Suppose =) OM%W) , U = [#] , L = [V] .Let <<:<<DMP' Since ©

is complete, as the backbone order of the molecule ¥ defining ', < iscompatible with
the backbone order (N, <) of ©,inparticular, C=(U, L) isacutfor (N, ) andfor
(N, <) ;and OM=0"Y . It follows that

®=(0IK) NU=(0IU) I(KTV) ,

[®] = [(OM) MLMY) ] = [(OrY) ],

the last equality being the definition of [(©TMU) ] , the main point being that
[(OMY) N(KMU)] does not depend on € TU (9.3).

We have shown that in afactorization ' = [®] OJ¥] , [®] dependsonly ontheset [ 9] .
Similar statement holds for ¥ . This completes the proof.
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810. Final arguments

We first discuss the possibilities of a converse of the construction [2] in section 9: getting a
planar prescheme out of a 2-PPS.

A 2-dimensional pasting prescheme does not necessarily arise from a planar one, since not
every partial order < of N can be made into a planar arrangement (N,<,—) , and, on the
other hand, by restriction, any < will appear as the backbone order of a 2-PPS.

Given 2-PPS 0=(Y, N, <, 0[50 S<-span Let S beany span; then O[S isof the
form

N ml - m
OlB0O: = S (8 HJZD..ESU mk[Soo @

for some, distinct, elements u; of N, and 1-pd's S://v in the computad Y ; every itemin (1)
is uniquely determined from O[S0 itself; we have that Eui » 1<i <m isaresulting
repetition-free enumeration of S .

We define the relation —g on N by

u—esv@Ei,j. i <) &ui:u&uj:v

with reference to (1) (of course, — S 0 SxS).
Itisclear that — S is an irreflexive relation.

We show that the definition "does not depend on S ":

u, viS;nS, — (u—eslv = u—eszv). 2

The proof is an argument similar to the one used for 6.1 in section 6.

To do the proof, we consider the expressions ©[C u, v] , thatis, @CCJ R] with
R={u, v} ; ©@C{ u, v] isdefinediff u, vOB (=boundary of the cut C).

Let usfix u#v , bothin N. Consider the set Cu v of cuts C suchthat u, vOB(=B[ C]) .

DEF
For CI]Cu v o{C = OCCHu,v] will have one of the following two types, type-1 or
type-2:
o{C = al [l (a5 v (ag (3.)
o{C = alV (a5 i (g ; (3.2)
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of course, only one of the two forms can be present for any one ©{ C} ; and the ingredients
aiC are uniquely determined. Note that (2) will follow if we can show that the type is constant
throughout Cu, v thisis because, while C runs through Cu, v , the ©{ C} run through
appropriate substitution instances of O[S0 for all S such that u, vOS.

We make two observations.

Oneisthat if C, éDCu v C and C are shifts of one another, then they are of the same

type: ©f é} is obtained from ©{ C} by replacing a consecutive part of one of the aiC by

another 1-pd.

Two isthat isthat if C, DDCU, v and p(C, D)>0 (for p(C, D) , see section 3), then there
is CN:DCU,V suchthat p(C, C©) =1 (C isashiftof C),and p(C, D)=p(C, D)-1. (Two
is shown by taking wuUnM or widvLnV, and letting CN:Nbethe wshiftof C; w is
<-incomparableto u and v , thusby 9.1.1 for R={ w} ,CDCU, v ).

The desired assertion follows by induction.

We can thus define, for u, vON,

U—Vv & EB.u—eSv = DS(u,vDS=>u—eSv). 4)

10.1 The 2-dimensional PPS © arises from a planar pasting prescheme if and only the
relation — defined in (4) is transitive.

Sketch of proof Assume that — istrangtive.

It is clear that for any uzv in N, exactly one of the relations u<v , v<u, u—v, v—u
holds. (N, <, —) Isaplanar arrangement.
For any span S, in the expression (1) for @[50, we have that i <j implies u; euj .
Since S isamaximal <-antichain, we also have u; —! Ui 41 and - o—! g um—e! 0
in the obvious senses. Thus, (1) is the same as (6) in section 9, except that we should see that,
in (1), the expressions S& for v—!w, now alowing also v=-« , w=w , are independent of
S.
More generally (but actually, equivalently), we need the following (we assume that v#- o,
wzo in the formulation given next; but we need suitable versons with v=—c and/or w=ow ,
which we leave to the reader to formulate) :

given an closed interval [ v, W - (see section 3: we now do have a planar
arrangement, thus we can use what we know about such) , a maximal span
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Re{v=u, —!u,—!... >lu.=w} in [v,w _ ,thereisalpd [S] 7 of the form

U1

uq
ur an (5)

il
us

(SR = u, s 0.. 5

2 1

with each s§ al-pdin Y, such that for every COC={C: RIB[C] } ,

orCOR = by sy Ry 6)
c

for suitable b1 : bg gdY . Thisis proved by a similar "continuity" argument as was done
above, as follows.

Certainly, we do have, for any OLCI R] , CDCR , auniquely determined expression of the
form (6) , with (5) for the middle factor, if we allow the middle factor [ SVW] R and its
ingredients in (6) to vary with CICp : having [ SY] 7 © instead of [SY] R . What we need
is [S:I'V] R C IS constant; or what is the same, [S:I'V] R C:[ S:I'V] R D for any C, DDCR.

Werecall 9.1, 34, 34'. By 3.4, any C isdetermined by itsrestrictionsto (—o, v) o

[v, W o (w, ) o and these restrictions can be arbitrarily and independently prescribed;
for brevity, call these restrictions C, , C2 and C3 , in the given order. Note that

C=D(rmod R) iff Clle and C:3=D3 . Given any C, DDCR,we can find a connecting
sequence C:C1, Cy, ..., CK:D consisting of adjacent pairs CI : CI +1 of cutsthat are
shifts of each other by an element either in (—w, v) _, . or in (w, o) N . The desired
conclusion is now fairly clear.

Consolidating a practice found in previous parts of this paper, we reserve the notation A[ S]
for a n-pd A suchthat every uOS occursin A exactly once. We use S, as before, as a set
of distinct and "new" n-indets v , onefor each vOS, S aset of ( n+1)-indets, such that
dv=ddv , cv=ccv .

We will prove two lemmas, 10.2 and 10.3, for the purposes of 10.4 Theorem, which is
intended as the main theorem of the paper.

10.2 Suppose S is afinite set of anchored 2-indets, A=A[ S] and B=B[ S] are
1-pd's such that
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for every u0S, Al cv/ V] vOS- {u} = B[ cv/ V] vOS-{u} - @)
Then A=B.
Remark This is false without the condition "anchored”; let u and v be two distinct
2-indets such that cu:du:cv:dvzlx ,andlet A=uly , B=v .
Proof of 10.2 By induction on #S . For #S=0 , the assertion is obvious.

Suppose #S=1 , and

A=Aqiy A [0 A, (8.1)

B=ByV, B, V,0.. ¥,B,,, . (8.2)

Suppose u,#v, . 1o reach a contradiction. We have /=i >1 such that Ui =vq and /=) >1

such that ulzvj )

Let us write u=u, and V=V,

Let us make the two substitutions [ cx/ x] X ZU and [ cx/ Xx] w2y e obtain from (7) :
AgU(A [eu, 0. . [Eu, A, ) =(ByleviB O.. EBj_l) wo.. By,

and

(AgeuA O.. A ) O.. [A,,,) =ByWIB &v,0..cv,B,,,)

and thus, since u and v occur only at the places indicated,
Ag = BolevB 0. B . By = AglBulA O.. A 4 .

Since cu, cv are non-identity 1-pd's, we got that A0 and BO are proper initial segments
of each other; contradiction.

Returning to (8.1) and (8.2), we now have that uy=vy=u. Making the substitution

[ cx/ X] , from (7) we obtain that

A0=Bo ©)
and {u2,...,u£} :{v2,...,v£} =S =S {u} .

X#U

Let
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pU. Ty MA, L,

o..v,[B

A =A

B =B

£4+1 -

We see that the condition (7) for S , A and B’ inplaceof S, A and B,isa
consequence (7) for S, A, B, by using (9) and cancellation. The induction hypothesis tells us
that A’ =B’ ; A=B follows by (9). (End of proof of 10.2)

10.3 Supposethat © and © are 2-PPSs both based on the "backbone” (N, <) such that
DEF

== [[@]]z[[@*]] is an anchored 2-pd. Then 0=0 , that is, OIS0 (B0 for al <-spans
S.

Proof of 10.3 Let ©=(N, <, 080 S be any PPS. Let uN, and € atotal order of
N extending <. The (£, u)-atomof O, denoted ¢@( &, u) , isdefined to be

OLCO {u}] ,where C=(U, L) isthe <-cut "modulo{u}" for which vOU-{u} «<v<u,
VOL- {u} «=vdu . If 01 isthe molecule @, then (& u) = ¢®[u] , in our earlier
notation for atoms in molecules.

L et's make the assumptions of the lemma.

Since = has unique factorization (2.1), it follows that ¢2(&, u) = ¢© (& u) foral uON
and total extensions € of <.

Write A=0[850, B=0 [B0. LetulS. Since S isan <-antichain, there is atotal order €
of N suchthat v€u for all vOS-{u} (take the ordered sum of the following four total
orderings: atotal order of the set { xON: [\OS. x<v} , then one of the set S- { u} , then the
one of the singleton { u} , and finally a total ordering of the set { xUN: [WOS. x>v} ).

For thispair (£, u) , ¢@(<<, u) :A[CV/V]vDS-{u} , and ¢@ (& u) =

B[ cv/ V] vOS-{u} - By the above, the hypothesis of 10.2 is satisfied, and we have our
desired conclusion. (End of proof of 10.3)

10.4 Theorem (i) Every PPS defining a top-separated anchored 2-Pd can be extended
to a planar pasting prescheme.

(it) Every PPS defining a top-separated anchored 2-Pd can be extended to a complete
PPS.

(iif) Any top-separated anchored 2-Pd has a unique maximal PPS defining it, and this
PPS is both complete and planar.

Pr oof This could, probably, be done directly by modifying the proof of 4.2 Theorem.
But, fortunately, there is a shortcut to the result that uses 4.2.

Let I be atop-separated anchored 2-Pd.
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4.2 constructs a planar pasting prescheme p© associated with [T . p© givesriseto aPPS ©
by the construction [2] in section 9. By definition, the backbone order < of p® and of © is
the intersection of the total orders <o associated with all molecules d)DGr defining I' ; and

4.2(ii) says that every dJDGr equals the restriction or<¢ . In other words, © isacomplete
PPS defining T .

Given any PPS @* defining I, for its backbone order <* , we have <D<* , SiNce every
total extension € of < is <o for some GJDGr ,hamely ® =0 K, and therefore every
total extension of <* isatotal extension of <. Consider the restriction @H* . By 10.3, we

must have ©1< = . We conclude that © extends © . This proves both (i) and (ii).

If G)* Isamaximal PPS defining I , we still have that the given © extends it; but then, we
must have © =0 . This proves (iii).

To deal with the last assertions of section 2, let us start with a complete planar pasting

prescheme, (N, <, —, ddrl’, ccl, §) in the notation of 4.2 in section 4, defining the
anchored 2-Pd '=( X, I') . We use the notation and terminology of section 8, as well as the

notational conventions put down at the start of section 6: C=(U, L) , D=(V, M , etc.
All indets and pd's are in the computad X .

Let C beany cut. | claim that

10.5
s([C]) Os(dr) O \Js°(cv) . (10)
viUU

Thisis seen by induction on the cardinality #U of U asfollows.

When #U=0, (S.%) =dr , and the assertion holds

Let #U>0 . Thereis C suchthat C<! C, C isthe u-shift of C (see section 3), uB,
ulB, #V=#U 1.

Since C and C agree on the open intervals ( —, u) o (u, ) R , we have
DE f; DEF

F ~
= (50 C=(s) . s, = (shC=(sh©.

S 2 -

1
Also,
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(s,") “=s, @us, (11.1)

-0, C_
(s,)"=S,Euls, , . (11.2)

By the induction hypothesis, (10) holds for C in place of C; thus, by (11.1), s( Sl) ,

s(S,) aesubsetsof s(dr) 0 | s°(cv) . By (11.2),
vOU=U- { u}

s((S;™)9 =s(s)) B°(cu) B(S,)
since the the left and right end-0-cellsof cu areincluded in S1 , resp. 82.

(20) for C follows.

The inequality, going in the opposite direction,
\s(eu) 0s((S,"9 (12)
ullB
follows (11.2) being true, with suitable 1-pd's S1 and 82 , forany ulB.
More generally, with the same proof, we have

10.5 If D<C then

[Djo[Cco \J s°(cw . (12)
waiU- Vv
Now, assume that I is separated.

10.5" For any cut C=(U, L) , vOL,wehave s°(cv)n[C]=0.
This isimmediate from 10.5, and the definition of "separated".

Take two different cuts C and D. Thereis v such that either vOUNM or vOVnL .
Assume, for instance, the first alternative. Take uDB=uU such that v<u . Then, of course,

uOBNM.

Remember (item (3) in section 8) that the sets s(dlN) , s°(cx) (xON) are pairwise
digoint.
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Since I isanchored, theset s°(cu) isnon-empty.

By (12), s (cu) isa subset of s((S;ooo)C) ; and the same set is digoint from
s((S;om)D) by (10) appliedto D in place of C. We conclude

10.6 (I isanchored and separated) The mapping Ct ( S;o°°) c , from cutsto 1-pd'sis
one-to-one. In fact, the mapping Ci—>s( ( S;o°°) C) from cuts to sets of 0- and 1-cellsis
one-to-one.

The 1-pd'sin X of the form (S;°°°)C, COC , are called the 1-cutsof T .

A 1-pd a being 1-separated has been defined; it is the same as being top-separated. It means
that, a being the composite of the 1-pd's r i 'sasin

X

r r
3 m 1
3 Xm, (13)

that the r i ae pairwise distinct, without saying anything about the zero-cells.

sl(a) denotesthe set supp(a) n X 1 -

10.7 (i) In a separated anchored 2-Pd T, all 1-cuts are 1-separated.
(i) In a separated positive 2-Pd I , al 1-cuts are separated.

Pr oof (i) Let C=(U, L)OC, a=( S;o°°) C. If U=0, the assertion is true by the

definition of I being separated. We prove the assertion by induction on #U , the base case
#U=0 having been handled.

Assume UzL , and let uOuU=B . Let usshift u "down", to get the cut C. Then, with

5,25, “=(S,) ©. s,=(s) C=(st) © . we have

[cI=(s,"© = s, &urs,

v e &
[C1=(S;”)~ = S, Muls, .
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We know that s [C] Os(dr) O NU s‘(cv) . Therefore, s,(cu) Os°(cu) is
vOU=U- { u}

digoint from both sl(Sl) and 51(82) . By the induction hypothesis, [[f:]] is

1-separated; hence, both S1 and 32 are 1-separated, and sl(Sl) ,sl(SZ) are digoint.

From the expression for [C] , it now followsthat [C] is 1-separated.

(i)  The proof for (i) isto be repeated, with the following addition: since [[f:]] is
separated, and du isnot an identity, we have that ddu#ccu . Thisis enough to conclude

that, given that [[é]] is separated, so is [C] .

10.8 Let p=p[u] , o=0] v] be l-atoms, and assumethat p [t iswell-defined. Assume
DEF
that cu, dv are proper (not identities), and that paro = cp=do is l-separated.

Then p«— 0 (see section 2, after item 2.1) if and only if

sl(cu) nsl(dv) =0. (14)
Pr oof "If": Assume (14), to show p«—0o.
Let paro be displayed in (13); the ri 'saredigtinct. Let p=b[u e , o=b Vv & .

Wehave pro=cp=Dbltule ;since cu isproper, thereare 1<i <j <N such that

cu=r; a.. Drj . Similarly, we have 1<k</<N suchthat dv=r K a.. o /- Clearly, (14)

iff either j <k (casel), or /<i (case?2).Inthe first case, let S:rj +1 a.. o k-1 (when

k=) +1, S=i dX ); we have now the condition 4.1(i) with S as given; thus, p— o . The
Kk

second case gives 0—p .

"Only if": Clear from the "moreover" part of 4.1(i).

a, b denote 1-pd's.

The 1-pd a isapart of the 1-pd b if b:blmEb2 for suitable b1 and b2 ; notation:

allb . If b isseparated and allb , then a isseparated. If both a and b are separated,
then allb iff s(a)Os(b) .If b isseparated, allb and db, cbls(a) , then a=b .

From now on, we assume that =( X, I') is positive and separated. All indets and pd's are in

X -- unless stated otherwise. With Y=XI<1, 0O=(Y, N, <, 0[50 S denotes the complete
PPS displaying I ; we know © is planar.
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109 Let C=(U, L) beanycutin (N, <) , B itsborder, XxON. Then xOB iff
cxO[C] ,and xOB iff dxO[C] .
Pr oof The "only if" assertions are obvious.

We show that if udU- B, then -(cxO[C])) .

Assume uU-B. Thereis vOU such that u<!v . By 4.3(v), let ® be such that u<¢! v

and ~(ues ) ;thatis for p=¢”[u] , 0=¢°[v] , wehave ~(p<o0) .By 108, we
have sl(cu) nsl(dv) #£0 .

Let stl(cu) nsl(dv) .Letthecut D=(V, M be defined by V={w. wxv} . We have
u, vV and D<C.

| clamthat f Os( [D]) . Namely, for D obtained from D by shifting v down,

[D) =d, v &, ; and [D] =d;Evd, withthesame d; and d, .But [D] is
separated (10.4); in particular, sl(dv) isdigoint from Sl(dl) Dsl(dz) . Therefore,
since f Os(dv) , we have st(dl) Ds(dz) .Also,sl(cv) is digoint from sl(dv) It
followsthat fOs( [D]) .

Since D<C, we have the relation (12') (10.5"). For al wiV- U, w#u (since ullV) and so
s°(cw) ,s°(cu) aredigoint; fOs(cu) and fOs(cw). It followsthat fO[C] . We

have shown that ~(cxO[C]) .
Similarly, vOL-B impliesthat -(dxO[C]) .

Assumethat cul[C] . uOL would imply sl(cu) n [C] =0 (see 10.5), which, since
s,(cu) #0, contradicts culJ[C]) . Thus, ulU. But then ulB, since ubU-B would imply
a(cul[C]) .

10.10 Every 1-pd is a part of a 1-cut.
Pr oof By induction of N=#N, the number of 2-indetsin I .
The assertion is clear when N=O .

Assume N>0 , and let Xx[ON be <-maximal (lowest): no vION such that x<v . Consider the
<-cut C=(U, L) forwhich L={x} , U=N-{x} , and consider the restrictions I MU, T I
(see[4] insection 9). Let A=[C U] , ¢=TIL] ; ¢ isanaom ¢[x] ,and [A]=U. [ IU

is a complete PPS (see section 9); thus, by 10. 4, [ MU isthe unigue planar conpl et e PPS
displaying A . Thus, we can apply the induction hypothesisto A (having one fewer 2-indets

than I ) and [ MU the "display" PPS given by 4.2 for A .
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With X =supp(T'tJ) ,wehavethe Pd A=(X , A) and the fact that [X| _; =

X 14 s °(cx) (by 8.(2) and separation). Therefore,

(15) for any XDSO°(cx) ,ifal-indet f in X isincidenton X ( X=df or
X=cf ), then stl(cx) .

Let a beal-pdin X.We distinguish two cases. Case 1: sl(a) msl(cx) #£0 , Case 2:
otherwise.

We treat Case 1, and leave the similar Case 2 to the reader.

Assume Case 1.

It follows from (15) that there isa unique 1-pd b such that sl(b) =sl(a)nsl(cx) ;

moreover, b isapart of bothof cx and a. b may be denoted as cxna. b is
proper (not an identity 1-cell).

Let uswrite cx inthe form (13).
Consider the following four mutually exclusive and jointly exhaustive cases:

Case 1.1: b isaproper initial segment

r r
1 k-1
X Xk
of cx ( 1<k<m);
Case 1.2: b isaproper end segment
r. r
I m 1
Xi C Xm

of cx (1<i<m);

Cae13: b=cx;

Case 1.4: r1Ds(b) , rmle(b) )
In case 1.1, we must have that ca=cb=Xk , Since there cannot be any stl(a) with
df :Xk . Therefore, with a’ theinitial segment of a ending in X1 (a ispossbly

improper), the 1-pd a=a’ ~dx iswell-formed, anditisin X . Theinduction hypothesis for
A inplaceof ' saysthat thereisacut C =(U ,L’) of (N, < )=(N{x},<MU) such

that a isapartof [C ] .

Form the cut é:( U, I:) of (N, <) forwhich U=U , L=L’ ﬂx} ; by the choice of x ,
C isacut. Let B be the border of C.
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Since dx isapart of [C] , we must have that x B (10.9). Therefore, we can shift x up,

and form the cut D=(V, M) for which V=U{ x} , MeL-{x} =L’ .Itisclear that
a=a’ "b isapatof [D] .

Case 1.2 issimilar to case 1.
Case 1.3: we now have that a:al"cx’\a2 , With a, and a, possibly improper; we can

pass to r?tzalf‘dx"a2 ,al-pdin X .From here, we proceed similarly to case 1.1.

Case 1.4: In this case we must have that a=blOcx . alJ[C] forthecut C=(U, L) for which
U=N, L=0,since xOB for B the border of C.

The proof is complete.

A long 1-pd is one whose domain is ddl" , codomainis ccl . Every 1-cut islong. Asa
consequence of the above, we have

10.11 The mapping Ci— [C] isabijection from cuts to long 1-pd's.

For any separated 1-pd a , apart bla , and another 1-pd b parallel, we can substitute b
for b in a,and get the 1-pd af b/ b] :if a:alEbm2 ,then a[ b/ b] = alEﬂnm2 .

Note that, without the assumption of separatedness of a , the substitution notation would not
be sound, since it would not necessarily be unambiguous.

This notation will be used in three ways.
On the one hand, as a simple general formula valid for any atoms ([ W]
cy=(dy)[cw dw (16)
foral i=1,...,m.
On the other hand, if C<! D are <-cuts, and D isobtained by shifting u up, then
D] = [C][cu/ du] . (17)
(Write

[ = (s, ‘s ©= (s, Crmursy) ©;
and

o) = (s, P unst) P= (s, Peusy P
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and note that (™) “=(S*) P, (SY) “=(sY) P this makes (17) clear)

The third use is an extension: it is up-substitution. Given separated 1-pd a . apart bla , and
az2-pd A suchthat ddA=db, ccA=cb (A is"paralel” to b ), wecan write a[ A/ b]
for a, W)\ mz , Where a=a, (b mz .

This substitution operation has certain obvious properties, which are best mentioned if at all
when they are used.

If 2-pd's ' and A areintherelationship that M'=b [A[& for suitable (and obviousy unique)
1-pd's b and e, we say (somewhat temporarily ...) that A isatruncation of I . Two
2-pd's are truncation equivalent if there is a third one which is a truncation of both; note that
any 2-pd has a unigue "smallest" truncation that has no truncation other than itself; "truncation
equivalent” is the equivalence relation generated by "being a truncation of".

Recall the "dlices" of subsection [4] of section 9. A dlice of aPPS © isanother PPS,
o Cl’ CZ) , for suitable data C1 , C2 . Given an anchored, and in fact here positive, 2-pd

I, adiceof I isthe 2-pd which isthe value of a dlice of the complete PPS displaying T .
More formally, adiceof I is [[@P(Cl, C2)]] , for © the complete planar pasting

prescheme displaying ' (10.4) and for any pair ClsC2 of cuts of the underlying backbone
order (N, £) of O.

10.12 ('=(X, ') positive separated 2-Pd). Let A beany 2-pdin X.

(i) A isseparated.

(i) A isthe truncation of adiceof I .

@iii) [A] (the set of 2-indetsin A) isa <-convex subset of N=[T] .

(iv) Every <-convex subset P of N isthe set of 2-indets of some 2-pdin X ; there
isa2-pd A suchthat [ A] =P ; every convex P is"composable" (in this new sense being
introduced now).

(v) If P isahorizontally full convex set, then, up to truncation equivalence, there is a
unique 2-pd A such that [ A] =P ; every horizontally full convex set of 2--indets is "uniquely
composable” (in this new and restricted sense being introduced now).

Proof of 10.12 Let A beany 2-pdin X. A isrepresented by a molecule
Y = (l.,Ul[Wl],...,l.ﬂn{Wn,]) :

At the moment, we are not even assuming that ¥ is top-separated, although it will soon
transpire that in fact ¥ must be separated.

Consider dA, cA;let X=ddA, Y=ccA . By 10.10, there is a (non-unique) <-cut C such
that

[C]=b A& (18)
for suitable 1-pd's b and e ; wefix C. Asusua, wewrite C=(U, L) , B the border of
C.
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[C] being separated (10.7), b and e are unlquely determined by the relation (18) as the
(X, Y) -segment of [C] , where cb=X and de=Y

As a part of the separated 1-pd [C] , dA is separated.
dw1 isapart of dA=d wl . We have

d, = cyy = (dyy) [owy/ dwy] (19)

Being apart of dA, dwy isapatof [C] .By 109, wlDB . By shifting w; , we obtain
from C:C1 the cut C2 . We have

[C. ]] = [[Cl]][cw [dw,] (20)
Since I is separated, s°(cw1) isdigoint from s [[Cl]] (10.5"), and a fortiori, from
s °(dA) =s°(d¢:1) .

(18) says
[[Cl]] =b Etblwl I (21)

By (21), (20) and Clﬂlzdl./,lz ,
[C,] =bdy, e (22) .

What we have seen so far is the beginning of an obvious induction. By induction, we prove
that

(**) there are cuts C1 ..... Cm+1 , such that, for al 1 =1, ..., m, CI +1 IS obtained
from CI by shifting W up.
Of course, there can be at most one the sequence C1 ..... Cm+ 1 @ described; only the
existence is a question. We add the relation
bEtLpi_lte (i=2,..., m+1)
[C) = | (23)
b Edtpi (& (i=1,..., m )

to the inductively proved properties of the CI .

Suppose /<m, and the above has been established for i </ .
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dwz is a part of dwz,and, by (23) for i=£,dw£ is a part of [[Cﬁ]] . Thus, dwz isa
partof [C,J . It follows (10.9) that w 0B
W oy

/1By - In particular, W, W for i </ since

/-
WKD-BK says that we can shift w, up and obtain the cut C£+1 from Cz . By (17), we have
[[C£+1]]:[[C£]][CW£/ dwl] : (24)

Ther ef or e,

[[c£+1]]?[[cé]][cw£/dw£] = (by,®)[cw,/dw,] = by [cw,/ dw,] &=

(24) T T
(23) (i =¥) dWKDdLﬂz
=bB:Lp£Ee = bEdLﬂ“l@
(1(T3) dwzilzcwl if £<m

whichis (23) for i={£+1. Theinduction for (**) is complete.

Let i {1, ..., n} . By 10.5", s°(cvvi) isdigoint from s( [C]) , since W 0L . Since

dA isapart of [C] ,s°(cvvi) is digoint from s(dA) . The w. aredistinct; I is

separated; the s °( CW ) aredigoint from each other. We have shown that A is separated
(part (i) of 10.12).

At this point, we may observe that we have proved 2.13 Proposition.

Note that the set

P={ Wy e Wn} equals Lanm’rl =N Ul- Lm+l . (25)

Consider the dlicing given by the pair ClsCm,rl of cuts (see part [4] fo section 9). Let = be
the dice defined by the dicing: == [[@P(Cl, CZ)]] ; © isthe complete planar PPS
displaying T .

By definition, [ Z] =P . Onthe set M={ Wy, Wn'} , let the order € be defined by
Wi(<Wj iff i <j .Sincewith CJ:(UJ-,LJ-) W DLj andfor i<j , wOU , w 2w
isimpossible; < iscompatible with < . By the completeness of @r(cl, CZ) (9.6), there is
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amolecule ® such that <¢:<< and [[®] == . By definition, we have

0= (olwyl, Lol .. G fwe])

| claim that
o lw] = [GIIw/dw] =[G ][w/cw] ; (26)
in particular
cc,bi 1 (i=2,..., m+1) (26.1)
[C) = |
dlﬂi (i=1,..., m ) (26.2)

To prove this, we note first that [[Cl]] =dA=d¢, , [[Crrvrl]] =cA=c¢,, by section 9.
From d( ¢l[ W1] )= [[Cl]] , it follows that
o[ wy] =[C 1 [ wy/ dwy] - (27)
since [[Cl]] is separated, w, can be fitted to it in only one way.
Similarly, since c(d)l[wl]):[[CZ]] ,
dylwy] =1C D[ wy/ cwy]
Next, we have
c(9,Iwy]) = [C I cwy/ dwy] ;
this follows from (27) without any additional assumption. From (18) and (**),
[Cidlew,/dw] = [C5]
and, of course,
d(dolwy]) =c(dqlw])
thus, by the last three displays,
d($,lwy]) =[C,]
from which (the main step),

dolwo] = [CoD[wy/ dwsy] .
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And so on by induction; this suffices for the claim.

Let us put (26) and (23) together. We obtain

dilw] =

= G I[w/dw] = (br(y [w]) &) [w /dw] =

= (b [dw ] (&) [w/cw ] = b0y [dw][w/dw]
=b0y e .

Since A:(,U1 a.. me and E:¢1 a.. Dl)m, by the distributive law (see [M]), we have
==b [N\ [& . We have shown that A isatruncation of the dice =.

We have proved (ii). Parts (iii), (iv) and (v) follow from section 9.

215 isfairly clear from 10.12. Givenany 2-pd A in X, we have ClsC2 asin 10.12; we
write T,=[0M);] , ==[ONCy, Cy) J=b A&, T,=[OFL,] ;with ul|A, u new, let

r=r, q{buce) 0, ;then r=r, ED,=I [Au] .

1

Part (c) of 2.15 is seen because, using the notation of the proof of 10.12, we have the fact that
" is separated, and

m
s(A) =s(dn) T\ s°(ew) |
i =1

S ) ={u} Ts(dA) T's°(b) Fs®(e) I's°(cA) 0 \J s°(cx) 0 \J s°(cy)
xUu ylL

1 2
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