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Computads and 2 dimensional pasting diagrams

by M Makkai

Introduction

1. This paper is the second installment of a series whose first item is the paper [M]. In [M], a
paper was promised, [M4] in the references section there, with the tentative title "A
2-categorical pasting theorem: revisiting John Power's paper [P1] of the same title". The
present paper is what [M4] has become.

The introduction of [M] should serve as a general introduction to the present paper as well.

The notions of " ω-category" and "computad" come from the work of Ross Street.

The basic notions of and around " ω-category" and "computad" will not be recalled here. By
now, these concepts belong (or should belong ...) to the common knowledge in category
theory. For instance, the reader is not far wrong if he/she takes "computad" to mean "free
ω-category". However, the ways these concepts are formulated in this paper, and the special
notations used when dealing with them, will have to be gleaned from [M], which is intended as
a "foundational" paper for these concepts.

In the introductory first two sections, two things are done. First, we recall the necessary
background material on computads, mainly by citing definitions and results from [M], but also
by introducing new terms and statements which are in [M] only implicitly. The definitions and
results cited are relevant or valid in arbitrary dimensions. The results cited from [M] are
marked by the symbol [M], and numbered in the style [M](i), [M](ii), ... .

Secondly, in sections 1 and 2, we also state some new results. The theorems and propositions
in sections 1 and 2 marked in the style 1.1, 2.1, 2.2, ... will be proved only later in the paper.
On the other hand, similarly numbered corollaries of the above are proved on the spot.

There is one constraint observed in sections 1 and 2: only such new results are stated which
have straightforward conjectured higher-dimensional generalizations, although the results
themselves are claimed and stated only for dimension 2, and occasionally 3.

In section 2, among others, an analog of John Power's theorem, 3.3 Theorem in [P1], "Every
labelling of a pasting scheme has a unique composite", is stated (2.12 Theorem).

In the second part, from section 3 on, the concepts and results of a new "geometric theory" of
computads, presently established only in dimension 2, are presented. After the purely
combinatorial and elementary section 3, concerning what we call "planar arrangements", the
first of two forms of the main result of the paper, Theorem 4.2, is formulated in Section 4.
With the exception of those in section 9, all results of the paper, including the ones stated in
sections earlier than the fourth, are essentially (that is, modulo the basics in [M]) corollaries of
the main result 4.2.

Theorem 4.2 is a reconstruction of the "geometry" of a 2-dimensional pasting diagram (2-pd),
valid for the class of 2-pd's called anchored (for the definition, see below; the terminology has
been suggested by Andre Joyal). The geometry in question is given by postulation in [P1];
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here the "geometry" is computed from the algebraic expression of the pd.

2. There are two concerns in the paper, one explicit, the other somewhat implicit: the interest
in general laws on the one hand, and computational procedures on the other.

The "geometry" of a pasting diagram is what we display when we draw the diagram. This is
the primary aspect of the subject: it is what we are given, informally of course, when we start
the investigation (witness the first few sentences of John Power's paper). It is a compelling
idea to follow the hunch that there are general laws and procedures behind the drawing of
categorical diagrams.

The theorems of the first four sections state the laws, proved for a small beginning range of
cases and conjectured for others, of pasting diagrams. The computational procedures of the
subject are shown only later; nevertheless, they are the first motivation for the paper.

For example, 2.2 Theorem, part (c), says that there is a so-called planar arrangement of the
occurrences of the indeterminate 2-cells of a 2-dimensional pasting diagram (pd), under a mild,
but important, restriction on the pd itself. This is our way of stating that a 2-pd can be drawn
in the plane. But in fact, the complete point is not just that this "drawing" exists, but also that
it can be computed. Namely, given a symbolic representation for the 2-pd, in the form that we
call a molecule -- which is just a somewhat normalized syntactical term in the language of
operations for the notion of 2-category -- we can effectively and "naturally" calculate said
planar arrangement.

This concern for calculation explains a certain repetitiveness in the paper. The calculation just
alluded to leads naturally to a tree, depending on the given molecule, that represents the steps
in the calculation. The given molecule stands for a 2-pd that can be defined by numerous other
molecules -- in fact, these latter molecules will all appear at one stage or another in the
construction of the tree attached to the given molecule. The trees induced by these variant
molecules are all different from one another, but they are all, essentially, spanning trees of a
certain graph which is an invariant object attached to the 2-pd itself.

The graph is mentioned early on; 2.4 Corollary is a result, in the "anchored 2D" case, that
gives an abstract description of it. On the other hand, the trees appear only in section 5. They
are used to prove all the results stated in the earlier sections. The trees would have been easy
to avoid altogether, by somewhat reformulating the proofs, if we had been only interested in
the abstract/invariant laws without the calculations. As things are now, in the preparatory
stages of dealing with the computational trees, we are compelled to state variants of a number
of constructs that had been mentioned in the context of the graphs.

Computads and pasting diagrams serve as the basic carriers of the syntax of higher
dimensional categories, weak and strict, as explained, for instance, in the introduction of [M].
This explains the interest in computational aspects of computads: following the lead of Gottlob
Frege and David Hilbert, we adhere to the doctrine that all aspects of pure syntax have to be
calculable and/or decidable.

3. I will now comment on the two main new concepts of the paper, that of planar pasting
prescheme, related to dimension 2, and the more general pasting prescheme relevant in
arbitrary dimensions.

"P
�
anar Pasting PreSchemes", P

�
PPS's for short, are introduced in section 4. John Power has

"pasting schemes" in both [P1] and [P2]. P
�
PPS's are different from Power's concept for
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dimension 2 in [P1] (and of course, different from that in [P2] too), but serve in similar roles.
The prefix "pre" is there because the term "planar pasting scheme", P

�
PS, is reserved for a

P
�
PPS which is "complete" in a suitable sense. P

�
PPS's have unique composites, by design

(that is, the proof that they do is more direct than in Power's case). The composite is a general
2-cell, also called 2-pasting diagram (2-pd), in (the underlying 2-category of) the underlying
computad.

The main result, 4.2 Theorem, says, in essence, that every 2-pd satisfying a smallish but
essential restriction ("anchored") has a complete P

�
PPS displaying it (the composite of the

P
�
PPS is the given 2-pd). The uniqueness of the displaying P

�
PPS is essentially obvious; but

it is returned to in section 10.

Notice the opposite natures of the general outline here and of that in [P1]. In [P1], the 2D
diagrams are defined as those given by a pasting scheme, and the work to be done is in
showing that they make sense as 2-categorical composites. Here, the 2D diagrams are given in
advance algebraically as 2-categorical composites of indeterminate cells in a computad ("free
2-category"); the work is to show that there are pasting schemes in the new sense that display
them.

The general notion of "Pasting PreScheme", PPS, is introduced in section 9. It is formulated in
arbitrary dimensions. The main result of the paper concerning this concept is that any PPS has
a unique composite (9.3 Proposition). There is no analog in the paper of the hard work done
for the planar pasting schemes, the construction of them for a large class of 2-pd's; this analog
is planned for the future installments of the series.

Although it is not true that every 2D pasting prescheme is planar, the truth is not far from
saying that. The main result of the paper, expressed in terms of the general notion of pasting
prescheme, is that any PPS of an anchored 2-pd has a planar extension, and (therefore, by 4.2
Theorem) there is a unique pasting scheme (complete pasting prescheme) displaying any given
anchored 2-pd, which is in fact planar (see 10.4 Theorem).

§1 Types, shapes and occurrences

Pasting diagrams

Let us codify the concept of "pasting diagram". A pasting diagram (Pd for short) is a pair
(X, Γ) where X is a computad, Γ is a cell of the ω-category X , Γ∈

�
X

�
, and

X=Supp (Γ) . (1)X

The idea is that X is the diagram itself, which pastes (composes) into the composite Γ . So,
in fact, the expression "pasted diagram" would be more suitable. Fortunately, "Pd" is neutral
with respect to the two readings.

The capitalized version "Pd" is used for the concept that contains it's own "context" as (X, Γ)
contains a reference to X . A "pd" uncapitalized is an element of

�
X

�
, with X given in a

larger context.

The equality (1) means that all the indeterminates in X are used in writing Γ . This way of
saying the matter is a correct definition if the cells in a computad are taken to be equivalence
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classes of terms formed from the indeterminates as "variables" (see [Pe], or [M] where Jacques
Penon's [Pe] definition of computad ("polygraph" in French) via terms is re-stated). On the
other hand, one can define, for any computad X and any Γ∈

�
X

�
, Supp (X) , aX

subcomputad of X , whose indeterminates are the ones "used" in Γ , in a purely algebraic
manner too; see [M].

*The datum Γ , the composite itself, is not a superfluous item. With X generated by the
single 0-cell X , and the single 1-cell f:X � � X , we have infinitely many Γ for which

* m(X , Γ) is a Pd: all the composites f (m=1, 2, 3, ...). The reader will be right if he/she
thinks that we should be interested in when a computad X has a unique composite, meaning
there is a unique Γ for which (X, Γ) is a Pd.

The notations (X, Γ) , (Y, Λ) will always mean Pd's in the sense just codified. We also
write Γ for (X, Γ) , Λ for (Y, Λ) .� �

Let's define the category of pasting diagrams, Pd , to have objects the Pd's, and arrows
f f(X, Γ) ������� � (Y, Λ) those X ������� � Y in Comp for which f(Γ)=Λ . Pd has a forgetful

functor Pd ����� � Comp . ( Comp is the category of all (small) computads: see [M]).

The dimension of the Pd (X, Γ) is the dimension of Γ (as a cell of the ω-category X ). We
have dim(X,Γ)=max{dim(x):x∈ � X � } .

Pd is the full subcategory of Pd whose objects are the Pd's of dimension n . The notationn
Pd is analogous.≤n

An Indeterminate (Indet for short) will be a Pd x=(X, x) where x∈ � X � , that is, x is an�
indeterminate (=free generator; see [M]) in X . Indet is the full subcategory of Pd
consisting of the Indets.

If (X, x) , (X, y) are Indets with the same underlying computad X , then they are the
same: x=y : this is obvious, since x is the unique maximal-dimensional indet in X . On the
other hand, two different Pd's may have the same underlying computad.

Indet is not only a full subcategory of Pd , but it is a sieve in Pd : if
Γ=(X, Γ) ����� � (Y, y) , and (Y, y) is an indeterminate, then Γ is itself an Indet;� �
f(Γ)=y implies that Γ∈ � X � : this was proved in [M].

Indet is defined as the full subcategory of Indet whose objects x=(X, x) are them/1 -
many-to-one Indets, that is, are such that cx is an indet too. Indet is also a sieve inm/1
Pd .

The Indets play the central role among the Pd's; in fact, in a sense, every Pd can be "replaced"
by an Indeterminate, albeit by one of one-higher dimension. For the Pd Γ=(X, Γ) , consider�

�
the many-to-one Indet Γ=(X[x][y], y) defined, in two steps, by first adjoining to X the�
new indet x of the dimension of Γ with the specification dx=dΓ , cx=cΓ , and then
adjoining y of one higher dimension with dy=Γ , cy=x .
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�
Γ is, of course, defined up to isomorphism only, although, as usual, we pretend that it is�
strictly specified.

� �
There is an obvious bijection between hom(Γ,Λ) and hom(Γ,Λ) . In fact, we have an� � � �
equivalence of categories

� �
(Γ � � Γ):Pd ����������� � Indet� � m/1

Typing and occurrence

fWe will call the Pd Γ=(X, Γ) separated if for all Λ=(Y,Λ)∈Pd and all Λ ������� � Γ in� � � �
Pd , f is necessarily an isomorphism.

A computope (see [M]) is an Indet (X, x) such that for all Indets (Y, y) and arrows
f(Y, y) ������� � (X, x) , f is necessarily an isomorphism.

We say that the computad X is a computope if there is a, necessarily unique, computope
(X, x) with underlying computad X .

From the fact that Indet is a sieve in Pd , we immediately see that an Indet is a�
computope iff it is a separated Pd, and the Pd Γ is separated if and only if Γ is a� �
computope.

The category of all computopes, Ctp , is defined as the skeletal full subcategory of Comp
itself, whose objects form a full set of representatives of isomorphism types of all the
computopes. (Thus, we allow all computad morphisms f:A � � B for computopes (A, x)
and (B, y) , not just the ones in Indet .)

It is an important fact (see [M]) that Ctp is a finitary one-way category. A category D is
finitary if for all objects X in D , the set {f∈Arr(D): c(f)=X} is finite. D is one-way
if there is no infinite descending chain

f f f0 1 0X ������������� X ������������� ... X ������������� X ������������� ...0 1 n n+1

of non-identity arrows in it. (The finitary-ness of Ctp is not immediate; the one-way quality
is.)

In [M], the following are proved.

Theorem [M] (i) For every Indet x , there is a computope y with a morphism� _
y ��� � x ._ �

(ii) For every Indet x , there are only finitely many non-isomorphic�
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Indets y having an arrow y � � x to x ._ _ � -

((i) is 11.(4) in [M]; (ii) is stated in the proof of the same 11.(4) as "the isomorphism types of
resolvents of B form a non-empty finite set".)

Corollary For every Pd Γ , there is a separated Pd Λ with a morphism Λ ��� � Γ ; up to� � � �
isomorphism, there are only finitely many such Λ .�

�

To get the Corollary, apply the Theorem to Γ as x .� �

Referring to the Corollary, Λ is called a type for Γ ; a morphism Λ ��� � Γ a specializing� � � �
morphism for Γ .�

We say that the Pd Γ is uniquely typed if�

1) the specializing morphism for Γ from any type of Γ to Γ is unique: for Λ� � � �
f������� �separated, if Λ Γ , then f=g ;� ������� � �g

and

2) the type of Γ is unique up to isomorphism: if Λ , Ξ are separated, and� � �
Λ ����� � Γ ��������� Ξ , we have Λ ≅ Ξ .� � � � �

Note that 1) is equivalent to the seemingly stronger condition

f* ������� �1 ) for any Λ , if Λ Γ , then f=g .� � ������� � �g

�

The reason is that, given Λ , by the previous Corollary, there are separated Λ and� �
�

hΛ ������� � Λ ; by 1), f � h=g � h ; but h , as any map of Pd's, is surjective on indeterninates; it� �
follows that f=g .

The main motivation for the foregoing notions is the desire to understand the idea of an
occurrence of a generator x∈ � X � in a Pd (X, Γ) .

* mIn the example Γ =(X , f ) (m=1, 2, 3, ...) above, it is natural to say that the 0-cell X� m
"occurs m+1 times", and f "occurs m times", because this way of talking will match the

mdrawing of the arrow f as the composite of a diagram:
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f f f fX ������� � X ������� � X ������� � ... ������� � X . (2)

* *Let Λ =(Y , Λ ) be such that Y is generated by the distinct 0-cells X� m m i
(i=1, ..., m, m+1) and the 1-cells f :X � � X . Let Λ =f ⋅... ⋅f . Λ isi i i+1 m 1 m � m
separated. The drawing of Λ is� m

f f f f1 2 3 m-1X ��������� � X ��������� � X ��������� � ... ������������� � X .1 2 3 m

There is a unique map Λ ��� � Γ ; and, up to isomorphism, Λ is the only separated Pd Λ� m � m � m �
with a map Λ � � Γ . These facts allow us to say that the ith occurrence of X in (2) is X ,� � m i
and the ith occurrence of f in (2) is f . We have not only accounted for the number ofi
occurrences of each generator, but have succeeded in defining what an occurrence is.

We may conclude that if the Pd Γ is uniquely typed, by f:Λ ��� � Γ say, the notion of an� � �
occurrence of any given indet x∈ � Γ � , as well as the number of distinct occurrences of x ,�

-1are clarified: an occurrence of x is any element of the set f (x) ; the number of
-1occurrences of x is the cardinality of the set f (x) . The fact that the typing (Λ, f) is�

defined from Γ uniquely up to a unique isomorphism tells us that we will have a sound�
notion of occurrence.

Let us review the low dimensions as to unique typing.

In dimension 0, everything is trivial.

Next, one sees easily that every 1-Pd is uniquely typed.

However, in dimension 2 , it is not difficult to find a Pd that is not uniquely typed. In [M], the
following example is given.

We let X be generated by the indets X , u and v , where dim(X)=0 ,
u������� �dim(u)=dim(v)=2 , and 1 1 . We let Γ=u ⋅v . Since u ⋅v=v ⋅uX ������� � Xv

≅(Eckmann-Hilton), we have the automorphism h:(X, Γ) ��� � (X, Γ) that flips u and v .
Since (X, Γ) is separated, (X, Γ) is its own type, and 1) fails.

Thorsten Palm showed me an example for which 2) fails -- but, unfortunately, I do not
understand it.

On the other hand, every 2-Indet (Indet of dimension 2) is uniquely typed. In fact, if
fx=(X, x) is a 2-Indet, then (Y, y) ������� � (X, x) is a typing for x iff, with the definitions� �

Y =Supp (dy) , f =f
�
Y , dy = (Y , dy) , etc, we have that1 Y 1 1 __ 1
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(a) ddy≠ccy unless dx or cx , hence dy or cy , is an identity; and
f f1 2(b) dy ��������� � dx and cy ��������� � cx are typings for dx and cx , respectively,__ ��� __ ��� ��� ���

incl incland Y is the pushout of Y ��������������� Y ����������� � Y where Y =Supp ({ddy,ccy}) ,1 3 2 3 Y
with f defined compatibly with the pushout diagram.

�
Since Γ=(X, Γ) is uniquely typed iff the Indet Γ is, we have that not all 3-Indets are� �
uniquely typed.

A large class of 2-Pd's, and the corresponding class of 3-Indets, the so-called 2-anchored ones,
are uniquely typed. We call an indeterminate x anchored if x is of dimension ≤1 , or, if
dim(x)≥2 , cx is a non-identity cell, cx≠1 . A computad X is anchored if all indetsccx
in X are anchored; a Pd (X, Γ) is k-anchored if all indets of dimension k in X are
anchored.

Of course, the dual notion when we disallow identities as domains, rather than codomains, of
indeterminates gives rise to similar conclusions. The "Eckmann-Hilton" example above shows
that bad effect of allowing indeterminates whose domain and codomain are both identities. In
section 4, there will be a (simple) example showing that allowing two indeterminates, one with
an identity domain, the other an identity codomain, is also bad. In other words, one has to
globally exclude either identity domains, or identity codomains, for indets.

One of the main results of the present paper is

1.1 Theorem All 2-anchored 3-Indets, and as a particular case, all anchored 2-Pd's are
uniquely typed.

Shape

The word "shape" instead of that of "type" is appropriate here too.

Let us say that Pd's Γ and Λ have the same shape if they belong to the same connected� �
component of the category Pd ; that is, if there is a zig-zag

Γ=Γ ����� � Γ ��������� Γ ����� � ... ��������� Γ =Λ� � 0 � 1 � 2 � k

of morphisms in Pd .

Let me remind the reader of the fact that Comp , the category of computads, is a locally
finitely presentable category, in particular, it is both complete and cocomplete; see [M]. In
Comp , the colimits are "easy"; but the limits are only inferred from the "aleph-zero
accessibility" of Comp (which is also "easy") plus the existence of the colimits. In particular,
Comp has a terminal object T , the terminal computad, but T is very far from being a trivial
object. For more, see (also) [M].

Using a fixed copy of the terminal computad T , and the morphism ! :X ����� � T , every PdX
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!Γ=(X, Γ) has a unique morphism Γ ������� � Σ to a Pd Σ where Σ=(Z, Σ) has its- � � � �
underlying computad Z a subcomputad of T . Following Ross Street, we call this Σ the-
shape of Γ . We mean by a shape, in general, a Pd whose underlying computad is a�
subcomputad of T .

Note that this fits the previous terminology: the two meanings of "having the same shape"
coincide -- and in the zig-zag of the first definition, we may always take k=2 .

A type of a Pd is also a type of the shape of the Pd.

If two Pd's have the same type (the same separated Pd is a type of both), then they also have
the same shape. I do not know if the converse holds.

The concepts of "type" and "shape" are, in a sense, dual to each other. Obviously, the "type"
works less smoothly than the "shape". However, this is not simply a drawback of the notion of
"type". The non-uniqueness related to "types" is a real difficulty with the idea of occurrence
that cannot be ignored.

Concrete presheaf categories of computads

The question whether or not various categories of computads are presheaf categories, a
question that has been investigated in the literature, is closely related to the question which
Pd's are uniquely typed. I introduce this subject with some new terminology.

A class C of computads is said to be standard if

1) it is a sieve in Comp : whenever X � � Y is an arrow in Comp , and Y∈C , then
X∈C ; and

fi2) it is closed under coverings in Comp : whenever (X ��������� � Y) is a familyi i∈I
of arrows in Comp , X ∈C for all i∈I , and the derived family of the arrowsi

� f �i( � X � ��������� � � Y � ) on the sets of indeterminates is a surjective family, then Y∈C .i i∈I

There are many important examples of standard classes. The total class is an example. So is
the class of anchored computads; for the term, see above (it is an easy fact seen in [M] that if
f:X � � Y is a morphism of computads, and a∈

�
X

�
is not an identity, then f(a) is not an

identity either). The class of positive computads, in which there are no indeterminates with
codomain or domain equal to an identity, is a natural standard class; in fact, it seems that the
pasting schemes of [P] or [S] are meant to be positive.

An important example is the class of many-to-one computads: the class of computads X for
which for every x∈ � X � , dim(x)≥1 , we have that cx is an indeterminate itself. (See, e.g.,
[M] for why many-to-one computads are important.) For any fixed n∈ � , the computads of
dimension at most n is another example.

Given any class C of computads, the Pd's associated with C are those Pd's (X, Γ) for
which X∈C . The class of Pd's associated with C is written as Pd(C) . Similarly, we have
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Indet(C) , the class of Indets associated with C .

If C is standard, then each of the classes Indet(C) and Pd(C) uniquely determines C .
Namely, X∈C iff for all Γ∈

�
X

�
, (Supp (Γ),Γ)∈Pd(X) iff for all x∈ � X � ,X

(Supp (x),x)∈Indet(C) .X

For a class I of Indets, there is a standard class C with Indet(C)=I , if and only if the
following both hold:

1) whenever x=(X, x)∈I , and y∈ � X � , then y=(Supp (y),y)∈I ;� _ X
2) whenever x∈I , and y ��� � x ��� � z are arrows in Indet , then both y , z� _ � � _ �

belong to I .

Note that 2) can be said equivalently in this way: I is shape-determined: if two indets have
the same shape, and one of them is in I , then so is the other.

1) is a natural "reasonability condition": if we "accept" an indeterminate, we should also
"accept" all indets involved in it.

A standard class of Indets is one that satisfies the last-listed conditions 1) and 2).

We may say that the standard classes of computads, and the standard classes of Pd's are the
ones that are selected by the shapes, or equivalently, the types of indets involved in them.

A concrete category is a pair (A, � - � ) where A is a category, � - � is a functor
� - � :A ��� � Set to the category of sets. The concrete categories (A, � - � ) , (B, � - � )A B

�
are said to be equivalent if there exists an equivalence of categories E:A ������� � B that is
compatibly with the underlying-set functors: � - � � E ≅ � - � .B A

def op�

DAny category of the form D = Set , with D a small category, is regarded as a
opconcrete category with the underlying-set functor (F∈D )

� ��� F(X) .
X∈Ob(D)

Every subcategory of Comp is regarded as a concrete category with the underlying-set
functor defined as X

� � � X � =the set of indets in X .

We say of a concrete category that it is a concrete presheaf category if it is equivalent to the
�

concrete category D for some small category D .

Any class of computads determines a full subcategory of Comp , and thus a concrete category;
if the class is standard, we call the resulting concrete category a standard category of
computads.

The following is stated with a different wording, and proved, in [M].

Proposition [M] (iii) A standard category C of computads is a concrete
presheaf category if and only if every Indet in Indet(C) is uniquely typed.
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Remarks 1 The phrase " (X, x) is uniquely typed" is meant here in the exact sense
stated above, without relativization to the subcategory C -- although such relativization
would result in a correct statement too.

2 Modulo Theorem [M] (i), Prop (iii) is elementary category theory, involving the
Yoneda functor and the like. On the other hand, I consider the Theorem [M] (i) on the
existence of typing, quoted above from [M], to be a real theorem, requiring for its proof more
than a superficial look at what it says -- at least until I am shown that I am wrong.

3 Note that we have that Comp itself is not a concrete presheaf category since there are
Pd's that are not uniquely typed. In fact, Comp is not a presheaf category in the usual more
general, "non-concrete", sense either: see [M]. Although I do not know, it may be true that a
standard category of computads that is a presheaf category is necessarily a concrete presheaf
category.

4 The most important example of a standard category of computads which is a concrete
presheaf category is the category of many-to-one computads: the class of computads X for
which for every x∈ � X � , dim(x)≥1 , we have that cx is an indeterminate itself.

5 Since every 2-Indet is uniquely typed, Comp , the category of computads of≤2
dimension at most 2 is a concrete presheaf category. This is an old observation of Steve
Schanuel's.

In case (A, � - � ) is a concrete category which is equivalent to a concrete presheaf category
opD(Set , � - � ) , the category D involved is determined up to isomorphism by (A, � - � )

itself. This contrasts with the "non-concrete" case when the exponent category D is not
determined even up to equivalence (although its idempotent-splitting completion is).

opDWhen (A, � - � ) is equivalent to (Set , � - � ) , we call D the type-category for
(A, � - � ) .

We would like to call it, rather, the "shape-category"; but it is related to the "types" rather than
the "shapes".

In fact, we can identify what D should be even before we know that (A, � - � ) is a concrete
presheaf category. In particular, we define the type category of any standard category C of
computads as C∩Ctp , i.e. the full subcategory of C whose objects consist of exactly one
isomorphic copy for each computope that belongs to C . The type-category, as a subcategory
of Ctp , is always a one-way and finitary category.

(I emphasize again that the notion of computope is an absolute notion: whether or not
something is a computope is decided in Comp , rather than some subcategory of it -- although
if you relativize the definition to the standard subcategory, you still have a correct definition.)

We observe that, if D is the type category of C , then we have a canonical functor E and a
natural transformation ϕ as in

11



opE DC ����������������������� � Set� �
� �

� �
� - � � � � - � ϕ: � - � � E ��������� � � - �C � � C

Set

defined by E(X)=D(i(-), X) , where i:D � � C is the inclusion, and

ϕ (A) : D(A, X) ������� � � X � ( x=(A, x) a computope in C ).X �
(f:A � � X) � ��� � f(x)

We have (exercise!) that (C, � - � ) is a concrete presheaf category if an only if E is anC
equivalence of categories and ϕ is an isomorphism of functors.

What we have said here about concrete presheaf categories and their type categories is general
and simple category theory. On the other hand, the theoretical simplicity of the definition
should not mislead one into believing that it is easy to get a concrete, workable description of
the type-category, or that it is easy to see whether or not the standard category in question is a
concrete presheaf category. For instance, Comp , the category of many-to-one computadsm/1
is a concrete presheaf category; but the "concrete" description of its type-category, the
category of multitopes, whose theoretical definition we now have as Comp ∩Ctp , and them/1
proof that it works as D in the last "exercise", are far from obvious; see [M] and the
references there.

2-anchWe write Comp for the full subcategory of Comp consisting of the computads of≤3
dimension at most 3 all whose 2-indets are anchored. The following is a consequence of 1.1
and (iii).

2-anch1.2 Corollary Comp is a concrete presheaf category.≤3

12



§2 Factorization and geometry

Background from [M]

Let us fix a dimension n , at least 1 , and a computad X , to consider the elements (cells) of
X of dimension n , the set of whose is written as

�
X

�
.n

For a∈
�
X

�
(all pd's, all cells of the ω-cat X ), supp (a) is the set of k-indetsk

"occurring in a " (more precisely, in � Supp (a) � ).X

We say that ϕ∈
�
X

�
is an atom ( n-atom if n needs to be emphasized) if it isn

top-(dimension)-indecomposable in this sense: whenever ϕ=b ⋅e with b, e∈
�
X

�
, thenn

either b=1 , or e=1 . (As a reminder: b ⋅e = e � b , sincedb ce n-1
dim(b)=dim(e)=n .)

It is easy to see (also, see below) that for an n-atom ϕ , supp (ϕ) is a singleton,n
supp (ϕ)={u} , say. (The converse is far from being true.) We write ϕ[u] for ϕ ton
indicate the nucleus u of ϕ .

Let N be a positive integer.

Let us call a tuple Φ=(ϕ , ϕ , ..., ϕ ) of n- atoms ϕ such that ϕ ⋅ ϕ ⋅... ⋅ ϕ is1 2 N i 1 2 N
well-defined an n-dimensional molecule, or more simply, an n-molecule. The product � Φ �
of the molecule Φ is the pd ϕ ⋅ ϕ ⋅... ⋅ ϕ . A factorization of the pd a is any molecule1 2 N
whose product is a .

N is the length of the molecule Φ=(ϕ , ϕ , ..., ϕ ) . The top-content of the molecule1 2 N

Φ = (ϕ [u ], ϕ [u ], ..., ϕ [u ]) , (1)1 1 2 2 N N

denoted [[Φ]] , is the multiset of the nuclei involved. In other words, [[Φ]] is the
function on n-indets whose value at u is

[[Φ]](u) = #{i∈{1, ..., N}:u=u } .i

Let us write [Φ] for the total set of all top-dimensional indets in the molecule Φ . In other
words, if (1), [Φ]={u , ...u } .1 N

For the sake of completeness, we extend these definitions to include the possibility of length
0 for a molecule. Let n≥1 . A length-0 n-molecule Φ is given by an (n-1)-pd f ; we

def
write Φ=(f) . We define the value of Φ , � Φ � = � (f) � = id , the identity n-pd. Thef
top-content [[Φ]] for Φ=(f) is the empty multiset; [Φ] is the empty set.

13



We define the domain dΦ and codomain cΦ of the molecule Φ by dΦ=d � Φ � ,
cΦ=d � Φ � . When Φ has positive length N , and is as in (1), we have dΦ=dϕ , cΦ=cϕ .1 N
When Φ=(f) of zero length, then dΦ=cΦ=f .

Theorem [M] (i) Every pd a of dimension at least 1 can be factored as a
product

a = ϕ ⋅ ϕ ⋅... ⋅ ϕ1 2 N

of atoms ϕ , usually in more than one way. Here, N is a non-negative integer; N=0 isi
allowed.

(If a=1 , a is considered to be an empty product of atoms. The empty product isda
unambiguously defined only when its domain, which is equal to its codomain, is separately
specified. When N≥1 , da=dϕ , ca=cϕ .)1 N

Equivalently, every pd a of positive dimension is the value � Φ � of at least one, usually
more than one, molecule Φ .

(ii) The length and the content of the factorization of any pd are uniquely
determined by the pd: if Φ , Ψ are molecules, � Φ � = � Ψ � implies that [[Φ]]=[[Ψ]] .
Hence, we can talk about the length � (Γ) and the top-content [[Γ]] of any Pd� �

def
Γ=(X, Γ) . Similarly, [Γ] = [Φ] for any Φ such that Γ= � Φ � .� -

(iii) Every pd has only finitely many distinct factorizations.

(iv) Let f:X ��� Y be a morphism of computads, and let ϕ∈
�
X

�
. Then ϕ

is an atom if and only if f(ϕ) is an atom.

(v) If f:Γ ��� Λ , then � (Γ)= � (Λ) and [[Λ]](v)= � [[Γ]](u)� � � �
u∈[Γ]
f(u)=v

( v∈[Λ] ).

Notation (iv) allows us to see any computad morphism f:X ��� Y as acting on the
molecules in X , and giving rise to molecules in Y . For Φ=(ϕ , ..., ϕ ) in X , f(Φ)1 N
is defined as the molecule (fϕ , ..., fϕ ) . We can also "contextualize" a molecule, and1 N

N
write Φ=(X, Φ) , with X = Supp (Φ) = � �	� Supp (ϕ ) , and have arrows of Molecules� X X ii=1
f:Φ ��� Ψ , all in the obvious senses.� �

Suppose X is a computad of dimension n (the maximal dimension of an indet in X is n ).
 

We write X for X=X � (n-1) , the (n-1)-truncation of X , another computad. If f:X ��� Y ,
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f:X ��� Y is the truncation of f to dimensions ≤n-1 . If f:Γ ��� Λ is a map of Pd's, f is� �
the corresponding map of truncated computads.



(vi) Let f:Γ ��� Λ , a morphism of Pd's, and assume that f is an� �

isomorphism of computads. Then f induces a surjection on the molecules defining Γ onto
the molecules defining Λ . That is, for any molecule Ψ such that � Ψ � =Λ , there is a
molecule Φ such that f(Φ)=Ψ and � Φ � =Γ .

In [M], "atoms" and correspondingly "molecules", were defined in a more concrete manner
than here. According to this definition, an n-atom ϕ in a computad X is a (well-defined) pd
of the form

ϕ = b ⋅(b ⋅(...(b ⋅u ⋅e )...) ⋅e ) ⋅e (2)n-1 n-2 1 1 n-2 n-1

where b , e ∈X , and u∈ � X � ( u is an indeterminate).i i i n

(As further reminders: b ⋅e stands for e � b where k=min(dim(b),dim(e))-1 ;k
(N) (N) (m)e � b is id � id where N=max(dim(b),dim(e)) ; id =e fork e k b e

(p+1)m=dim(e) , and id =id for p≥m . )e (p)ide

(I note that when n≥3 , the ingredients b , e in (2) are not determined uniquely by thei i
atom ϕ itself; an atom can usually be written in more than one way in the form (2).)

Using this definition of "atom", for (i), see (12) Prop in section 8 in [M]; (ii) is contained in
section 9 in [M], which contains, more generally, a useful description (see also below) of when
two molecules define the same pd.

Once we have (i) and (ii) for atom as in [M], it is obvious that the new (abstract) and the old
(concrete) definitions of "atom" and "molecule" coincide.

Part (iii) of the theorem is contained in (the proof of) (4) Theorem in section 11 in [M].

The fact that ϕ is an atom implies that f(ϕ) is an atom (the "only if" part in (iv)) is
immediate under the concrete definition of "atom". The "if" part of (iv) and (v) are now clear
on the basis of (i) and (ii).

Part (vi) is fairly clear on the basis of the description (in section 9 of [M]) mentioned above of
def

the relation Φ∼Ψ ����� � Φ � = � Ψ � . Since this is important, I reproduce the description and
give the proof of (vi).

Copying from [M], we define the quaternary relation L on (n-)atoms (in a fixed but
arbitrary computad) as follows. For atoms ρ,σ,ϕ,ψ ,

L(ρ, σ, ϕ, ψ) ������� there are atoms α and β such that
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cc(α)=dd(β) , ρ=α ⋅dβ , σ=(cα) ⋅ β , ϕ=(dα) ⋅ β , ψ=α ⋅(cβ) .

L(ρ, σ, ϕ, ψ) implies that ρ ⋅ σ=ϕ ⋅ ψ ; in fact, L(ρ, σ, ϕ, ψ) says that the equality
ρ ⋅ σ=ϕ ⋅ ψ is an instance of the so-called commutative law (see [M]).

We write E(ρ, σ, ϕ, ψ) �����
L(ρ, σ, ϕ, ψ) � L(ϕ, ψ, ρ, σ) .

For molecules Φ=(ϕ , ..., ϕ ) , Ψ=(ψ , ..., ψ ) and k∈{1, ..., N} , let's write1 M 1 N

def�
(Φ, Ψ) ���������

M=N , E(ϕ , ϕ , ψ , ψ ) and ϕ =ψ for allk k k+1 k k+1 i i
i∈{1, ..., N}-(k, k+1} ;

and

def�
(Φ, Ψ) ��������� there is k∈{1, ..., N} such that

�
(Φ, Ψ) .k

�
(Φ, Ψ) says that the molecule Ψ is obtained from Φ by applying an instance of the

commutative law to a pair of adjacent atoms in Φ . Since (of course) the relation E on atoms
is symmetric, the relation

�
on molecules is symmetric too.

r/tr�
is the reflexive and transitive closure of

�
, an equivalence relation.

r/trTheorem [M] (vii) � Φ � = � Ψ � iff
�

(Φ,Ψ) .

For (vii), see Section 9 of [M].

Note that (v) is immediate from (vii).


 
 

Proof of (vi) We have f:X ��� Y such that f:X ��� Y is an isomorphism.

� � � �
We have the lemma: if f(ρ)=ρ , f(σ)=σ and L(ρ, σ, ϕ, ψ) , then there are ϕ , ψ such

� � �������
that f(ϕ)=ϕ , f(ψ)=ψ and L(ρ, σ, ϕ, ψ) .

� �
The lemma shows that the set {f(Φ): � Φ � =Γ} is closed under the relation S : if

� � �
E(f(Φ), Ψ) then there is Ψ such that f(Ψ)=Ψ . The assertion in (vi) then follows by (i)
and (vii).

To prove the lemma, we start with α and β witnessing the relation L(ρ, σ, ϕ, ψ) . Let us
 
 �
denote the inverse image of any cell a∈

�
Y

�
under the isomorphism f by a . If

α = b ⋅(b ⋅(...(b ⋅u ⋅e )...) ⋅e ) ⋅e ,n-1 n-2 1 1 n-2 n-1
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we define

� � � � ��� � �
α = b ⋅(b ⋅(...(b ⋅u ⋅e )...) ⋅e ) ⋅e .n-1 n-2 1 1 n-2 n-1

� �
where we define u to be the nucleus of ρ . Since the nucleus u of α is also the nucleus of

� � 

ρ , and f(ρ)=ρ , we have f(u)=u . Since f is an isomorphism, and α is well-defined, it

�
follows that α is well-defined.

� � � � � �
Similarly, we define β . Next, from α and β , we define the atoms ϕ and ψ so that α
� �������

and β will witness the fact that L(ρ, σ, ϕ, ψ) , showing the lemma.

This completes the proof (vi).

To discuss the most interesting aspect of factorization, "uniqueness up to the order of
top-dimensional indets", we need to take occurrences of n-indets in an n-pd, rather than just
the indets themselves. To be able to talk about occurrences of the top-dimensional
indeterminates, we have to be able to separate distinct occurrences of the same indeterminate.

�
Given a Molecule Φ=(X, Φ) , Φ=(ϕ [u ], ..., ϕ [u ]) , we can define the u to be� 1 1 N N i

�
new indeterminates, distinct for distinct i , such that u

�
u . We puti i

� 
 �
X=X[u ] .i i=1, ..., N

� � � �
For any fixed i , ϕ =ϕ [u ] is the atom in X which is "obtained by replacing u byi i i i
� � � � �
u "; we may write ϕ [u /u ] , or even ϕ [u ] , for ϕ . Formally, we have thei i i i i i i

�



computad X[u ] (a single n-indet, u , is being adjoined to X ), and we have the mapi i

�

� 
 �
g:X[u ] � � � X defined to be the identity on X and mapping u to u ; we puti i i

def� �
ϕ = g(ϕ ) ; by (iv), ϕ is an atom.i i i

� � � � � ��� �
Finally, we let Φ=(ϕ [u ], ..., ϕ [u ]) , and Φ=(X, Φ) . We have that Φ is1 1 N N - �
top-(dimensional-)separated, by the definition that its top-content function is zero-one valued:
� � �

[[Φ]](u)=1 for u∈[Φ] (and [[Φ]](u)=0 otherwise).� �

We call a Pd top-separated if some, equivalently all (see (i) and (ii)), of its representing
Molecules are top-separated. We will also use " n-separated" for "top-separated" with n the
dimension of the Pd involved, mainly when n=2 .

We have proved
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�
Proposition [M] (viii) For any Pd Γ , there is a top-separated Pd Γ , with a map- �
�

�

γ:Γ ��� Γ such that γ is the identity map.� �

� �
�

We say that a map γ:Γ ��� Γ is a top-separating map for Γ if Γ is top-separated and γ is� � � �
an isomorphism. (viii) implies that top-separating maps exist for all Pd's.

Proposition [M] (ix) If, in the diagram

�
f� �

Γ � � � � � � Λ� -� �� �
γ

� �
λ� �� �

Γ � � � � � � � � � � � � Λ� -f

� � 

of maps of Pd's, first without f , Γ is top-separated and λ is an isomorphism (in particular,�

�
if γ and λ are top-separating), then f exists making the diagram commute.

� ��� � ���
Proof Let Γ=(X, Γ) , Γ=(X, Γ) , Λ=(Y, Λ) , Γ=(Y, Γ) .- - - -

� � �
Let Φ represent Γ . Let Φ=γ(Φ) and Ψ=f(Φ) . Φ represents Γ , Ψ represent Λ . Using

� � � � � �
(vi), choose Ψ representing Λ such that λ(Ψ)=Ψ . Writing Φ=(ϕ [u ]) ,i i

� � �
Φ=(ϕ [u ]) , Ψ=(ψ [v ]) , Ψ=(ψ [v ]) , we now have, without the top horizontals,i i i i i i
the following three diagrams:

�� � � � �
� f � � f � � f �
X ------ � Y X ------� Y u � -----� vi i� � � � � �

�

� � 
 � �
γ

� � ≅
�
λ γ

� � ≅
�
λ

� �� � � �
γ

� �
λ� � � � � �� �

- 

X � � � � � � � � � Y X � � � � � � � � � Y u � � � � � � � v
 i f if f



The first is filled in by its top horizontal uniquely, by λ being an isomorphism. Next, we note

�
that stipulating that f map the top-dimensional indets as shown in the third diagram is

� �
consistent, for the reasons that, first, the u are distinct for distinct i ( Γ is top-separated),i -
and secondly, writing ∂ for either d or c , we have
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� �
 � � 

�

� � � � � 

λf(∂u )=fγ(∂u )=∂v =λ(∂v ) , from which f(∂u )=∂v follows since λ is ani i i i i i
isomorphism.

��� �
Having defined f:X ��� Y , we see that the diagram

�
� f �
X � � � � � � � � � Y� �� �

γ
� �

λ� �� �
X � � � � � � � � � Y

f

commutes since it does when the top dimension is removed, and it does on the
� ��� �

top-dimensional indets. We still need to see that f is a map of Pd's: f:Φ ��� Ψ ; that is,� �
��� � ��� �
f(Φ)=Ψ , i.e., f(ϕ )=ψ for all i .i i

This may look obvious; but here is a proof.

��� �
Let's fix i and abbreviate ρ = f(ϕ ) , σ=ψ , to show that ρ=σ .i i

� �
ρ and σ share the same nucleus, namely u=v . Writing Z for Y , λ:Z ��� Y maps ρ andi 

σ to the same atom, namely π=ψ . The subcomputad of Z generated by Z and the singlei
 

indet u is Z[u] , that is, it is obtained by freely adjoining u to Z (such trivial-sounding
facts, ones that are in need of proof for the pedant as I am, are shown in [M]). Similarly, for
 

v=λ(u) , Y[v] is the subcomputad of Y generated by Y and v .


 

Both ρ and σ are in Z[u] , π is in Y[v] . The map λ:Z ��� Y restricts to
 


�



µ:Z[u] � � � Y[v] , and µ maps both ρ and σ to π . µ is an isomorphism since µ=λ is�	�	� �	�	�

-1 -1 -1an isomorphism and thus µ can be defined by stipulating that µ =λ and
-1µ (v)=u . Since the isomorphism µ maps ρ and σ to the same element π , ρ=σ as

desired.

This completes the proof of (ix).

Inspired by (ix), we call the domain of a top-separating map for Γ the top-type of Γ . We� �
�

write Γ for the top-type of Γ .� �

Corollary [M] (x) The top-type and the top-separating map are unique up to
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f gisomorphism: if Λ � � � � � Γ � � � � ��� Ξ are both top-separating maps for Γ , then there is an� - � �
hisomorphism Λ � � � � � Ξ such that g � h=f .� ≅ �

Proof Immediate from (ix).

Let us note that we cannot, in general, say "up to unique isomorphism" in (x). In §1, we saw
the example of a 2-Pd Γ=(X, Γ) , with � X � ={X, u, v} , which had a non-trivial�

�
automorphism h that exchanged u and v . Defining X to be generated by X and u� � ��� �
alone, and Γ=u ⋅u , Γ=(X, Γ) , we have a unique map γ:Γ ��� Γ , the one for which� � �
γ(X)=X , γ(u)=γ(v)=u . γ is a top-separator; however, γ � h=γ � id =γ .X

Let Γ=(X, Γ) be any Pd. We say that it has (an essentially) unique factorization if for any�
molecules

Φ=(ϕ [u ], ..., ϕ [u ]) , Ψ=(ψ [v ], ..., ψ [v ]) , � Φ � = � Ψ � =Γ1 1 N N 1 1 N N
and u =v for i=1, ..., N imply that Φ=Ψ .i i

Thus, "unique factorization" is "uniqueness up to the order of the top-dimensional indets".

It quickly becomes obvious that it is reasonable to expect this to hold for a top-separated Pd Γ�
only.

There is a stronger form of unique factorization that also subsumes a cancellation law, and
which, as it happens, I can show to hold whenever I am able to show ordinary unique
factorization. However, I don't know if ordinary unique factorization in fact implies strong
unique factorization.

We say of the top-separated n-pd Γ that it has strong unique factorization if every time

Λ ⋅ Λ ⋅... ⋅ Λ = Γ ⋅ Γ ⋅... ⋅ Γ = Γ ,1 2 m 1 2 m

the Λ and Γ are n-pd's, andi i

[Λ ] = [Γ ] for i=1, ..., m ,i i

we must have that Λ =Γ for all i=1, ..., m .i i

It is clear that the special case m=2 implies the general case, and that strong unique
factorization for the top-type of Γ implies cancellation for Γ :�

(Γ ⋅ Γ = Γ ⋅ Γ = Γ � Γ ⋅ Γ = Γ ⋅ Γ = Γ) ������� Γ =Γ .1 3 2 3 3 1 3 2 1 2
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Remarks It may be objected that talking about unique factorization is reasonable only if
the (ordinary) commutative law holds. Although full commutativity does not hold, the law we
have called "the commutative law" is important, in fact, it is the main mover of the algebra of
ω-categories. Under the (restricted) commutative law, when for two atoms ρ[u] , σ[v] of
the same dimension the product ρ[u] ⋅ σ[v] is well defined, under certain definite
circumstances, we can reverse the order of the nuclei u and v , and write ρ[u] ⋅ σ[v] as
ϕ[v] ⋅ ψ[u] for suitable atoms ϕ[v] , ψ[u] . The commutative law is the main basis for
the dynamic of the algebra of ω-categories.

In [M], the operations of the laws of ω-category theory were restated in a way that resembles
the laws for (commutative) rings: we have unit laws, associative laws, distributive laws and the
(restricted) commutative law. It is tempting to consider ω-category theory as a kind of higher
dimensional ring theory; the computads play the role of the rings of polynomials.

"Strong unique factorization" would be immediate from ordinary unique factorization if we
had the ordinary commutative law available. As things are, this implication is not (yet) seen,
but it is interesting that the strong version is provable in those cases when we are able to show
ordinary unique factorization.

Γ ΓWe write G for the set of representatives of Γ : G ={Φ: � Φ � =Γ} . Any morphism�
f Γ Λ ff:Γ � � � Λ induces a map G :G ��� G . Clearly, f � � G is functorial.� �

Let Γ be a top-separated Pd of length N , and let N , or N , denote the set, previously� Γ�
Γdenoted by [Γ] , of all top-dimensional indets in Γ . For Φ∈G ,

Φ=(ϕ [u ], ..., ϕ [u ]) , let < be the (irreflexive total) order of the set N for which1 1 N N Φ
u <u

�����
i<j (i=1, ..., N) . We define the (irreflexive) partial order � on the set Ni j Γ

Γas the intersection of all < , Φ∈G ; thus, � is the largest partial order on N that all < ,Φ Γ Φ
ΓΦ∈G , are compatible with.

The entity � is perhaps the main object introduced in this paper. It is called the backboneΓ
order of the Pd Γ .

ΓNote that, for any top-separated Γ , Λ , map f:Γ ��� Λ , Φ∈G , and u, v∈N , u< v iff� � � � Γ Φ
fu< fv .fΦ

�For a partial order � on a set N , let's write G for the set of all total orders � on the set
N that are compatible with � , � ⊆ � .

To say that the mapping

def �Γ Γo = (Φ � � < ):G ��� G (3)Γ Φ
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is 1-1 is to say that Γ has unique factorization.�

Concerning of the functoriality of the mapping (3) under mappings of Pd's, we note the
following.

≅Given an isomorphism of ordered sets, g:(N , � ) � � � � � (N , � ) , we have the induced1 1 2 2
� �g 1 ≅ 2"direct image" bijection G :G � � � � � G for which

g(u, v)∈� �����
(gu, gv)∈G (� )

� 1( � ∈G , u, v∈N ) . On the other hand, a map f:Γ � � � Λ of top-separated Pd's Γ and Λ1 � �
≅induces an isomorphism � :(N , � ) � � � � � (N , � ) , where � (u)=f(u) ( u∈N )f Γ Γ Λ Λ f Γ

(remember that u is an indet, and f is a map of computads).

Combining these constructions, we have the commutative diagram, induced by a map
f:Γ � � � Λ of top-separated Pd's Γ and Λ :� � � �

o �Γ Γ ΓG � � � � � � � � � G� � �f
� �

fG
� � ≅

�
G (3.1)� �� �

�Λ ΛG � � � � � � � � � GoΛ
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New results in dimension 2

The theorems and propositions starting with 2.1 Theorem next will be proved later in the
paper.

2.1. Theorem Top-separated anchored 2-Pd's have unique factorization; in fact, strong
unique factorization.

In the next section, we will give a (simple) example of a (non-anchored) top-separated 2-Pd
which fails to have unique factorization.

For a Pd Γ of length N having unique factorization, we now have the obvious bound N!�
on the number of molecules representing it; it is easy to see that this bound is sharp.

We need more notation.

For atoms ρ , σ , we write ρ � � σ for:

ρ � � σ ������� ∃α,β. ccα=ddβ & ρ=α ⋅dβ & σ=cα ⋅ β ; (4)

and we write ϕ � � ψ for:

ϕ � � ψ ������� ∃α, β. ccα=ddβ & ϕ=dα ⋅ β & ψ=α ⋅cβ . (5)

Equivalently, using L from above,

ρ � � σ ������� ∃ϕ, ψ L(ρ, σ, ϕ, ψ) ,
ϕ � � ψ ������� ∃ρ, σ L(ρ, σ, ϕ, ψ) .

Note that ρ � � σ implies that ρ ⋅ σ
	

, since it follows that cρ=cα ⋅dβ=dσ . Similarly,
ϕ � � ψ implies that ϕ ⋅ ψ

	
. (Note that ϕ � � ψ is not the same as ψ � � ϕ : in both ρ � � σ and

ϕ � � ψ , the first term ( ρ , respectively, ϕ ) is "above" the second term, using the imagery of
vertical compositions ρ ⋅ σ , ϕ ⋅ ψ going downward). Finally, note that if ρ � � σ , with data
α,β as in (4), and we define ϕ and ψ with the same data as in (5), then ϕ,ψ are
well-defined, and ϕ � � ψ holds. Of course, the dual statement also holds.

We write ρ � � � σ for ρ � � σ 
 ρ � � σ .

Of course, we have that

L(ρ, σ, ϕ, ψ) ������� ρ � � σ & ϕ � � ψ . (6)

It is most important to observe that if E(ρ, σ, ϕ, ψ) , then the nuclei of ρ and σ "change
places: we have

ρ[u] ⋅ σ[v] = ϕ[v] ⋅ ψ[u] .
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Let Φ=(ϕ [u ], ...ϕ [u ]) be any top-separated molecule. Let us write N for the set1 1 N N
[Φ]={u :i=1, ..., N} , and for any u∈N , let us writei

defΦϕ [u] = ϕ [u ]i i

Φfor the i such that u=u . For u, v∈N , define u � � � v (" u and v are exchangeable, ui
Φleft, v right, in Φ ") and u � ��� v by

defΦ Φ Φu � � � v ��������� u< !v & ϕ [u] � � ϕ [v]Φ
defΦ Φ Φu � ��� v ��������� u< !v & ϕ [u] � � ϕ [v]Φ

( u< !v means that v is the immediate successor of u in the order < ).Φ Φ

Φ fΦNote that, automatically, for any morphism f:Φ � � Ψ , u � � � v implies fu ��������� � fv and� �
similarly for � ��� .

2.2 Theorem Let Γ be a top-separated anchored 2-Pd.�
(a) The possible orders of 2-indets in the factorizations of Γ are precisely-

those that extend � = � . The map (3) is a bijection.Γ
(b) The following two equivalent definitions define � � to be anΓ

irreflexive partial order on the set N :Γ
Γ Φu � � v ������� ∀Φ∈G . u< !v ����� u � � � vΓ Φ
Γ Φ������� ∃Φ∈G . (u< !v &) u � � � v .Φ

(c) For � � = � � in (b), the pair ( � , � � ) is a planar arrangement on theΓ
set N , meaning that for any u≠v in N , exactly one of the following four alternatives hold:

u � v , v � u , u � � v , v � � u .

2.3 Proposition Any morphism f:Γ ��� � Λ of top-separated anchored 2-Pd's- -
induces an isomorphism

≅[f]:(N , � , � � ) ��������������� � (N , � , � � )Γ Γ Γ Λ Λ Λ- - - - - -

of the planar arrangements associated with Γ and Λ . In other words, for any u, v∈N ,- - Γ�
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u � v ����� fu � fv , u � � v ����� fu � � fv .Γ Λ Γ Λ� � � �

ΓWe consider the set G of variants of Γ the vertices of a (undirected, loop-free) graph, with�
�edges the pairs (Φ,Ψ) such that � (Φ, Ψ) . On the other hand, the set G of total extension

of the partial order � carries a natural graph-structure: < and < are connected by an1 2
edge, � (< , < ) , if one is obtained by a transposition of two consecutive elements in the1 2
other.

�It is an easy general fact about total extensions of finite partial orders that G is a connected
graph.

Γ r/trOn the other hand, since, for any Θ such that Γ= � Θ � , we have G ={Φ: � (Θ,Φ)} , it
Γis clear that also G is connected.

2.4 Proposition For top-separated anchored 2-Pd Γ , in (3), we have an�
isomorphism of graphs.

2.5 Elementary Lemma A finite planar arrangement has no non-trivial
automorphism.

(See also section 3 below.) In this, a finite planar arrangement is similar to a finite total linear
(1D) order. A planar arrangement is a kind of total order of a portion of the plane.

f������� �
2.6 Corollary The category of anchored 2-Pd's is a preorder: if Γ Λ where Γ ,� ������� � � �

g
Λ are anchored 2-Pd's, then f=g .�

Proof Note that by (viii) and (ix), we may assume without loss of generality that Γ ,�
Λ are top-separated.�

f������� �
Assume Γ Λ , Γ , Λ top-separated. By 2.3 and 2.5, the effects of f and g on the� ������� � � � �

g
2-indets in Γ are the same.�

defΓLet Φ=(ϕ [u ], ..., ϕ [u ]) ∈ G . We have that v = f(u )=g(u )1 1 N N i i i
(i=1, ..., N) . Therefore, for Ψ=fΦ = (fϕ [v ], ..., fϕ [v ]), Θ=gΦ =1 1 N N
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(gϕ [v ], ..., gϕ [v ]) , we have that Ψ and Θ define the same order � =< =< on1 1 N N Ψ Θ
the top indets, namely v � v � ...� v . They also represent the same pd, namely Λ . By1 2 N
unique factorization (2.1) for Λ , we have Ψ=Θ .

def
This means that ψ = f(ϕ )=g(ϕ ) for i=1, ..., N . With Γ=(X, Γ) , Λ=(Y, Λ) ,i i i � �
X =Supp (ϕ ) , Y =Supp (ψ ) , ϕ =(X, ϕ ) , ψ =(Y, ψ ) , f = f � X ,i X i i Y i � i i -i i i i

fi��������� �
g = g � X , we have ϕ ψ . The fact that f =g follows is the "one-atom"i i � i ��������� � -i i i

gi
special case of the Corollary itself -- but it is something easy to check directly, given that
1-pd's are "obvious".

N
Since � ��� X = X , and the restrictions of f and g to each X are equal, we conclude thati ii=1
f=g as desired.

*2.6 is the main ingredient of the proof of 1.1; it ensures condition 1 ) in section 1 in "uniquely
typed".

2.7 Corollary Let f:Γ ��� � Λ be any morphism of anchored 2-Pd's. f induces a� �
f Γ ≅ Λbijection G :G ������� � G between molecules representing Γ and those representing Λ .

Proof In the case when both Γ and Λ are top-separated, the result is immediate� �
from the diagram (3.1) and 2.2(a). Using (ix), we then see that it suffices to prove the assertion
for the case when f is a top-separating map; assume it is.

f f fBy (vi), G is surjective. Assume that G (Φ)=G (Ψ) , to show that Φ=Ψ . Let
Φ=(ϕ [u ], ..., ϕ [u ]) , Ψ=(ψ [v ], ..., ψ [v ]) . Our assumption implies1 1 N N 1 1 N N �
that fu =fv , in particular, fdu =dfu =dfv =fdv , and since f is an isomorphism,i i i i i i
du =dv . Similarly, cu =cv . For the underlying computad X , Γ=(X, Γ) , we nowi i i i ��
have that the mapping h that is the identity on X , and maps u to v (i=1, ..., N) isi i
an automorphism of X .

We also have h(Φ)=Ψ . To see this, the real issue is that � h(Φ) � = � Φ � =Γ ; once that is
known, it is clear that < =< , and thus, by 2.1, h(Φ)=Ψ . But, for any molecules Θh(Φ) Ψ��� �
and Σ in X , f:X � � Y being an isomorphism implies that � (Θ, Σ) iff � (fΘ, fΣ) , and

f r/tr r/trthus, by the surjectivity of G (see (vi)), � (Θ,Σ) iff � (fΘ,fΣ) , and so
� Θ � = � Σ � iff � fΘ � = � fΣ � . Applied to Θ=h(Φ) and Σ=Ψ , since f(hΦ)=fΦ=fΨ , this

gets us � h(Φ) � = � Φ � as desired.
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Having the equality h(Φ)=Ψ , we conclude that h is an automorphism
≅h:(X, Γ) ������� � (X, Γ) . This immediately implies that h induces an automorphism of the

planar arrangement (N , � , � � ) of 2-indets in X . But the map of 2-indets induced by hΓ Γ Γ
is just u � � v . By 2.5, therefore, this map has to be the identity; u =v for alli i i i
i=1, ..., N . This of course means that Φ=Ψ , which was to be proved.

f gWe call a Molecule Φ=(X, Φ) projective if whenever Φ ������� � Ψ � ��������� Θ , there is� � � �
hΦ ������� � Θ such that g � h=f . The concept of a Pd being projective is analogous, but� �

different!

2.8 Elementary Lemma For any anchored 2-dimensional Molecule Φ , there is a�
� �

projective Molecule Φ with a map Φ � � Φ .� � �

The proof is indeed elementary, since it depends on understanding 1-Pd's that are easy to
understand. See later too.

�
2.9 Corollary For any anchored 2-Pd Γ , there is a projective 2-Pd Γ with a� �

�
map Γ � � Γ .� �

�
Proof Given Γ , let Φ represent Γ ; let Φ be a projective Molecule, with� �
�

f
� � �

f
�

Φ ������� � Φ . Let Γ be the Pd represented by Φ ; then Γ ������� � Γ . I claim that Γ is� � � � � �
�

g h
�

projective. Let Γ ������� � Λ � ��������� Ξ . Let Ψ=f(Φ) . Then Ψ represents Λ . By 2.7, there is� � � - �
g hΘ representing Ξ such that h(Θ)=Ψ . We now have Φ ������� � Ψ � ��������� Θ . Since the� � �

� �
kMolecule Φ is projective, there is Φ ������� � Θ such that h � k=g , which was to be proved.� � �

Recall from section 1 what we mean by a separated Pd; of course, this is something more than
"top-separated". Recall the notion of "unique typing" also.

2.10 Corollary Anchored 2-Pd's are uniquely typed.

Proof Let Γ be an anchored 2-Pd. Condition 1), uniqueness of the specializing map,�
� �

fis part of 2.6. To show Condition 2), use 2.9 and fix a projective Γ with Γ ������� � Γ . Let� � �
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g
�

Γ � ��������� Λ be any arrow to Γ from a Λ separated. Since Γ is projective, there is- � � - �
�

hΓ ������� � Λ (such that g � h=f ). By the definition of "separated", h is an isomorphism. We� �
�

have shown that any type Λ of Γ must be isomorphic to Γ ; in particular, any two types of� � �
Γ are isomorphic to each other.�

It also follows that we have

2.11 Corollary "Projective" and "separated" for anchored 2-dimensional Pd's are
the same property.

The obvious idea of unique composability, obvious in our context when pasting diagrams are
defined via computads, was already mentioned in essence at the beginning of section 1.

We say that a computad X is composable if there is a pd Γ in X making Γ=(X, Γ) into a�
Pd (that is, Supp (Γ)=X ). X is uniquely composable if said Γ is unique: there is exactlyX
one Γ such that Γ=(X, Γ) is a Pd. We can extend the terminology by saying that a Pd�
Γ=(X, Γ) is uniquely composed if X is uniquely composable ( Γ is the only pd in X whose�
support is the whole if X .)

The final four assertions are for positive 2-pd's: ones that have domain and codomain both
non-identity 1-pd's. Of course, a positive Pd is also anchored: positive = anchored and
co-anchored.

Positive pd's are the only ones that [P1] and [P2] deal with.

2.12 Theorem A separated positive 2-Pd is uniquely composed.

Let me point out that "unique composedness" of a Pd in general can fail for at least two
reasons. For one thing, if Γ=(X, Γ) is a non-separated Pd, it is "bound" to be non-uniquely�
composed -- although there are uniquely composed positive pd's that are not separated: take
0-cells X, Y, Z, W , 1-indets f, f’:X � � Y , g:Y � � Z , h, h’:Z � � W , and the single 2-indet
u:f ⋅g ⋅h � � f’ ⋅g ⋅h’ ; then Γ=u is not separated, but it is uniquely composed.

For the simplest example for a non-uniquely composed positive non-separated pd, see the
beginning of section 1.

On the other hand, the simplest non-positive, anchored, separated 2-Pd fails to be uniquely
composed: take the 0-cell X , the 1-indet f:X � � X , and the 2-indet u:id � � f , to formX

nthe computad X= 〈X, f, u 〉 . u=(X, u) and, for each n , Γ =u ⋅(fu) ⋅... ⋅(f u) , all- n
make (X, Γ ) a separated anchored 2-Pd with the same underlying computad X .n
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2.12 is the present paper's version of John Power's theorem of unique composability of
2-pasting schemes in [P].

The proof of 2.12 is by "exhaustion": given a separated, equivalently projective, positive 2-Pd
Γ=(X, Γ) , we can give an account of all the pd's in the computad X . This account yields�
further results, some of which can be conjectured to be true in higher dimensions.

2.13 Proposition Let Γ=(X, Γ) be a positive 2-Pd; assume it is separated�
(equivalently, projective). Then every pd in X is separated: for every Λ∈

�
X

�
,

Λ=(Supp (Λ),Λ) is a separated Pd.� X

This is certainly false in higher dimensions. A (simple) example in [P2] of a 3-Indet
x=(X, x) shows that "looping" of 1-cells in a separated positive 3-Indet is possible: X�

f gcontains 1-indets f and g in the configuration X ������� � Y ������� � X ; the 1-pd f ⋅g is not
separated. However, the weaker version of 2.13 in which one requires that Λ be of the same
dimension as Γ may be true for anchored separated Pd's in general.

We also can conclude that, for Γ=(X, Γ) a separated positive 2-Pd, "all pd's in X are parts�
of the full composite Γ ".

Let Γ=(X, Γ) be any Pd. Let us call a pd Λ in X a part of Γ if Λ belongs to the least�
class � of pd's in X such that Γ∈ � , Ξ ⋅ Ξ ∈ � implies Ξ , Ξ ∈ � , 1 ∈ � implies1 2 1 2 Ξ
Ξ∈ � , and Ξ∈ � implies dΞ,cΞ∈ � .

2.14 Proposition If Γ=(X, Γ) is a separated, equivalently projective, positive�
2-Pd, then every pd Λ in X is a part of Γ .

2.14 is false for dimensions higher than 2 as the example in [P2] just quoted shows.
However, once again, the weaker version of 2.14 in which one requires that Λ be of the same
dimension as Γ may be true for positive separated Pd's in general.

We can express the idea of "part" used in 2.14 more "geometrically" as seen in the statement
of 2.15 below.

Let X be an n-dimensional computad, Γ a n-pd in X , u a particular n-indet in X . Let
Λ be another n-pd in X such that Λ

�
u ( dΛ=du, cΛ=cu) . Then Γ[Λ/u] , the n-pd

obtained by substituting Λ for u in Γ , is obtained as

DEF
Γ[Λ/u] = f(Γ) ,

for the map f:X � � X of ω-categories (not necessarily a map of computads!) defined by the
stipulation that f is the identity of � X � -{u} , and f(u)=Λ . (This is legitimate; X=Y[u]
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for some Y with � Y � = � X � -{u} ; we can apply the universal property of Y[u] ; this is
why we need u to be top-dimensional. As a matter of fact, one can define meaningful
substitution for indeterminates that are not top-dimensional; but this involves suitably replacing
higher dimensional indets depending on the one being substituted for).

Let us say that the n-pd Λ is a part of the n-pd Γ if, for u a new n-indet parallel to Λ ,
* * *there is a 2-pd Γ in X[u] such that u∈supp(Γ ) and Γ=Γ [Λ/u] .

Lemma [M] (xii) Let Γ=(X, Γ) be a separated n-Pd , and suppose that all�
n-pd's in X are parts of Γ . Then Γ is uniquely composed.

Proof Suppose Λ is an n-pd in X such that Supp(Λ)=X . Since Λ is a part of
*Γ , there are appropriate u and Γ as in the definition. We are going to show that,

* *necessarily, Γ is equal to u , and thus Γ=Γ [Λ/u] = Λ .

*Let us write out Γ as the product of an n-molecule Φ=(ϕ [u ], ..., ϕ [u ]) . By1 1 N N
assumption, there is i∈{1, ...N} such that u=u . Leti

Γ =ϕ ⋅... ⋅ ϕ , ϕ=ϕ , Γ =ϕ ⋅... ⋅ ϕ .1 1 i-1 i 2 i+1 N

*We claim that N=1 and i=1 ; that is, Γ =ϕ itself is an n-atom. Suppose not. Then either
Γ or Γ is not an identity n-cell; say Γ is not an identity n-cell. Therefore there is1 2 1
v∈supp (Γ ) . We haven 1

*Γ = Γ [Λ/u] = Γ ⋅ ϕ[Λ/u] ⋅ Γ .1 2

�

Since Supp(Λ)=X , we have v∈supp(Λ) . Let v be a new n-indet parallel to v , and let�
�

� � � �
�

Γ =Γ [v/v] . Clearly, Γ
�
Γ ; thus Γ = Γ ⋅ ϕ[Λ/u] ⋅ Γ is well-defined in X=X[v] .1 1 1 1 1 2� � � � � �

Clearly, Supp(Γ)=X . We have the n-Pd Γ=(X, Γ) . Define the map f:X � � X that is the�
�

� �
identity on X and maps v to v . Clearly, f maps Γ to Γ ; f:Γ � � Γ . However,� �

�
obviously, f is not an isomorphism: X has one more indeterminate than X . This contradicts
the assumption that Γ is separated. The claim is proved.�

*Let's write out Γ =ϕ as an n-atom:

ϕ = b ⋅(b ⋅... ⋅(b ⋅u ⋅e ) ⋅... ⋅e ) ⋅e .n-1 n-2 1 1 n-2 n-1

*Let us assume that Γ =ϕ≠u , to arrive at a contradiction. The proof is similar to that of the
above claim. There must be some k∈{1, ..., n-1} such that either b ore e is not ank k
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identity. Suppose the first alternative. Let k be the largest integer ≤n-1 such that b isk
not an identity. We have

ϕ = b ⋅(b ⋅... ⋅(b ⋅u ⋅e ) ⋅... ⋅e ) ⋅ek k-1 1 1 n-2 n-1
and

Γ=ϕ[Λ/u] = b ⋅(b ⋅... ⋅(b ⋅ Λ ⋅e ) ⋅... ⋅e ) ⋅e .k k-1 1 1 n-2 n-1

�
�

�

Let v be a k-indet in b ; let v be a new k-indet parallel to v ; let b =b [v/v] ; wek k k�
have b

�
b ; letk k

� �
Γ = b ⋅(b ⋅... ⋅(b ⋅ Λ ⋅e ) ⋅... ⋅e ) ⋅e ;k k-1 1 1 n-2 n-1

DEF�
�

�
we have X = X[v]=Supp(Γ) because v∈supp(Λ) , and the only indet that might have

�

been removed from Γ is v ; it is not removed; and of course, v has been added. Let� � �
Γ=(X, Γ) .�

�
�

�
Define f:X � � X as the identity on X , and mapping v to v . Clearly, f(Γ)=Γ , and�
f:Γ � � Γ ; f is not an isomorphism; contradiction.� �

The last lemma shows that the next proposition is stronger than 2.12. It is obviously stronger
than 2.14.

2.15 Proposition Let Γ=(X, Γ) be a separated positive 2-Pd. Then every 2-pd in�
X is a part of Γ .

*In fact, for every 2-pd Λ in X , u new indet parallel to Λ , there is Γ in X[u]
such that

*(a) Γ = Γ [Λ/u] ;

*(b) u occurs in Γ exactly once;
and

*(c) supp(Γ ) ∩ supp(Λ) = supp(dΛ) ∪ supp(cΛ) .
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§3 Cuts in partial orders, and planar arrangements

Cuts

Let us fix a finite irreflexive partial order (N;
�
) . We read x

�
y as " x is above y " , " y

is below x ". That is, we imagine the order
�

as going "downward". This may cause some
linguistic problems such as "minimal" in the sense of

�
means "being on the top", etc.

⋅A cut C in (N;
�
) , or simply a cut, is a pair C=(U, L) such that U∪L=N , and

(i) U is up-closed: b
�
a∈U ��� b∈U ;

(ii) L is down-closed: b � a∈L ��� b∈L .

⋅Note that if U∪L=N , then (i) iff (ii). That is, a cut C can be given by a single set U which
is up-closed; L is then the complement of U . Of course, the roles of U and L are entirely
symmetric. I find that it is better to keep both of "sides" around when we think of a cut.

Let C=(U, L) be a cut. Let µU be the set of all
�

-maximal (maximally low) elements of
U , νL that of the

�
-minimal (maximally high) elements of L :

def def
µU = {u∈U:∀v∈U.¬(v � u)} , νL = { � ∈L:∀m∈L.¬(m � � )} .

def �
B = µU ∪ νL

is the border of the cut C .

The border can also be described as follows:

w∈B ��������� ∀v[(w � v ����� v∈L) & (w � v ����� v∈U)] . (1)

A spanning set, or span, X , of C is any subset X of the border B which is a maximal
antichain in the order

�
	
B : X⊆B ; and for any x,y in X , ¬(x � y) and ¬(y � x) ; and X

is maximal among such subsets of B .

3.1 Elementary observation A spanning set X of a cut is a maximal antichain
in the order

�
on N : if X⊆Y⊆N , Y is a

�
-antichain, then X=Y .

Proof We use the notation associated above with a cut C without comment.

Let X be a span of C . Let z∈N be arbitrary, to show that there is x∈X such that either
x � z or x

�
z .=

Either z∈U , or z∈L . Assume, for instance, that z∈U ; the case z∈L is symmetrically
treated. Let u be a

�
-maximal (maximally low) element in the set Y={y∈U:y � z} (we=

have z∈Y ); in particular, u � z . We have u∈µU⊆B because if v � u , then v∈U would=
imply v∈Y , contradicting the maximal choice of u ; we must have v∈L , thus u∈µU .
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Since X is a maximal antichain in B , we have some x∈X such that x � u (case 1), or x
�
u=

(case 2). In case 1, we have x � u � z and x � z as desired. In case 2, since x∈B , x
�
u= = =

forces u to be in L ; contradiction, since u∈U .

Let us write � for the set of all cuts in (N,
�
) .

� � ���
In what follows, C, D, C are cuts; C=(U, L) , D=(V, M) , C=(U, L) ; B is the border of� �
C , B is the border of C , E is the border of D .

The cuts form a (reflexive) partial order ( � , ≤) by inclusion of their upper parts:
DEF

C≤D ����� U⊆V . ( � , ≤) is in fact a distributive lattice, with an injective homomorphism of
lattices C ��� U into ( � (N), ⊆) . Let us write C<D for C≤D .

≠

The distance ρ(C, D) between C and D is defined as the cardinality of the symmetric
⋅difference U∩M ∪ L∩V . ρ(C, D)=0 iff C=D .

-Let B be the border of C . Assume u∈B . Either u∈B , or u∈B . In either case, we can�
shift u over to the other side, and obtain a new cut. Let, e.g., u∈B . We can form�
� � � � �
U=U-{u} , L=L∪{u} . Then U is closed upward: if w

�
v & v∈U , then w∈U : indeed, w∈U

is clear, and w=u would imply u
�
v , which, together with v∈U , would contradict u∈B .�

�� ��� � �
Thus, C=(U, L) is a cut. Also, we have u∈B : indeed, w

�
u implies w∈U=U-{u} since�

u∈U and U is closed upward. On the other hand, B can very well be different from B .

� �
We say that C is obtained from C by shifting x , or simply: C is the x-shift of C , and,� �
without referring to x , that C is a shift of C , if either x=u∈B and C is obtained from C
as described, or x∈L , and the dual situation takes place. "Being a shift of" is a symmetric
relation.

Suppose ρ(C, D)>0 ; i.e, U∩M is non-empty, or L∩V is non-empty. Assume the first
alternative; the treatment of the second is a dual affair.

I claim that the set (µU)∩M is non-empty. Let u be a
�

-maximal (lowest) element of
U∩M . u must be in µU . Indeed, let u

�
v . v∈U would imply v∈U∩M (since M is closed

downward), contradicting the extremal property of u .

� ��� �
Let u∈(µU)∩M , and consider the cut C=(U, L) explained above: U=U-{u} ,� � �
L = L∪{u} . We have that U∩L ⊂ U∩L , and (U∩L)� (U∩L) = {u} . On the other hand,� � � �
L∩V=L∩V , since L∩V ⊇ L∩V , and u∉L∩V , since u∈M . Therefore, the distance ρ(C, D)
has gone down by one with respect to ρ(C, D) .

In summary, we can characterize the immediate successor (or: Hasse-) relation associated with
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� �
< on � , the relation <! ( C<!D ����� C<D&¬∃C.C<C<D ) as follows: C<!D iff C<D
and D is a shift of C . Also, ρ(C, D)=1 iff D is a shift of C .

�
Suppose C is the u-shift of C , and let S be any span for C , that is, a maximal��

-antichain in B , such that u∈S . I claim that S is a span for C too.

� � � �
E.g., u∈B , u∈B . What we need is that S⊆B . Let s∈S ; if s=u , we know that u∈B .�
Suppose s≠u . But then, since S is an antichain, s is

�
-incomparable with u(∈S) .�

Assume v
�
s , to show that v∈U . We have v∈U (since s∈B ) and v≠u ; and this means� �

that v∈U . The implication v � s ��� v∈L is trivial.

Signed spans

Let C=(U, L) be a cut in (N,
�
) .

�

Given a span S of C=(U, L) , let's write S = S∩µU , S = S∩νL . The cut C is, clearly,
�

recovered from (S, S) in this way:

⋅u∈U ������� u∈S � ∃s∈S. u
�
s (2.1)

� ⋅� ∈L ������� � ∈S � ∃s∈S. s
� � (2.2)

Conversely, let us start with an arbitrary span S in N , that is, an
�

-antichain, and an
⋅ �

arbitrary partition of it , S = S∪S ; we call the data a (up/down) signed span; we use the
symbol S to denote the signed span as well.

Define U by (2.1) above. It is immediate that U is
�

-up-closed: u∈U & x � u ����� x∈U .
Thus, with L = N-U , we have a cut C=(U, L) . Using the fact that S is a maximal

��
-antichain, we immediately see that (2.2) holds. It is now clear that S ⊆ µU and S ⊆ νL ;

and thus S is a span of C . Let us write C[S] for the cut just defined.

We say that two signed spans S , S are equivalent, S ∼S , if C[S ]=C[S ] . Thus,1 2 1 2 1 2
cuts are in a bijective correspondence with the equivalence classes of ∼ .

Convex sets

We work in a fixed finite irreflexive partial order (N,
�
) .

A convex set (or, in case the reference is needed, a
�

-convex set) is a subset P of N such
that p, q∈P and p

�
x
�
q implies x∈P .

Let P be any set (subset of N ). We derive the following further sets from P :
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�
P

�
= {x∈N: ∃p∈P.x � p}=�

P � = {x∈N: ∃p∈P.x � p}=�
P

�
= P

�
- P�

P � = P � - P
thus � ⋅ � ⋅P

�
= P ∪ P

�
, P � = P ∪ P � ;

*P = {x∈N: ∀p∈P.¬(x � � p)}=
+ ⋅ *P = P ∪ P .

By definition,

* ⋅ � �
P ∪ (P

� ∪ P � ) = N .

From now on , we assume that P is convex.

We immediately see that this implies that P
�

is up-closed ( x
�
p∈P �

imply x∈P �
), P � is

down-closed, and P
�

and P � are disjoint. In particular, we have the following partition:

⋅ * ⋅ ⋅P ∪ P ∪ P
� ∪ P � = N ; (2.3)

that is,

+ ⋅ ⋅P ∪ P
� ∪ P � = N . (2.3')

� � � �
P

�
is up-closed, P � is downclosed; their complements P

�
= N-P

�
, P � = N-P � are

� � � �
+downclosed, resp. upclosed, hence all are convex. P is the intersection of P

�
and P � ,

+hence, P is convex.

I claim that

+
� � ⋅ *(P )

�
= P

� ∪ P ;

+
�

+ + +The RHS is clearly contained in the LHS. Let x∈(P )
�

, that is, let p ∈P and x
�
p ,

*to show x∈RHS. Suppose x∉P , that is, suppose p∈P such that p
�
x (case 1), or x

�
p=

? � + + + +(case 2), to show x∈P �
. In case 1, p

�
x
�
p ; thus p

�
p ; but p∈P , p ∈P and=

+ + +p
�
p clearly imply that p ∈P ; then, the convexity of P and p

�
x
�
p imply x∈P ,=� �

thus also x∈P �
. In case 2, x∈P �

by definition. (claim done)

Symmetrically,
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�
+

� ⋅ *P � = P � ∪ P .

+
�
+ +

� ⋅ * ⋅ * +Thus, P
�
= P � - P = P � ∪ P - (P ∪ P ) = P

�
; similarly, P � =P � .

+ ⋅ +* ⋅ + ⋅ + +From P ∪ P ∪ P
� ∪ P � = N , (2.3) applied to the convex set P , we get

⋅ * ⋅ +* ⋅ ⋅P ∪ P ∪ P ∪ P
� ∪ P � = N ,

⋅ * ⋅ ⋅ +* ++ + ⋅ +* +and since P ∪ P ∪ P
� ∪ P � = N , we conclude P =∅ . Therefore, P =P ∪P = P .

+ * + ⋅ *Conversely, suppose that P =P ; this of course means that P =∅ , since P =P∪P . We
have shown

+ * +P =P iff P =∅ iff ∃Q convex. P=Q .

+ **Let us call the convex set P horizontally full if P =P . ( P is vertically full if P=P .)

+The operation P ��� P on convex sets is not monotone, however: if N={1, 2, 3} ,
+ +�

={(1, 2), (1, 3)} , then {1} ={1, 3} , and {1, 2} ={1, 2} .

* *As a "lemma", let us note that if V⊆P is upward closed in P , that is,
*

� ⋅∀x.(x � v∈V & x∈P )��� x∈V , then P
� ∪V is upward closed (absolutely): the only thing to� ⋅ * *check is that if w

�
v and v∈V , then w∈P � ∪V ; this is true when also w∈P ; but if w∉P ,�

we have p∈P with either w
�
p (case 1), or p

�
w (case 2); case 1 implies w∈P �

, and case=
*2 is impossible since it gives p

�
w
�
v and p

�
v , contradicting v∈V⊆P .

* * *Similarly, if M⊆P is downward closed in P , that is, ∀x.(x � v∈V & x∈P )��� x∈V ,� ⋅then P
� ∪V is downward closed (absolutely).

Given two cuts C =(U , L ) and C =(U , L ) such that C ≤C , that is, U ⊆U ,1 1 1 2 2 2 1 2 1 2
L ⊇L , the set P=L ∩U is obviously convex.1 2 1 2

* * ⋅Conversely, given the convex set P , let D=(V, M) be any
�

-cut in the set P : P =V∪M ,
* *V closed upward in P (and M closed upward in P ). From (2.3) and the "lemma" we see

that the definitions

DEF ⋅ ⋅ � ⋅L = P ∪ P � ∪ M = P � ∪ M (2.4)1

DEF ⋅ ⋅ � ⋅U = P ∪ P
� ∪ V = P

� ∪ V (2.5)2
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give P=L ∩U , with L closed downward, U closed upward, thus defining cuts1 2 1 2
C =(U , L ) and C =(U , L ) ; and C ≤C . It is also clear that any C ≤C that give1 1 1 2 2 2 1 2 1 2
P as P=L ∩U arises in this way.1 2

Let us summarize. Let us call a pair of cuts C and C a slicing (in (N,
�
) ) if C ≤C ;1 2 1 2

DEF
the slice of the slicing (C , C ) is the set P(C , C ) = L ∩U . Every slice (of any1 2 1 2 1 2
slicing) is convex; and conversely, every convex set arises as the slice of a slicing. More
particularly, the slicings for which a given convex set P is the slice are in a bijective

* *correspondence with the cuts in (P ,
�
	
P ) , according to the formulas (2.4) and (2.5).

Therefore, the convex sets that arise as a slice from exactly one slicing are exactly the
horizontally full ones.

Planar arrangements

A (finite) planar arrangement is a structure N=(N;
�

, � � ) with N a finite set,
�

, � �

binary relations on N , such that:

1)
�

and � � are irreflexive and transitive (irreflexive partial orders);
⋅ ⋅ ⋅ 2≠2)

� ∪ � ∪ � � ∪ � � = N ;
op op 2≠here, � = �

, � � = � � , N = N×N-∆ , ∆ = {(a, a):a∈N} . We are saying thatN N
for any x≠y in N , exactly one of the following four alternatives holds:

x � � y x � � y x
�
y x � y .

We read x � � y as " x is (to the) left of y " , " y is (to the) right of x ". As we said
before, we read x

�
y as " x is above y " , " y is below x "; that is, we imagine the order�

as going "downward".

In short, � � is the "left-to-right" (partial) order,
�

is the "(from) up-(to) down" order in the
arrangement.

Note the obvious fact that, for a planar arrangement (
�

, � � ) , an
�

-antichain is the same
thing as a � � -chain: a set in which any two elements are � � -comparable. Therefore, a span
of (N,

�
, � � ) , respectively a span of a cut C , always understood as a cut for (N,

�
) , is

a maximal � � -chain in N , respectively, a maximal � � -chain in the border of C .

Further notation

We write � � � ,
�

for the reflexive versions:= =

x � � � y ����� x � � y � x=y ,=
x
�
y ����� x

�
y � x=y .=

We write � � � ,
� � for the comparability relations:
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x � � � y ����� x �
� y � x � � y ,

x
� � y ����� x

�
y � x � y .

There are obvious versions such as � � � ,
� � .= =

All (partial) orders will have finite underlying sets. Thus, we can meaningfully talk about the
"Hasse diagram" of an order. We use the notations �

� ! ,
�
! in these senses:

x �
� !y ������� x �

� y & ¬∃z.x �
� z �

� y ,
x
�
!y ������� x

�
y & ¬∃z.x � z � y .

The notations < ,
�

, possibly with a subscript, will be reserved for total (linear, irreflexive)
orders.

Intervals

We are in a fixed planar arrangement (N;
�

, �
� ) .

�
It is convenient to consider the "2-point compactification" (N ;

�
, � � ) of (N;

�
, � � ) .

� ⋅Here, with the new symbols -∞ , ∞ , we put N =N∪{-∞, ∞} , and declare that -∞ � � < ∞
�

and -∞ � � u � � ∞ for all u∈N . Then (N ;
�

, � � ) itself is a planar arrangement --
although this is not very important.

In what follows, we try to adhere to the convention that variables a, b, ... range over the
�

extended set N , and u, v, x, � , ... range over the original set N .

� ⋅For any subset S of N , we write S for the set S∪{-∞, ∞} .

�
Take a and b in N such that a � � � b , and define=

[a, b] = [a, b] = {x∈N:a � � � x � � � b} .
� � = =

(Thus, the set [a, b] is a subset of N , although a and b may not be elements of N .)

Similarly,

(a, b) = (a, b) = {x:a � � x � � b} ,
� �

and we have the obvious versions (a, b] , [a, b) too. Of course, (-∞, b)=[-∞, b) ,
etc.; and (-∞, ∞)=N .

We define the subset I of N to be an interval with end-points a and b (left end-point a
�

and right end-point b ) if (a, b) ⊆I ⊆ [a, b] ; here, a, b∈N , and it is assumed that
a � � b and {a, b}≠{-∞} , {a, b}≠{∞} .

In the notion of "interval", we must keep track of the end-points; the same set I could be an
interval with two different sets of end-points. For instance, as a set, an interval may be empty;
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as an interval in the full sense, it still retains the information of its endpoints. However, we
make one exception: we do not allow the empty sets (-∞,-∞) , (∞,∞) as intervals.

When we denote an interval as, e.g., (a, b) , we automatically mean that the endpoints are
taken to be a and b . Thus, an interval is a set I , together with two end-points a and b .

Intervals are �
� -convex sets: a subset I of N is an �

� -convex iff

∀x∈I.∀z∈I.∀y(x �
� y �

� z ������� y∈I ).

An interval is a �
� -convex subset of N ; but it is also convex with respect to

�
; in fact, if

I is an interval with end-points a, b , then

x, z∈I , x
�
y
�
z ������� y∈(a, b) .

To show this, we (easily) exclude each of the possibilities a
�
y , y

�
a , y �

� a and y=a ,
to conclude a �

� y ; similarly, we obtain y �
� b .

The arrangement (N,
�

, � � ) induces (by restriction) a planar arrangement on any subset of N .
For any subset I of N , a cut in I , or I-cut, is a cut of the arrangement induced on I . It
is obvious that a cut C=(U, L) of the total arrangement induces a cut C

	
I = (U∩I, L∩I)

in I , for any subset I of N .

3.2 Proposition Let C=(U, L) be a cut in N , and let B the border of C . Let
�

I be an interval with endpoints a and b , and assume that a, b∈B . Then the border of
C
	
I is equal to B∩I .

� �
Proof Denote the border of C

	
I by B . It is clear that B∩I⊆B . To show the� �

converse containment, that is, B⊆B , we verify, for elements w of B , the RHS of (1).

�
Let w∈B and assume w

�
v , to show v∈L (?). Let's compare a and v (in case a≠-∞ ). If

a
�
v , we are done, since a∈B . v � � � a would give v � � � a � � � w (since w∈I ),= = =

contradicting w
�
v . v

�
a would give w

�
v
�
a , contradicting a � � � w . It remains to consider=

the case that a � � v (which is OK when a=-∞ ) . Similarly, we may assume that v � � b . But�
then, a � � v � � b , hence, v∈I ; v∈L follows since w∈B .

Similarly, we can show, for (1), that w � v ����� v∈U .

A (signed) span in an interval I is, of course, a (signed) span of the planar arrangement
induced on I .

3.3 Proposition Suppose that I is an interval, S is a signed span of N , and
�

both endpoints of I belong to S . Let C=(U, L) be the cut determined by S . The
intersection S∩I inherits a signing from S . Then
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(i) S∩I is a signed span in I .
(ii) The signed span S∩I in I determines, in the arrangement induced on I , the

cut C
	
I = (U∩I, L∩I) .

Proof Call the end-points of I : a and b .

(i) By Prop 2, B∩I is the border of C
	
I . I claim S∩I is a span in B∩I . To see

?
this, suppose that x∈B∩I and (S∩I)∪{x} is a �

� -chain, wishing to conclude x∈S∩I .

Since x∈I , we have a � � � x � � � b . For any y∈S-I , we have y � � � a or b � � � y ; thus,= = = =
y � � � x : x is � � � -comparable with any y∈S-I . By assumption, x is � � � -comparable= = =
with any y∈S∩I . We conclude that x is � � � -comparable with any y∈S . Since S is a=
span in B , x∈S ; x∈S∩I is true.

(ii) Let (U , L ) be the cut determined by S∩I in I . It is obvious from theI I
definitions (see (2.1) and (2.2)) that U ⊆U∩I , L ⊆L∩I . But we haveI I

⋅ ⋅U ∪L = (U∩I)∪(L∩I) = I . It follows that we must have U =U∩I , L =U∩I .I I I I

Intervals I and J are complementary if either I=( � ∞, a) and J=[a.∞) , or
I=( � ∞, a] and J=(a.∞) , or one of said conditions holds with the roles of I and J
reversed.

Given complementary intervals I , J , and given spans S , S of I , resp. J , we haveI J
⋅that S=S ∪S is a span of N .I J

Indeed, S certainly is a � � -chain in N . Note that a must belong to S : (precisely) one of
I and J contains a ; in the first case, a∈S , in the second, a∈S ; thus, at any rate,I J
a∈S .

Assume that x∉S , but S∪{x} is a � � -chain, to reach a contradiction. But then x is
� � -comparable to a (since a is in S ), and therefore, it must belong to either I , or to J ;
and either case is a contradiction to the "span" character of the two given spans S , S . OfI J
course, S∩I=S , S∩J=S .I J

We have proved part (i) of

3.4 Proposition Let I , J be complementary intervals, S , T signed spansI I
in I ; S , T signed spans in J . ThenJ J

⋅(i) S=S ∪S is a signed span in N ; S∩I = S , S∩J = S .I J I J
⋅ ⋅(ii) Let S=S ∪S , T=T ∪T . Then S∼T iff S ∼T & S ∼T .I J I J I I J J
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Proof (ii) Let C =(U ,L ) , C =(U ,L ) be the cuts determined by S and TS S S T T T
in N , respectively.

"Only if": Assume S∼T . From Prop 3.3, it follows that S∩I and T∩I determine the same
cut in I , namely the cut (U ∩I, L ∩I) = (U ∩I, L ∩I) . Of course, the same thing goesS S T T
for J in place of I .

"If": Assume S ∼T & S ∼T . By Prop 3.3(ii), U ∩(I∪J) = U ∩(I∪J) ; that is, forI I J J S T
every u∈I∪J , C and C agree on u .S T

Let C be the cut determined in I by S as well as T ; similarly for C . Let B , BI I I J I J
be their respective boundaries. For the common endpoint a of I and J , a∉{-∞, ∞} , and
exactly one of I and J contains a as an element; call the one K . Then, of course, we
have a∈S and a∈B .K K

For u∉I∪J , we have that either u
�
a or u � a . Since a∈B , in the first case u∈U ∩KK S

and u∈U ∩K , hence, C and C agree on u ; in the second case, u∈L ∩K andT S T S
u∈L ∩K , and again, C and C agree on u .T S T

We conclude that C =C as desired.S T

3.4' Corollary Let I , J be complementary intervals. Given cuts C on I and D on
J , there is a unique cut, denoted C∪D , on N such that (C∪D) 	 I=C and (C∪D) 	 J=D .

Proof The assertion follows from 3.3, 3.4 and the fact that every cut has at least one
signed span determining it.

Local fattening of a planar arrangement

Let N=(N,
�

� � ) be a planar arrangement as before.

Let a, b∈N such that a
�
!b (that is, a

�
b and ¬∃c(a � c � b) ). We describe a new planar

arrangement N obtained by modifying N by "turning the fact a
�
!b into a � � b ", thusa, b

"fattening" (extending in the left-to-right direction) the arrangement.

We define

def def tr
� � = � � � = ( � � ∪ {(a, b)}) ( tr : transitive closure)a, b

def def op�
=

���
=

�
- ( � � � ∪ � � � ) ( � � � = � � � )a, b
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As a general fact, just on the basis that �
� is an irreflexive order, and a≠b are

incomparable in �
� , we have that �

� � is an irreflexive order; in fact, the least irreflexive
⋅order containing �

� ∪ {(a, b)} . Moreover, with the abbreviation

def*x �
� � y ������������� x � � � a & b � � � y= =

we have
*x �

� � y ������� x �
� y � x �

� � y .

3.5 Proposition (N;
���

, �
� � ) so defined is a planar arrangement.

Proof The fact that (
���

, �
� � ) satisfies 2) is clear from the definition.

���
is obviously irreflexive; we have to show that it is transitive.

We have

* *x
���
y ������� x

�
y � ¬(x � � � y) � ¬(y � � � x) . (3)

Assume

x
���
y
���
z ,

to show x
���
z (?). We have x

�
y
�
z , thus x

�
z . It remains to show that

¬(x � � � a & b � � � z) (?4)= =
and

¬(z � � � a & b � � � x) (?5)= =

Since x
���
y
���
z , we have

either ¬(x � � � a) , (6.1)=
or ¬(b � � � y) (6.2)=

and

either ¬(y � � � a) , (7.1)=
or ¬(b � � � z) (7.2)=

Clearly, (6.1) implies (4).

(6.1) implies (5): b � � � x � � � a implies b � � � a , * to a
�
b .= = =

Clearly, (7.2) implies (4).

(7.2) implies (5): b � � � z � � � a is false.= =
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Therefore, we may assume that (6.2) and (7.1) hold. This means that

b
�
y (8.1)

or b � y (8.2)
or b � � y (8.3)

and

y
�
a (9.1)

or y � a (9.2)
or y � � a (9.3)

Assume (9.3).
If x � � � a , x � � � a �

� y * to x
�
y : (9.3)

�
(4).= =

If z � � � a , z � � � a �
� y * to y

�
z : (9.3)

�
(5).= =

Assume (8.3).
If b � � � z , y � � b � � � z * to y

�
z : (8.3)

�
(4).= =

If b � � � x , y � � b � � � x * to x
�
y ; (8.3)

�
(5).= =

Assume (9.1). Since x
�
y
�
a
�
b , this excludes both x � � � a and b � � � x := =

(9.1)
�

(4) & (5).
Assume (8.1). Since a

�
b
�
y
�
z , this excludes both b � � � z and z � � � a := =

(8.1)
�

(4) & (5).

(9.2) and (8.2) together would mean a
�
y
�
b : impossible since we have assumed that a

�
!b .

This completes the proof of the transitivity of
���

, and that of Prop 3.5.

�
3.5' Proposition For x, y∈N , we have:

(i) a � � � !b
*(ii) x � � � y & (x≠a � y≠b ) ������� ¬(x � � � !y) .

(iii) ¬(x � � !y) & (x≠a � y≠b ) ������� ¬(x � � � !y) .
*(iv) x � � � !y ��������� (x=a & y=b ) � (x � � !y & ¬(x � � � y)) .

* *Proof (i) a � � � b since a � � � b . The combinations a � � z & z � � � b ,
* * *a � � � z & z � � b , a � � � z & z � � � b are all impossible, and so is a � � z & z � � b because

a � � !b . This shows that a � � � z � � � b is impossible.
(ii) Immediate.

*(iii) If ¬(x � � � y) , we are done. Otherwise, x � � y (case 1) or x � � � y (case 2). In
case 1, we have z with x � � z � � y , so x � � � z � � � y , thus ¬(x � � � !y) . In case 2, (ii)
applies.

(iv) The ����� direction is (ii)&(iii). For the other direction: because of (i), we are
*left with showing x � � !y & ¬(x � � � y) ����� x � � � !y . Assume
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*x �
� !y & ¬(x �

� � y) & x �
� � z �

� � y ,

* * *to derive a contradiction. Since either of x �
� � z �

� � y , x �
� � z �

� � y implies x �
� � y , and

* *x �
� � z �

� � y is impossible, we must have x �
� z �

� y , contradicting x �
� !y .

3.6 Proposition Let (
�

, �
� ) be a planar arrangement on the set N , now not

assumed to be finite. Define, for x, y∈N

def
x< y ��������� x

�
y � x �

� y (10.1)1
def

x< y ��������� x � y � x �
� y (10.2)2

Then < , < are total (irreflexive) orders on N , and1 2

x
�
y ������� x< y & y< x (11.1)1 2

x � � y ������� x< y & x< y . (11.2)1 2

Conversely, if < , < are total orders on N , and we define
�

and � � by (11.1) and1 2
(11.2), then (

�
, � � ) is a planar arrangement on N , and (10.1), (10.2) hold.

Proof Easy

3.7 Corollary A finite planar arrangement is rigid: it has no non-trivial automorphism.

Proof Any automorphism of the structure (N,
�

, � � ) is also an automorphism of
(N, < ) , by (10.1). But a finite total order has no non-trivial automorphism.1

3.8 Elementary Lemma Let (N,
�
) be any finite irreflexive partial order; let

x, y∈N . Then the following are equivalent:
* *(i) There is a total order < on N extending

�
such that x< !y .

(ii) x
�
!y � ¬(y � � x) .=

Proof. (i) ����� (ii) is obvious.

Assume (ii). Let V ={v:v
�
x} , V ={v:v

�
y}-{x} ,1 2

W ={w:w � x}-{y} , W ={w:w � y} , V=V ∪V , W=W ∪W . Let1 2 1 2 1 2
Z=N-(V∪{x}∪{y}∪W) . Note that

z∈Z ����� z≠x & z≠y & ¬(z � � x) & ¬(z � � y) .

The four sets X =V∪Z , X ={x} , X ={y} , X =W are pairwise disjoint; in fact,1 2 3 4
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Claim: if i<j , then ¬(s∈X & t∈X & t
�
s) .i j =

We assume s∈X & t∈X & t
�
s , and see that there is a contradiction.i j =

Checking:
Case 1. (i, j)=(1, 2):

Case 1.1: s∈V : s
�
x & t=x & t

�
s : *1 =

Case 1.2: s∈V : s
�
y & s≠x & t=x & t � s: x � s � y: * to (ii)2 =

Case 1.3: s∈Z : s is incomparable to x & t=x & t
�
s : *=

Case 2. (i, j)=(1, 3):
Case 2.1: s∈V : s

�
x & t=y & t

�
s : y

�
s
�
x : * to (ii)1 = =

Case 2.2: s∈V : s
�
y & s≠x & t=y & t � s: *2 =

Case 2.3: s∈Z : s is incomparable to y & t=y & t
�
s : *=

Case 3. (i, j)=(1, 4):
Case 3.1.1: s∈V & t∈W : *1 1
Case 3.1.2: s∈V & t∈W : s

�
x & y

�
s : * to (ii).1 2

Case 3.2.1: s∈V & t∈W : s
�
y & s≠x & x � s : x � s � y : * to (ii).2 1

Case 3.2.2: s∈V & t∈W : s
�
x & y

�
t & t

�
s : y

�
t
�
s
�
x : * to (ii).2 2 = =

Case 3.3.1: s∈Z & t∈W : *1
Case 3.3.2: s∈Z & t∈W : *2

Case 4. (i, j)=(2, 3) : s=x & t=y & t
�
s : * to (ii).=

The case (i, j)=(2, 4) is similar to (i, j)=(1, 3) , and the case (i, j)=(3, 4) is
similar to (i, j)=(1, 2) .

This checks the Claim.

Let's totally order each of the sets V∪Z , {x} , {y} , W compatibly with
�

, and let us
* ⋅ ⋅take the ordered sum of the total orders, itself a total order < , on the union V∪Z ∪ {x} ∪

⋅ * *{y} ∪ W = N . By the Claim, < is compatible with
�

. It is clear that x< !y .

This proves the Lemma.

The next series of technical lemmas will be used in section 6. Their placing in this section is
justified by their elementary nature.

We are working in an arbitrary fixed planar arrangement (N,
�

, � � ) . Throughout, the
following additional items are fixed:

a, b, x, y∈N such that
a
�
!b , (12.1)

x � � !y , (12.2)
x � � � a (12.3)=

45



and b � � � y . (12.4)=

�
� � is defined as in 3.5.

3.9.1 (0) If b≠y , then x
�
b .

(i) u∈[x, a] & v∈[b, y] & (u, v)≠(x, y) ��������� u
�
v .

�
�

�
�

⋅(ii) [x, y] = [x, a] ∪ [b, y] .
�

� �
�

�
�

�

Proof (0): Assume b≠y , to show x
�
b .

?: x �
� b : x �

� b �
� y (! since b≠y ) : * to x �

� !y ;
?: b � � � x : b � � � x � � � a : * to a

�
b ;= = =

?: b
�
x : a

�
b
�
x : * to x � � � a .=

This proves (0).

(i): Assume LHS of "��������� " . First, we show u
�
b :

?: b
�
u : a

�
b
�
u : * to a � � u ;= =

?: u � � b : x � � � u � � b : * to x
�
b if b≠y by (0); and if b=y , then the=

assumption implies that u≠x , and thus x � � u � � b=y , * to x � � !y ;
?: b � � u : b � � u � � � a : * to a

�
b .=

Next, u
�
v :

?: v
�
u : v

�
u
�
b : * to b � � � v ;= = =

?: u � � v : x � � � u � � v � � � y & "=" does not hold at both places: * to x � � !y ;= =
?: v � � u : b � � v � � u : * to u

�
b (known from before).

(ii): The fact that the RHS is a disjoint union is contained in part (i).

It is clear that the RHS is contained in the LHS.

Assume z is in the LHS, that is, x � � � z � � � y , to show that z belongs to the RHS.= =

By definition, we have one of the following four logical possibilities:

x � � � z & z � � � y= =
*x � � � z & z � � � y=

*x � � � z & z � � � y=
* *x � � � z & z � � � y .
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The last one is impossible. Since x �
� !y , the first one is possible only if z is equal to one

of x, y , in which case z does belong to the RHS. In the second case x � � � z & z � � � a ,= =
that is, z∈[x, a] ; in the third, b � � � z & z � � � y , that is, z∈[b, y] , and we are

�
� = = �

�

done.

def
Define Z = {z:a

�
z
�
y} , (13.1)

def
Z = {z:a

�
z
�
!y} , (13.2)!

def
For z∈N : W = {w:x �

� w �
� z} , (13.3)z

def
W’ = {u:x � � � u �

� z} . (13.4)z =

3.9.2 For any z∈Z , we have b � � z and x � � z .

Proof Assume z∈Z . Because a
�
!b , we must have y≠b , and thus x

�
b by

3.9.1(0).

We show b � � z by excluding the four other possibilities.

? b=z : * to b∉Z .
? z � � b : z � � b � � y : * to z

�
y .

? z
�
b : a

�
z
�
b : * to a

�
!b .

? b
�
z : b

�
z
�
y : * to b ��� � y .=

Next, we show x � � z in a similar manner (but also using b � � z ):

? z � � � x : z � � � x � � a : * to a
�
z .= =

? z
�
x : z

�
x
�
b(!) : * to b � � z .

? x
�
z : x

�
z
�
y : * to x � � y .

3.9.3 If z∈Z and w∈W , then w
�
y .z

Proof To prove w
�
y :

? w � � y : x � � w � � y : * to x � � !y .
? y � � � w : y � � � w � � z : * to z

�
y .= =

? y
�
w : z

�
y
�
w : * to w � � z .

3.9.4 Any � � -minimal element of Z is an � � -minimal element of Z .!

Proof Suppose z∈Z is not a � � -minimal element of Z . There is u∈Z such that
u � � z . If u∈Z , then z is not a � � -minimal element of Z , and we are done. Otherwise,! !
there is v such that u

�
v
�
y ; we can choose v so that, in addition, v

�
!y . Obviously,
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v∈Z . I claim that v �
� z . Indeed:!

? z
�
v : z

�
v
�
y : * to z

�
!y ;

? v
�
z : u

�
v
�
z : * to u �

� z ;
? z � � � v : u �

� z � � � v : * to u
�
v .= =

But v∈Z & v �
� z says that z is not a �

� -minimal element of Z .! !

3.9.5 Let z be a �
� -minimal element of Z , and u∈W . Then u �

� a .! z

Proof To prove u �
� a :

? a
�
u : a

�
u
�
y by 3.9.3. Hence, u∈Z . By u∈W , u �

� z . But thisz
contradicts the �

� -minimality of z in Z , given by 3.9.4. .
? u

�
a : u

�
a
�
z : * to u �

� z .
? a � � � u : a � � � u �

� z : * to a
�
z .= =

This shows u � � a .

3.9.6 Let z be a � � -minimal element of Z . We have that u∈W’ implies! z
u � � a .

Immediate from 3.9.5.

3.9.7 Let z be a � � -minimal element of Z . Then (b, z) ⊆(b, y) .! � � � �

Proof Assume b � � v � � z , to show v � � y .

First, we show a
�
v :

?: a � � � v : a � � � v � � z : * to z∈Z ;= =
?: v � � a : b � � v � � a : * to a

�
b ;

?: v
�
a : v

�
a
�
b : * to b � � v .

This shows a
�
v .

Therefore, v
�
y would imply that v∈Z ; then by v � � z , z is not a � � -minimal element

of Z , contradicting 3.9.4. Thus, ¬(v � y) . But also y
�
v would give z

�
y
�
v ,

contradicting v � � z , and y � � � v would give y � � � v � � z , contradicting z
�
y .= =

We have shown that v � � y as desired.

3.9.8 Let z be a � � -minimal element z of Z . Certainly,!
def

W" = W’∩µ[x, a) ≠∅ since x � � z (3.9.2), and thus x∈W" . Since µ[x, a) isz z � � z � �
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linearly ordered by �
� , we can take the �

� -maximal element u of W" . I claim thatz
u �

� !z .

Proof Suppose that, on the contrary, there is v such that u �
� v �

� z . Of course,
v∈W’ , and thus v �

� a by 3.9.6. Let w∈µ[x, a) such that v
�
w . We must have w �

� z :z �
� =

any other possibility leads to a contradiction:

? z
�
w : a

�
z
�
w : * to w �

� a ;= =
? w

�
z : v

�
w
�
z : * to v �

� z ;=
? z �

� w : v �
� z �

� w : * to v
�
w .=

Since µ[x, a) is linearly ordered by �
� , we either have u �

� w or w � � � u . But the
�

� =
second possibility gives w � � � u �

� v , contrary to v
�
w . Thus, we must have u �

� w . We=
now have w∈W" and u �

� w , and this contradicts the "maximal" choice of u . We havez
proved that u � � !z .

3.9.9 Let D=(V, M) be a
�

-cut such that b∈E=the border of D .

Let's write
�

for the set {u:u
�
y} .y

Assume that a
�
!y . Then, for any w∈ � ∩M , we have b � � w and a � � w .y

Proof: For b � � w :
? b

�
w : b

�
w
�
y : * to b � � y .= =

? w
�
b : since b∈B , it would follow that w∈U , * to w∈M .

? w � � b : w � � b � � y : * to w
�
y .

This proves b � � w .

For a � � w :
? a

�
w : a

�
w
�
y : * to a

�
!y .

? w
�
a : w

�
a
�
b : * to b � � w (proved earlier).= =

? w � � a : b � � w � � a : * to a
�
b .

This proves a � � w .
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§4 The 2D case

We start by (re-)stating some properties of 2-Pd's.

First, some trivial, but basic, properties of 1-pd's;

� �
4.0. Proposition Let S, S , S , S denote 1-pd's in the computad X , S , S1 2 3 1 2
1-pd's in the computad Y , f:X � � Y a map of computads.

S ⋅S = id ��������� S =S =id ;1 2 X 1 2 X
S ⋅S = S ⋅S ��������� S =S ;1 2 1 3 2 3
S ⋅S = S ⋅S ��������� S =S ;1 3 2 3 1 2� � � �
f(S) = S ⋅S ��������� ∃!(S , S ).[S=S ⋅S & f(S )=S = & f(S )=S ] .1 2 1 2 1 2 1 1 2 2

A 2-atom ϕ is a 2-pd of the form

ϕ = b ⋅u ⋅e , (1)

where b, e are 1-pd's, and u is a 2-indet. (For a 1-pd b and a 2-pd ϕ , b ⋅ ϕ = ϕ � b :0
"whiskering".) The expression (1) is uniquely determined for each ϕ (a special circumstance
for dimension 2). Thus, 2-atoms are the same as well-defined expressions of the form (1).

u is the nucleus of the atom (1). To indicate that the nucleus of the atom ϕ is u , we write
ϕ[u] for ϕ .

In what follows, α,β,ρ,σ,ϕ,ψ will denote 2-atoms.

As we know from §2, a 2-molecule Φ is a finite tuple Φ:=:(ϕ , ..., ϕ ) of 2-atoms1 N
such that the composite

def�
Φ � = ϕ ⋅... ⋅ ϕ1 N

("vertical" composite) is well-defined. N is called the length of Φ .

Every 2-pd is of the form
�
Φ � for some, usually several different, molecules Φ . The main

concern of the paper is with the question when two 2-molecules define the same 2-pd's: what
is the "concrete" condition on 2-molecules Φ and Ψ for

�
Φ � =

�
Ψ � ?

We use the notation of §2.

4.1 Proposition Let X , Y be computads, f:X � � Y a map of computads. We
assume that, for any 2-indets u and v in X or in Y (whether or not u=v ), we have
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it is not the case that ∃X.cu=dv=id ; (2)X

this holds in particular if the computads are 2-anchored, or 2-co anchored. ρ,σ,ϕ,ψ are any
atoms in X , Φ , Ψ , ... are any molecules in X .

� �
(i) Writing the atoms ρ, σ as ρ = b ⋅u ⋅e , σ = b ⋅v ⋅e

we have

� �
ρ � � σ � ��� ∃S. e = S ⋅dv ⋅e & b = b ⋅cu ⋅S ;

here, the 1-pd S is uniquely determined.

Moreover, if ρ � � σ , then

�
cρ = dσ = b ⋅cu ⋅S ⋅dv ⋅e .

�
(ii) L(ρ, σ, ϕ, ψ) if and only if, for suitable 1-pd's b , e and S , we have�

ρ = b ⋅u ⋅S ⋅dv ⋅e�
σ = b ⋅cu ⋅S ⋅v ⋅e�
ϕ = b ⋅du ⋅S ⋅v ⋅e�
ψ = b ⋅u ⋅S ⋅cv ⋅e

(" ϕ comes from σ by replacing cu by du ; ψ from ρ by replacing dv by cv "). If�
L(ρ, σ, ϕ, ψ) , the data b, e, S are uniquely determined.

(iii) ρ � � σ and ρ ��� σ cannot happen at the same time.

(iv) If ρ � � σ , then the pair (ϕ, ψ) for which L(ρ, σ, ϕ, ψ) holds is uniquely
determined. As a consequence, in a 2-anchored computad, there is a bijection between pairs
(ρ, σ) of 2-atoms such that ρ � � σ and pairs (ϕ, ψ) such that ϕ ��� ψ ; the bijection is
given by the relation L(ρ, σ, ϕ, ψ) .

(v) If ρ ��� � σ , then there is a unique pair (ϕ, ψ) such that E(ρ, σ, ϕ, ψ) .
(Recall that E(ρ, σ, ϕ, ψ) � ��� L(ρ, σ, ϕ, ψ)&L(ϕ, ψ, ρ, σ) .)

(vi) ρ � � σ ����� f(ρ) � � f(σ) ; ρ ⋅ σ
�

& f(ρ) � � f(σ) ����� ρ � � σ .

(vii) � (Φ, Ψ ) & � (Φ, Ψ ) ����� Ψ =Ψ .k 1 k 2 1 2

Proof Using 4.0, the proofs are easy.

Example Condition (2) is necessary. Let the 0-indet X , distinct 1-indets f, g , and
distinct 2-indets u, v be as follows:

f, g:X � � X , u:f � � id , v:id � � g .X X
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Let ρ=u , σ=v . Then ρ � � σ holds with α=u and β=v (see (4) in §2); but also ρ ��� σ
with α=v and β=u in (5) in §2. Thus, 4.1(iii) is false now. We have L(ρ, σ, f ⋅v, u ⋅g)
and L(v ⋅f, g ⋅u,ρ, σ) and v ⋅f≠f ⋅v , u ⋅g≠g ⋅u . Therefore, 4.1(v) is false too.

Planar pasting preschemes

�
Let X be a computad. A planar pasting prescheme on X is six-tuple (N,

�
, � � , M, P, S)

where

N is a finite set of 2-indets in X ,
(

�
, � � ) is a planar arrangement on the set N ,

M,P are 0-cells in X ,
and � x CS = 〈(S ) : x � � y, C a cut in (x, y) 〉y � �

x C �is a family of 1-pd's (S ) in X , one for each pair (x, y) of elements of N such thaty
x � � y , and for a cut C for (

�
, � � ) restricted to (x, y) ,� �

these data are required to satisfy conditions 1) and 2) below. To formulate them, we extend the
x Cnotation (S ) to any x, y and cut C for the whole arrangement (N,

�
, � � ) such thaty

x and y are on the border of C , x, y∈B[C] , by the definition

DEF C � (x, y)x C x � �(S ) = (S ) .y y

The data are required to satisfy the identities:

x C x C1) d(S ) =ccx , c(S ) =ddy (x � � y, x, y∈B[C]∪{-∞, ∞})y y

(we have made here the convention that cc(-∞) equals M , and dd(∞)=P (note that
-∞ , ∞ are not 2-indets, and c(-∞) , d(∞) are not defined at all));

and

2)(compositionality)

a C a C C x C(S ) = (S ) ⋅ ∂ x ⋅(S )b x b
( a � � x � � b & a, x, b∈B[C]∪{-∞, ∞} )

def defC C(here: with C=(U, L) , ∂ x = cx if x∈U , ∂ x = dx if x∈L ).

Remarks

x x D1 For x � � !y , let us write S for (S ) , where D is the unique cut in the emptyy y
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xinterval (x, y) . It is clear that the subsystem of the S for x � � !y determines the� � y�
whole system S , by the formula

x xa C a C 1 C C m(S ) = S ⋅ ∂ x ⋅S ⋅ ∂ x ⋅... ⋅ ∂ x ⋅Sb x 1 x 2 m b1 2

where C=(U, L) is a cut in (a, b) , x � � !x � � !... � � !x is a span of C , and� � 1 2 m
C C∂ x=cx for x∈U , ∂ x=dx for x∈L .

2 We can put the definition of a planar pasting prescheme in the form of a functor. First
we define two categories C =C [N,

�
, � � ] and C =[N,

�
, � � ] , with the same objects.1 1 2

The objects in both will be the distinct symbols -∞ , ∞ , and all "signed" 2-indets u=(x, ε) ,
where x is a 2-indet in N , and ε is either "up" or "down"; (x, "up") is written as x ,�

�(x, "down") as x ; x=
�
u � ;

�
-∞ � =-∞ ,

� ∞ � =∞ .

An arrow u � � v in C exists only if
�
u � � � � �

v � . If
�
u � = �

v � , then an arrow exists only1 =
if u=v , and it is the unique identity arrow. If

�
u � � � �

v � , an arrow u � � v is a cut in the
interval (u, v) . The composition of arrows makes use of the signing: given non-identity� �

C Darrows u � � v � � w (
�
u � =x ,

�
v � =y ,

�
w � =z ) in the form of cuts u ������� � v ������� � w ,� � �

with C=(U, L) , we put C=(U∪{y}, L) if v=y , C=(U, L∪{y}) if v=y . Obviously,
�� � �

C is a cut in (x, y] , and y is on the border of C . By 3.4', we have the cut C∪D in� �
def �

(x, z) , which is an arrow D � C = C∪D:u ��� � v in C . Obviously, we have a� � 1
category in this way; in fact, C is a finite 1-way category.1

As before, we introduce the conventions cc(-∞)=M , dd(∞)=P .

When, for
�
u � =x ,

�
v � =y , we have x≠y , an arrow f:u � � v (

�
u � =x ,

�
v � =y ) in

C is a 1-arrow f:ccx ��� � ddy in the given computad X (underlying Γ ); the only other2 �
f garrows are identities. Given non-identity arrows u ������� � v ������� � w , the composite�

g � f:u � � w is g � f = g � ∂v � f , where ∂v=dv if v=y , and ∂v=cv if v=y .
�

�
A planar pasting prescheme is the same thing as a functor S:C � � C which is the identity1 2
on objects.

The main result
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We now fix a 2-separated anchored 2-Pd Γ=(X, Γ) . We use the terminology and notation of�
§2. We write N ,

�
, etc. for N ,

�
, etc. Recall especially the definition of

�
as theΓ Γ� �

Γintersection for all Φ∈G of the total orders < on N .Φ

ΓFor Φ∈G , we use the notation

Φ � ∞ Φ x Φϕ [x] = (S ) ⋅x ⋅(S ) . (3)x ∞

Φthat is, in the expression b ⋅x ⋅e for the atom ϕ [x] , with b, e suitable 1-pd's, we write
� ∞ Φ x Φ(S ) for b , and (S ) for e .x ∞

We repeat the definition of the relation � � , abbreviated � � , as in the second statement inΓ
2.3(c). That is, for x, y∈N :

def Γ Φ Φx � � y � ������� ∃Φ∈G .x< !y & ϕ [x] � � ϕ [y] (4)Γ Φ

ΓFor any Φ∈G , and any x∈N , we define two cuts of the order
�

, C =(U , L ) and1 1 1
xC =(U , L ) , C denoted also as � Φ , C as � Φ , as follows. y∈U � ��� y< x (and2 2 2 1 2 x 1 =Φ

y∈L � ��� x< y ) ; y∈U � ��� y< x (and y∈L � ��� x< y ) . It is clear that C , C are1 Φ 2 Φ 2 =Φ 1 2
�

cuts, and, with B , B their respective borders, we have x∈B , x∈B ; for instance,1 2 � 1 2
x

�
z implies x< z , that is, z∈L .Φ 1

For the statements 4.2, 4.3 and 4.4 that follow, Γ=(X, Γ) is a 2-separated anchored 2-Pd;��
=

�
, � � = � � .Γ Γ

4.2 Main Theorem Let Γ=(X, Γ) be a 2-separated anchored 2-Pd; N=N ,� Γ�
=

�
, � � = � � .Γ Γ

(i) (N,
�

, � � ) is a planar arrangement.

(ii) There exists a planar pasting prescheme�
(N,

�
, � � ,ddΓ,ccΓ,S) with the part (N,

�
, � � ) given in (i), and such that for any

ΓΦ∈G and any x∈N , we have

x � Φ-∞ Φ -∞ � Φ -∞ x(S ) = (S ) = (S )x x x
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x � Φx Φ x � Φ x x(S ) = (S ) = (S ) .∞ ∞ ∞

-∞ C x C xNote that the expressions (S ) , (S ) in (ii) are well-defined for either C = � Φ or Cx ∞
x= � Φ since x is on the border of C . Note also that the cuts � Φ , � Φ differ on thex x

xparticular element x only ( x being "up" in � Φ , "down" in � Φ ), and thereforex
x � Φ x � Φ� ∞ � Φ � ∞ x x � Φ x xautomatically (S ) = (S ) and (S ) = (S ) .x x ∞ ∞

-∞ Φ a ΦOn the other hand, the expressions (S ) , (S ) are to be recalled from (3).a ∞

The proof of 4.2 is the main task of the rest of the paper.

ΓFor any Φ∈G , and any (x, y) such that x< !y , let us write x � � y forΦ Φ
Φ Φ Φ Φϕ [x] � � � ϕ [y] , and x ��� y for ϕ [x] ��� � ϕ [y] as in section 2 .Φ

4.3 Corollary Let Γ be as in 4.2.�

(i) We have, with the notation of 4.2,

x x � Φ � ΦΦ -∞ � Φ x � Φ -∞ x x xϕ [x] = (S ) ⋅x ⋅(S ) = (S ) ⋅x ⋅(S ) ,x ∞ x ∞

x � ΦΦ -∞ � Φ Φ -∞ xc(ϕ [x]) = (S ) , d(ϕ [x]) = (S ) .∞ ∞

* Γ(i) Let Φ,Ψ∈G ; let x∈N . Assume ∀y∈N.(y< x � ��� y< x) . Then the atomsΦ Ψ
Φ Ψϕ [x] , ψ [x] are equal.

Γ �
(ii) The mapping o =(Φ � � < ):G ������� � G is one-to-one: Γ has uniqueΓ Φ

factorization.

*(ii) Γ has strong unique factorization (see section 2).

Γ(iii) For any Φ∈G , and any (x, y) such that x< !y ,Φ

55



x � � y iff x � � � y ,Φ
x ��� y iff x ��� � y ,Φ
¬(x ��� � y) iff x

�
y iff x

�
!y .Φ

ΓAs a consequence, if x, y∈N , Φ,Ψ∈G and x< !y , x< !y both hold, then x � � y iffΦ Ψ Φ
x � � y , and x ��� y iff x ��� y .Ψ Φ Ψ

Γ �
(iv) The mapping o =(Φ � � < ):G ������� � G is a surjection.Γ Φ

(v) For any x, y∈N ,
Γx

�
!y iff ∃Φ∈G .x< !y & ¬(x ��� � y) .Φ Φ

Γ � Γ(vi) The mapping o =(Φ � � < ):G ������� � G is an isomorphism of the graphs GΓ Φ�
and G .

(vii) Any morphism f:Γ ��� � Λ of top-separated anchored 2-Pd's induces an- -
isomorphism

≅[f]:(N ,
�

, � � ) ��������������� � (N ,
�

, � � )Γ Γ Γ Λ Λ Λ- - - - - -

of the planar arrangements associated with Γ and Λ . In other words, for any u, v∈N ,- - Γ�
u

�
v � ��� fu

�
fv , u � � v � ��� fu � � fv .Γ Λ Γ Λ� � � �

(viii) The planar pasting prescheme for Γ with the properties in 4.2(ii) is uniquely
determined.

Proof of 4.3 from 4.2 (i): immediate from 4.2(ii) : by 4.2(ii), the ingredients
-∞ Φ x Φ Φ(S ) , (S ) of ϕ [x] (see (3)) are determined by what the cut � Φ is.x ∞ x

(ii): immediate from (i).

*(ii) : see section 10.

Γ x(iii): Let Φ∈G , x< !y , and assume x � � y , to show x � � y . Let C = � Φ= � Φ. As weΦ Φ y
- x C x C y Csaid above, x∈B . y∈B for the border B of C . By 2), (S ) = (S ) ⋅dy ⋅(S ) . On� ∞ y ∞

defx C x Φ y C y Φ x Cthe other hand, (S ) =(S ) , (S ) =(S ) by 4.2 (ii). Thus, with S = (S ) ,∞ ∞ ∞ ∞ y
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x Φ y Φ -∞ Φ -∞ Φwe have (S ) = S ⋅dy ⋅(S ) . Similarly, we show that (S ) = (S ) ⋅cx ⋅S . We∞ ∞ y x
Φ Φhave verified the condition in 4.1(i) for ϕ [x] � � � ϕ [y] ; we have x � � y .Φ

The second item in (iii), of course, proved in the same way.

For the third item: the first "iff" is a consequence of the first two items and the fact that
(N,

�
, � � ) is a planar arrangement. Since

� ⊆ < , andΦ

x< !y � ����� x< y & ¬∃z.x< z< y ,Φ Φ Φ Φ
x

�
!y � ����� x

�
y & ¬∃z.x �

z
�
y ,

x
�
y & x< !y implies x

�
!y .Φ

Before turning to the rest of the assertions, we introduce some more notation. First,

def Φ Φ Ψ Ψ(x, y): � (Φ, Ψ) � ��� x � � y & L(ϕ [x], ϕ [y], ϕ [y], ϕ [x]) &Φ
Φ Ψ∀u∈N-{x, y}.ϕ [u]=ϕ [u] .

This should be compared to the definition of the relation � (Φ, Ψ) early in section 2. Clearly,
we have � (Φ, Ψ) iff ∃x, y∈N.(x, y): � (Φ, Ψ) .

Note that

x � � y � ����� ∃Ψ.(x, y): � (Φ, Ψ) (5.1)Φ
and

x ��� y � ����� ∃Ψ.(y, x): � (Φ, Ψ) : (5.2)Φ

Φ Φindeed, if x � � y , that is, L(ϕ [x], ϕ [y], ρ, σ) for some ρ,σ , we can define Ψ byΦ
Ψ Φ Ψ Ψϕ [u]=ϕ [u] for u∈N-{x, y} , ϕ [x]=σ and ϕ [y]=ρ ; Ψ is well-defined and

(x, y): � (Φ, Ψ) .

* **On the other hand, for total orders < , < of the set N , we write

def* ** * ** *(x, y): � (< , < ) � ��� (x, y) ∈ < & < =< -{(x, y)} ∪ {{y, x}) .

* ** * **We have that � (< , < ) iff ∃x, y∈N.(x, y): � (< , < ) ; here, � is the�
* **

�
graph-relation for G and < , < ∈ G .

�
(iv): Since G is a connected graph (an elementary fact, true for any partial order

�
), and

Γ Γ *
�

*G is non-empty, it suffices to show that, assuming Φ∈G , < ∈G and � (< , < ) ( <Φ Φ
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*
� Γ *and < are connected by an edge in the graph G ), there is Ψ∈G such that < =< .Ψ

* *� (< , < ) means that there are x, y∈N such that (x, y): � (< , < ) . But then, sinceΦ Φ
* *� ⊆ < and (y, x)∈< , we must have that ¬(x �

y) . Looking at (iii), we see that either
Φ Φx ��� � y or y ��� � x . If, e.g., x ��� � y , then ϕ [x] � � ϕ [y] . Thus, we can defineΦ Φ Φ

Γ Ψ Φ Ψ Φ Ψ ΦΨ∈G by stipulating ϕ [x]=ϕ [y] , ϕ [y]=ϕ [x] and ϕ [u]=ϕ [u] for
*u∈N-{x, y} , and get (x, y): � (Φ, Ψ) ; in particular, < =< . This proves (iv).Ψ

(v): The "if" part is contained in (iii). Assume x
�
!y , to show

Γ *∃Φ∈G .x< !y & ¬(x ��� � y) . Apply 3.8 Elementary Lemma, to obtain a total order < onΦ Φ
* Γ *N extending

�
such that x< !y . By the present (iv), there is Φ∈G such that < =< .Φ

We have x< !y . Since x
�
y , it follows from (iii) that we have ¬(x ��� � y) .Φ Φ

(vi): The fact that the mapping in question is a bijection is (ii) and (iv). The obvious fact that
the graph-relation is preserved by the map (Φ � � < ) was noted earlier. To see that it isΦ
reflected, assume that � (< , < ) , say (x, y): � (< , < ) ; hence, in particular,Φ Ψ Φ Ψ
(x, y)∈< ! , (y, x)∈< ! . Thus we cannot have either x

�
y or y

�
x , since x< y andΦ Ψ Φ

y< x , and both < and < are compatible with
�

. Therefore, by 4.2 (i), either x � � y orΨ Φ Ψ
y ��� x , which, by (iii) and x< !y , implies that x � � y or y ��� x . By (5.1) and (5.2),Φ Φ Φ� � �
there is Ψ such that (x, y): � (Φ, Ψ) if x � � y , and (y, x): � (Φ, Ψ) if y ��� x . ButΦ Φ�
then clearly, < =< , which, by (ii), says that Ψ=Ψ , and � (Φ, Ψ) , as was to be shown.� ΨΨ

(vii): This is consequence of 4.1(vi) (especially the second part), and the preceding parts 4.3
(ii), (iii), (iv) and (v).

(viii): see section 10.

For the record: 2.1=4.3(ii), 2.2(a)=4.3(iv), 2.2(b) is part of 4.3(iii), 2.2(c)=4.2(i), 2.3=4.3(vii),
2.4=4.2(vi).
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§5 The tree of variants of a molecule

The proof of the main theorem 4.2 is by an induction. We recursively construct the items of
the structure mentioned in 4.2. Starting with a molecule Θ , the recursion builds a tree, which�

Θ �tree, when completed, becomes a spanning tree for the graph G used for 4.2. It is
therefore no surprise that the formulation of the statement proved by induction repeats several
aspects of the statement of 4.2.

Let Θ=(X,Θ) be an anchored 2-separated (2-)Molecule; Θ=(θ [u ], ..., θ [u ]) . We� 1 1 N N
write N={u , ..., u } . We will use a, b, u, v, w, x, y, z ... to denote elements of N .1 N
We write x<y to mean that x=u , u=u and i<j ; we have the natural order < of thei j
indets in N .

Recall the relations ρ ��� σ , ρ � � σ , ρ � � � σ for atoms ρ,σ .

For variants Φ , Ψ of Θ , we write � (Φ, Ψ) (" Φ is switchable to Ψ at x (∈N) ") if x isx
not the last element in the order < , and for the y for which x< !y , we haveΦ Φ

Φ Φϕ [x] � � � ϕ [y] ,
Ψ Φ Ψ Φϕ [x]=ϕ [y] , ϕ [y]=ϕ [x]

and
Ψ Φϕ [u]=ϕ [u] for u∈N-{x, y} .

This is the same as � (Φ, Ψ) used in section 2 , where k=h (x) withk <Φ
≅h :(N, < ) �
	�	�	�� ({1, ..., N}, <) the unique isomorphism as shown. To avoid any< ΦΦ

misunderstanding, we discontinue the use of the notation � (Φ, Ψ) with k an integer.k

Φ ΦNote that if x< !y and ϕ [x] � � � ϕ [y] , then there is a unique Ψ such thatΦ
� (Φ, Ψ) .x

For total orders 
 , 
 of N , and x, y∈N , we write � (
 , 
 ) for1 2 x 1 2

x<y & x 
 !y & 
 = 
 -{(x, y)} ∪ {(y, x)}1 2 1

(since y is uniquely determined by x if it exists, it does not have to be mentioned in the
notation).

We define T=T[Θ] , the tree of variants of Θ . T is a labelled tree. At each node t∈T , we
will have labels as follows:
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t t t tΦ = (ϕ , ..., ϕ ) , a molecule of length N , a variant of Θ (that is, Φ and Θ1 N
define the same 2-pd).

< , a total order of the set N ;t
��� , � � : relations on N (set of ordered pairs of elements N )t t

We define the tree T by recursion: we define the root; and having defined a node t with its
labels, we define what the (immediate) successors (or "children") of t and their labels are.

The root r has labels:

rΦ = Θ ;
< = < , the natural order of the 2-indets in Θ .r
��� , � � will be explained as a special case of the general definition below.r r

tSuppose we have defined t , Φ , and < . First, we explain what ��� = ��� , � � = � �t t t
are.

tt Φ tLet us write ϕ [x] for ϕ [x] (the component ϕ whose nucleus is x ). We definek

def t tx ��� y ��������� x<y & x< !y & ϕ [x] � � � ϕ [y] , (1)t t

def t tx � � y ��������� x<y & x< !y & ϕ [x] � ��� ϕ [y] . (2)t t

Note that for both x ��� y , x � � y , we have as prerequisite that x<y holds. In othert t
words, the construction of the tree proceeds in steps each of which is the act of passing an
indeterminate x ahead past its successor y in the correct order ( x< !y ) (if and) only if xt
precedes y in the natural order and the atoms in question are exchangeable

t t( ϕ [x] � � � ϕ [y] ).

For an arbitrary total order 
 of the set N , the inversion number of 
 . inv(
 ) , is the
number of pairs (x, y) such that x 
 y but x>y . Let the level � (t) of the node t be� �
the number for which � (r)=0 , and � (t)= � (t)+1 for a successor t of t . The
previous paragraph says that � (t)=inv(< ) in general.t

To continue the construction of T : the successors of t in the tree are, by definition, in a
def ⋅bijective correspondence with the elements of the set � � � = ��� ∪ � � . We writet t t ��

tt[x, y] for the successor t of t corresponding to the pair (x, y)∈ � � � . Then Φ ist
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�
t tthe (unique) molecule for which � (Φ , Φ ) , and < is the order for whichx

�
t

� (< , < ) .x t
�
t

Note that

< =< implies that < = <
�

;t t
�

tΦ t Φ

and therefore, by a trivial induction, < =< for all t .t tΦ

This completes the definition of the labelled tree T .

We will use the notation

t � ∞ t x tϕ [x] = (S ) ⋅x ⋅(S ) . (3)x ∞

tthat is, in the expression b ⋅x ⋅e for the atom ϕ [x] , with b, e suitable 1-pd's, we write� ∞ t x t(S ) for b , and (S ) for e .x ∞

In what follows, a tree of variants of Θ , or simply: a tree, is any subtree of T ; that is, any�
subset T of (the set of nodes of) T which contains the root r , and for which, if t∈T , and�
t is a successor of t in T , then t∈T . The labelling of a tree is inherited from T .

Of course, T itself is a tree; and so is {r} , consisting of the root only.

Let T be a tree. We define

def0��� = � ��� {(x, y): (x, y)∈ ��� & t[x, y]∈T} ,T tt∈T
def0� � = � ��� {(x, y): (x, y)∈ � � & t[x, y]∈T}T tt∈T

0 0(Note that ��� = � � = ∅ .){r} {r}

def 0 0 op tr��� = ( ��� ∪ ( � � ) )T T T

( tr is "transitive closure")
def op� � � = ��� ∪ ( ��� )T T T

61



def�
= < - � � �T T

Next, we state an equivalent versionof the concept of planar pasting presceme of the last
section, in a form that is most suitable for the procedures of this and the next two sections.

T is annotated if the conditions and data (that are soon seen to be uniquely determined if they
exist) listed in (i)-(iv) are present.

(i) (N,
�

, ��� ) is a planar arrangement.T T

Notation In what follows, we write
�

for
�

, and ��� for ��� .T T

� ⋅(ii) With N =N∪{-∞, ∞} and -∞ ��� ∞ , -∞ ��� x , y ��� ∞ for all x, y∈N , for
� xevery x, y∈N such that x ��� !y , we have a specified 1-pd S such thaty

x xd(S )=cc(x) , c(S )=dd(y) . (Conventions: dd(-∞)=dd(
�
Θ � ) ,y y

cc(-∞)=cc(
�
Θ � ) .)

xWe call the S the basic 1-pd's.y

Notation For any open interval (a, b) of (N,
�

, ��� ) , ( a=-∞ , b=∞ are���
allowed), and for any signed span

ξ :=: a=x ��� !x ��� !x ��� !... ��� !x ��� !x =b0 1 2 n-1 n

in (a, b) with appropriate signs for each x , we define��� i

def x xa ξ a ξ 1 ξ ξ n-1(S ) = S ⋅ ∂ x ⋅S ⋅ ∂ x ⋅... ⋅ ∂ x ⋅S .b x 1 x 1 n-1 b1 2

ξ ξ ���
Here, ∂ x = cx if x is signed x , ∂ x = dx if x is signed x in ξ .i i i i i i i i���

a ξ(S ) is well-defined by (ii).b

We have the following obvious (de)composition equation: whenever a, b, x are in the signed
span ξ , then

a ξ a ξ ξ x ξ(S ) = (S ) ⋅ ∂ x ⋅(S ) . (4.0)b x b
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(iii) For any two signed spans ξ and ζ of the same open interval I=(a, b) , if���
ξ � ζ (they define the same cut in I ), we have

a ξ a ζ(S ) = (S ) .b b

defa C a ξNotation For a cut C of I=(a, b) , we write (S ) = (S ) for some (any)��� b b
a Csigned span ξ defining C ; by (iii), (S ) is well-defined.b

Let C=(U, L) be a cut of I=(a, b) , and x a proper element of the border B of C���
C C(in particular, x∈I ). Let ∂ x = cx if x∈U , ∂ x = dx if x∈L . As a consequence of

(iii), we have the all-important decomposition equation

a C a C C x C(S ) = (S ) ⋅ ∂ x ⋅(S ) . (4)b x b

Indeed, it suffices to take any signed span ξ of B containing x (such exists!), and apply
(4.0).

Condition (iii) and the relation (4) allow us to ignore "signed spans", and use exclusively the
x Cnotation (S ) relatively to a cut C . Without talking about signed spans and the like as wey

did in (iii), we could have formulated (iii) by saying that we have an operation

a C〈a ��� b , C 〉 � 	�	�� (S )b

satisfying (4).

Notation For any t∈T , and any x∈N , we define two cuts of the order
�

,
xC =(U , L ) and C =(U , L ) , C denoted also as � t , C as � t , as follows.1 1 1 2 2 2 1 2 x

y∈U ����� y< x (and y∈L ����� x< y ) ; y∈U ����� y< x (and y∈L ����� x< y ) . It is1 =t 1 t 2 t 2 =t
clear that C , C are cuts, and, with B , B their respective borders, we have x∈B ,1 2 1 2 � 1

�

x∈B .2

x(iv) For any t∈T and any x∈N , we have, for both C=� t and C=-t ,x

-∞ t -∞ C(S ) = (S ) ,x x
x t x C(S ) = (S ) .∞ ∞

(Here, we have related the notation introduced in (3) above, and the one introduced after (iii).)
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Theorem 5.1 Every tree of variants of Θ is annotated. In particular, the full tree
T[Θ] is annotated.

Proof of 4.2 from 5.1

We apply 5.1 to the full tree T=T[Θ] .

Let Γ=(X, Γ) be a 2-separated anchored 2-Pd. Let Θ be any molecule such that
�
Θ � =Γ .�

We use the notation developed above, and Theorem 5.1, in relation to Θ . Note, especially,
that we have the natural order < on N , the set of 2-indets in Θ .

s tIt clearly follows from 5.1 that, for s, t∈T[Θ] , < =< implies Φ =Φ .s t

Let ��� denote ��� ,
�

denote
�

.T T

By induction on � (t) , we see that for every t∈T , < is compatible with
�

.t

The same argument that gave 4.3(iii) from 4.2 gives, using 5.1, that, for any t∈T ,
x<y & x< !y & x ��� y implies (and, of course, is equivalent to) x ��� y , andt t
x<y & x< !y & y ��� x implies x � � y (Claim 1).t t

I claim (Claim 2) that for every total order 
 of N compatible with
�

there is t∈T such
that < =
 . The proof is by induction on inv(
 ) . When inv(
 )=0 , 
 =< , and < =
 .t r
Assume that inv(
 )>0 . Let (x, y)∈N×N be such that x
 !y and x>y ; there must be
such a pair, because if x
 !y always implies x<y , then clearly 
 =< follows. But then, we
must have that x and y are incomparable in

�
: x

�
y would imply x<y since <=< isr�

compatible with
�

; and y
�
x would imply y
 x . Therefore, 
 = 
 -{(x, y)} ∪ {(y, x)}�

is a total order of N , still compatible with
�

. Clearly, inv(
 )=inv(
 )-1 .

�
By the induction hypothesis, there is t∈T such that 
 =< . Since ¬(x ���

y) , by (i), we�
t

have x �
	�� y ; since also x<y & x< !y , by Claim 1 we conclude that x �
	�� y . Therefore,� �
t t�

by the definition of the tree T , there is t∈T , successor of t , such that � (< , < ) ;x
�

tt
clearly, < = 
 .t

Next, I claim (Claim 3) that for every variant Φ of Θ (every Φ such that
�
Φ � =Γ ), there is

tt∈T such that Φ =Φ , and, as a consequence, also < =< . We prove this by showing thatt Φ
tthe set {Φ :t∈T} is closed under the "switching" relation � ; recall that

�
Φ � =Γ iff

r/tr t(Θ,Φ)∈ � ; and, of course, Θ∈{Φ :t∈T} .

tSuppose t∈T , Ψ a molecule, and (Φ , Ψ)∈ � (in particular, Ψ is a variant of Θ ), to
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��
t tshow that there is t∈T such that Ψ=Φ . The fact that (Φ , Ψ)∈ � means that there is x∈N

tsuch that � (Φ , Ψ) . Let y be the element for which x< !y , that is, x< !y . Therex t tΦ
are two cases: x<y (case 1) or y<x (case 2). In case 1, the definition of the tree T��

timmediately entails that, for a suitable successor t of t , Ψ=Φ .

Suppose case 2. Then x and y are incomparable in
�

: x
�
y would entail x<y , and y

�
x

would entail y< x . Therefore, 
 =< -{(x, y)}∪{(y, x)} is also compatible with
�

. Byt t ��
tClaim 2, there is t∈T such that 
 =< . Consider Φ . Since y<x & y< !x & ¬(y ���

x) ,� �
t t� �

we have (by Claim 1) y<x & y< !x & y �
	�� x ; thus, there is t , successor of t , such� �
t t� �

t tthat � (Φ , Φ ) and � (< , < ) . From the latter, it follows that < =< . Therefore, byy y
� � �

tt t t� � � � �
t t t t t t t(iii), Φ =Φ . � (Φ , Φ ) gives � (Φ , Φ ) . Since also � (Φ , Ψ) , it follows thaty x x�

tΨ=Φ .

This completes the proof of Claim 3.

By claim 2, the set {< :t∈T} equals the set of all total extensions on N of
�

, hence, int
Γparticular, ����� {< :t∈T}= �

. By claim 3, the same set {< :t∈T} equals {< :Φ∈G } .t t Φ
Therefore,

Γ�
=

�
= ����� {< :t∈T} = {< :Φ∈G } =

�
,T t Φ Γ

the last equality being the definition of
�

.Γ

Next, we go back to the definition of ��� in section 4 (see (7) there). I claim (Claim 4) thatΓ

op��� = � ��� ( ��� ∪( � � ) ) . (5)Γ t tt∈T

This is virtually obvious from Claim 2. In particular, that the right-hand side of (5) is
contained in the left=hand side is clear.

For the converse, suppose x ��� y , that is, we have Φ , a variant of Θ , such thatΓ
Φ Φx< !y & ϕ [x] ��� ϕ [y] . Either x<y (case 1), or y<x (case 2). In case 1, take t∈TΦ

tsuch that Φ=Φ , and (x, y) is clearly in the right-hand side of (5) . In case 2 , we can pass
Ψ Ψto the unique Ψ such that � (Φ, Ψ) ; we will have y<x & y< !x & ϕ [y] � � ϕ [x] ;x Ψ
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tnow, take t∈T such that Ψ=Φ .

DEF opI claim (Claim 5) that ��� = ��� = � ��� ( ��� ∪( � � ) ) (which means, of course, thatT t tt∈T
op� ��� ( ��� ∪( � � ) ) is already transitive). Assume that x ��� y . Either x<y (case 1), ort tt∈T

y<x (case 2). In any case, x and y are incomparable in
�

since x �
� y and we have (i).
In case 1, find, by 3.8, a total order 
 of N compatible with

�
for which x
 !y ; by Claim

2, let t∈T be such that 
 =< . since x<y & x< !y , by Claim 1, we have x ��� y ast t t
desired. In case 2, we proceed by exchanging the roles of x and y .

Claims 4 and 5 say that ��� = ��� , with the latter as defined in section 4.T Γ

4.2(i) is now the same as 5.1(i).

It is clear that clauses (ii), (iii) and (iv) of the definition of "annotated" 5.1 add up to what is
contained in 4.2(ii).

Proof of 5.1 modulo 7.1 Lemma from section 7.

The proof of Theorem 5.1 is an induction on the number of nodes of the tree T .

�
For the smallest tree T={r} , ��� = ��� is empty (on N , not on N );

�
=< , the naturalT T

-∞ -∞ r x x rorder. For x∈N , we write S for (S ) , S for (S ) .x x ∞ ∞
r Θ -∞ xϕ [x]=ϕ [x]=S ⋅x ⋅S ; we have -∞ ��� !x , x ��� !∞ , and these are all the ��� !x ∞

-∞ xrelations; the basic 1-pd's are the S , S (x∈N) ; the cuts of the planar arrangementx ∞
x(

�
, ��� ) are the cuts � r and � r , the N+1 cuts of the total order < (if x<!y , thenx

x� r = � r ). It is clear that the tree {r} is annotated.y

For the induction step, we assume that we have an annotated tree T , t∈T , and a, b∈N
t t

�
such that a<b & a< !b & ϕ [a] � � � ϕ [b] , but the corresponding successor t=t[a, b]t � ⋅ �
of t in the full tree T[Θ] is not in T (yet). We consider the subtree T=T∪{t} of� �
T[Θ] , and we prove that T is annotated, that is, we have the data and conditions for T as
set out in clauses (i), (ii), (iii) and (iv) above.

We write
�

, ��� for
�

, ��� , respectively, with the given tree T .T T

t tA remark is, perhaps, in place here. The assumption ϕ [a] � � � ϕ [b] , which is the
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t t t tdisjunction ϕ [a] � � ϕ [b] � ϕ [b] � � ϕ [a] , is not directly related to the notations
x ��� y , x � � y for nuclei x, y∈N . The latter refer to the induction hypothesis on the
"locally" given tree T , giving a meaning to the relations ��� = ��� , � � = � � on N . On theT T

t tother hand, ϕ [a] � � ϕ [b] is an instance of the notation ρ ��� σ for atoms ρ,σ in
general, and it is an "absolute" concept, the truth or falsity of ρ ��� σ depending on the atoms
ρ and σ solely.

t t t tHenceforth, we assume ϕ [a]� � ϕ [b] ; the other case ϕ [a] � � ϕ [b] is, of course,
symmetric.

t t t -∞ t a tThe fact ϕ [a] � � ϕ [b] , via the notations ϕ [a] = (S ) ⋅a ⋅(S ) ,a ∞
t -∞ t b tϕ [b] = (S ) ⋅b ⋅(S ) , and via 4.1(i), translate into the two equationsb ∞

a t a b t -∞ t -∞ t a(S ) = S ⋅db ⋅(S ) (S ) = (S ) ⋅ca ⋅S ,∞ b ∞ b a b

awith a new 1-pd that we have denoted by S . If it so happens that a ��� !b holds (withb
areference to the given planar arrangement (

�
, ��� ) ) then S had a meaning prior to ourb

new notation, as one of the basic 1-pd's of the system given with T ; as we will immediately
see, the two meanings must in fact coincide.

a aNote that d(S )=cca , c(S )=ddb .b b

aLet us denote the cut -t = � t for (N,
�

, ��� ) by D . With B the border of D , a∈B ,b �
�

b∈B .

Using (iv) for the old system for T , we have that

a t a D b t b D -∞ t -∞ D -∞ t -∞ D(S ) = (S ) , (S ) = (S ) , (S ) = (S ) , (S ) = (S ) ,∞ ∞ ∞ ∞ b b a a

thus,

a D a b D -∞ D -∞ D a(S ) = S ⋅db ⋅(S ) (S ) = (S ) ⋅ca ⋅S (6)∞ b ∞ b a b

a a DIf a ��� !b , and thus S is given as a basic 1-dp for T , then, clearly, (S ) is wellb b
adefined, it equals S , and by (iii),b

a D a b D -∞ D -∞ D a(S ) = S ⋅db ⋅(S ) (S ) = (S ) ⋅ca ⋅S ;∞ b ∞ b a b
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acomparing these with (6), we see that, indeed, now the two meanings of S coincide.b

There are two cases as to the position of a and b in the planar arrangement given with T ;
in Case 1 a � � � b , in Case 2 a

�
b ; note that b

�
a is excluded by a< b .t

We are going to define the planar arrangement (clause (i)) and the system of 1-pd's (clause�
(ii)) for the tree T separately for the two cases. Next, we look at the invariance property (iii)
for the new system: in Case 1, this will be immediate; in Case 2, it will take us two more
sections, §6 and §7 , to prove. Finally, we complete the proof of clause (iv) for the new tree�
T in essentially the same way for the two cases.

t tAs a reminder: we have assumed that ϕ [a]� � ϕ [b] .

Case 1: a � � � b .

We note, first of all, that we must have a ��� b ; a � � b is impossible. The reason is that
t ta � � b would entail ϕ [a] � � ϕ [b] : one sees this by the same argument that was used in

t tthe proof of 4.3(iii) and Claim 1 above. Remember that ϕ [a]� � ϕ [b] and
t tϕ [a] � � ϕ [b] cannot hold at the same time.

0 0 ⋅ 0 0Looking at the definitions above, we see that ��� = ��� ∪{(a, b)} , � � = � � .�
T

�
TT T

Because, however, (a, b)∈ ��� already, ��� remains the same as ��� . Thus, the planarT
�
T T�

arrangement ( ��� ,
�
) remains the same for T as it was for T .

The system of basic 1-pd's

x〈S 〉 �
y x, y∈N , x ��� !y

is, by definition, identical to the old one as given by (ii) and (iii) for T . We have clauses (ii)
and (iii) established in Case 1.

Case 2: a
�
b .

From the fact that a< !b , it is immediate that we must have a
�
!b .t

⋅ trWe clearly have that ��� = ( ��� ∪{(a, b)} .�
T
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We apply 3.5 Proposition, and its accompanying notation. Thus, (N, ��� ,
�
) is the same� �

T T
as (N, ����� ,

� �
) ; it is a planar arrangement by 3.5(i).

By 3.5'(i), a �
��� !b .

a aRecall from (6) the definition of S ; now, S is "new"; it did not appear as a basic 1-pd inb b
the system for T .

Recall 3.5'. We define the system of basic 1-pd's for ( ����� ,
� �
) as

x a〈S 〉 � ∪ 〈S 〉 . (7)y x, y∈N &x ����� !y&(x≠a � y≠b) b

x(the S are given in the induction hypothesis; we restrict the given system, and augment it byy
a single new element).

�
The proof that clause (iii) holds for T and the new system (7) is hard work: it will occupy
sections 6 and 7. At this point, we assume that (iii) has been shown (this is 7.1 Lemma in
section 7).

We turn to the (easy) proof of clause (iv) for the new systems in both cases simultaneously.
For simplicity of notation, we write (

� �
, ����� ) for the new arrangement in both cases, not

just in case 2 ; in case 1, (
� �

, ����� ) is the same as (
�

, ��� ) .

An "old" cut C , a cut of (
�

, ��� ) is automatically a cut for (
� �

, ����� ) . Moreover, the
border of C in the sense of (

�
, ��� ) is contained in the border of C in the sense of

(
� �

, ����� ) , as it is easy to see (see also section 7). Thus, if
�
C

�
(x, y) � is well-defined,���

so is
�
C

�
(x, y) � . By 7.1 Lemma (b), the values

�
C

�
(x, y) � and����� ���

x C�
C

�
(x, y) � are in fact the same; we denote it (S ) , unambiguously for the two����� y

arrangements.

�
It follows that clause (iv) for elements of T is inherited from T to T . It remains to show�
clause (iv) for t .

� �
t t tThe construction gives Φ as the molecule for which � (Φ , Φ ) .a

� �
t t � ∞ tThus, in the first place, for x≠a, b , ϕ [x] is the same as ϕ [x] , (S ) the samex�� ∞ t x t x t x

�
as (S ) , (S ) the same as (S ) ; moreover, clearly, if x≠a, b , the cuts � tx ∞ ∞�

xand � t (x∈N) are the same as � t and � t , respectively. Therefore, when x≠a, b , thex x�
equalities in (iv) for t are inherited from t .

69



a
�

b
� �

We abbreviate the cut � t = � t as D (this was done before), and � t = � t as D . D is ab a� �
cut for (

�
, ��� ) , hence for (

� �
, ����� ) as well; D is a cut for (

� �
, ����� ) only. D and D�

differ only in the positions of a and b , which are the reversed in D with respect to D .

It remains to show that

� � � �� ∞ t � ∞ D a t a D(S ) = (S ) , (S ) = (S ) , (8.1?)a a ∞ ∞� � � �� ∞ t � ∞ D b t b D(S ) = (S ) , (S ) = (S ) . (8.2?)b b ∞ ∞
� �

t t t tLet's abbreviate ρ=ϕ [a] , σ=ϕ [b] , ϕ=ϕ [b] , ψ=ϕ [a] .

�
To connect up with 4.2(i) and (ii), we use (iv) and write ( b in 4.2 was changed to b to
avoid the clash with the present b )

def defa t a D
�

-∞ t -∞ De = (S ) = (S ) , b = (S ) = (S ) , (9.1)∞ ∞ a a
def def�

b t b D
�

-∞ t -∞ De = (S ) = (S ) , b = (S ) = (S ) . (9.2)∞ ∞ b b

def a DS = (S ) . (9.3)b

The choice of the notation makes the following hold:

� � �

ρ = b ⋅u ⋅e , σ = b.v ⋅e . (10)

By (6),

� � �
e = S ⋅db ⋅e , b = b ⋅ca ⋅S . (11)

�
t tAs we said, we have � (Φ , Φ ) , thus, in particular, L(ρ, σ, ϕ, ψ) . By 4.3(ii), (10), (11),a

� � � �

ϕ = b ⋅da ⋅S ⋅b ⋅e , ψ = b ⋅a ⋅S ⋅cb ⋅e

This means that

� � � �� ∞ t
�

a t
� � ∞ t b t

�

(S ) =b , (S ) =S ⋅cb ⋅e , (S ) =b ⋅da ⋅S , (S ) =e . (12)a ∞ b ∞
�

Since D and D agree on the interval (-∞, a) = (-∞, a) , we have��� �����
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�� ∞ D � ∞ D(S ) =(S ) =b . By (12), we have the first of the four desired equalities in (8.1?).a a

� �
Since a ����� b , b is in U[D] , and b is on the border of D , by compositionality,� � � �

a D a D b D a D a D(S ) =(S ) ⋅cb ⋅(S ) . On (a, b) , C and D agree; (S ) =(S ) =S . Also,∞ v ∞ ����� b b�
b D b D

�

C and D agree on (b, ∞) (since a∉(b, ∞) ), thus (S ) =(S ) =e . We have��� ��� ∞ ∞ �
a D

�

a tassembled all that is needed to conclude, also using (12), that (S ) =S ⋅cb ⋅e=(S ) , the∞ ∞
second of the equalities in (8.1?).

The rest of the questioned equalities are dealt with "symmetrically".
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§6 Continuation of the proof of 5.1 Theorem

�
We continue the following notational conventions: C, C, D denote cuts; C=(U, L) ,� ��� � �
C=(U, L) , D=(V, M) ; B, B, E are the respective borders of C, C, D .

In this, and the next section, we have a more restricted context than in section 5.

�
We assume a planar pasting prescheme (N,

�
, ��� , M, P, S) as in section 4. In addition, we

assume to have the following data:
a pair of elements a, b of N such that a

�
!b ; �

a particular cut D of (
�

, ��� ) such that a∈E , b∈E ;�
aa particular 1-pd S ;b

and decompositions

-∞ D -∞ D a(S ) = (S ) ⋅ca ⋅S , (0.1)b a b
a D a b D(S ) = S ⋅db ⋅(S ) (0.2)∞ b ∞

( (0.1) and (0.2) are equivalent, on the basis of the rest of the conditions; see also below.)

(In Case 2 of the induction step of the proof of 5.1 Theorem these data and conditions were
present; note, however, that we do not need the 2-pd, the tree and the molecules now.)

aThe issue is adding the pair (a, b) to ��� , and the datum S to the given system, to get ab
new planar arrangement (

���
, ����� ) and a new compositional system on it. The new

arrangement (
���

, ����� ) was defined in 3.5.

6.1 Lemma Suppose that C=(U, L) is an (arbitrary) cut for (
�

, ��� ) with border B
-such that a∈B , b∈B . (Since a

�
b , obviously we must have a∈B , b∈B ). We have�

a C a b C(S ) = S ⋅db ⋅(S ) (1.1)∞ b ∞

and, equivalently,

-∞ C -∞ C a(S ) = (S ) ⋅ca ⋅S . (1.2)b a b

and, as a consequence,

-∞ C -∞ C a b C(S ) = (S ) ⋅ca ⋅S ⋅db ⋅(S ) (1.3)∞ a b ∞

Proof Note that (1.1) is not a special case of the decomposition equation 5.(4), since
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aS is not a basic 1-pd for the given arrangement ( ��� ,
�
) .b

First, let us show that the two assertions (1.1), (1.2) are indeed equivalent.

Assume (1.1), to show (1.2) (the converse is obviously symmetric). We have

-∞ C -∞ C a C -∞ C b C(S ) = (S ) ⋅ca ⋅(S ) = (S ) ⋅db ⋅(S ) .∞ a ∞ b ∞

a CSubstituting for (S ) from (1.1):∞

-∞ C a b C -∞ C b C(S ) ⋅ca ⋅S ⋅db ⋅(S ) = (S ) ⋅db ⋅(S ) .a b ∞ b ∞

From this, by cancellation (4.0), we obtain (1.2).

The assertion (1.1) will be proved by induction on the distance
DEF ⋅ρ(C, D) = #((U∩M)∪(L∩V)) between C and D , When ρ(C, D)=0 , C=D , and

(1.1) is (0.1).

Suppose ρ(C, D)>0 ; i.e, U∩M is non-empty, or L∩V is non-empty. Assume the first
alternative; the treatment of the second is a dual affair.

�
In section 3, we saw that there is u∈B∩M . As in section 3, we consider the cut C which is�

�
the u-shift of C . We have that ρ(C, D)=ρ(C, D)-1 .

Since a∈U∩V , b∈L∩M , we have u≠a , u≠b .
� �
� � �

We have that u∈B by what we know about "shifting". Furthermore, a∈B and b∈B . The-� �
first fact is clear, since U has become smaller than U , but a stayed in U . For the second

-fact: since u∈M , and b∈E , u
�
b is not possible. For v∈L , v

�
b is not possible since�

-
� �

b∈B . Thus, for v∈L=L∪{u} , v
�
b is not possible; which means that b∈B .

�
From the facts that a and b are on the borders of both cuts C and C , it follows that for� � �
any u that positioned differently for C and C (that is, u is in the set U∩L ∪ L∩U ) must
satisfy

(a ��� u & b ��� u) � (a �
�
u & b �

�
u) . (2)

� �
This is because, firstly, a

�
u would force u∈U∩U , and a

�
u would force u∈L∩L ;

therefore, we must have a �
�
� u and b �

�
� u . Secondly, a pair of opposite relations such as

a ��� u and u ��� b is clearly impossible.
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�
We see that the induction hypothesis applies to C ; we have

� �
a C a b C(S ) = S ⋅db ⋅(S ) . (3)∞ b ∞

Assume the first alternative in (2) :

a ��� u & b ��� u ;

of course, the other alternative is treated similarly (although the "dual" form (1.2) would be the
one to directly tackle).

�
�

Remembering that u∈B and u∈B , by decomposition, we have:�

a C a C u C(S ) = (S ) ⋅cu ⋅(S ) , (3.1)∞ u ∞
b C b C u C(S ) = (S ) ⋅cu ⋅(S ) . (3.2)∞ u ∞

and � � �
a C a C u C(S ) = (S ) ⋅du ⋅(S ) , (3.3)∞ u ∞� � �
b C b C u C(S ) = (S ) ⋅du ⋅(S ) . (3.4)∞ u ∞

Substituting (3.3) and (3.4) into (3), we get

� � � �
a C u C a b C u C(S ) ⋅du ⋅(S ) = S ⋅db ⋅(S ) ⋅du ⋅(S ) .u ∞ b u ∞

By cancellation,

� �
a C a b C(S ) = S ⋅db ⋅(S ) .u b u

�
Clearly, the cuts C , C restrict to the same cuts in either of the intervals (a, u) ,���� �

a C a C b C b C(b, u) ; hence, (S ) = (S ) , (S ) = (S ) . Therefore��� u u u u

a C a b C(S ) = S ⋅db ⋅(S ) .u b u

�
u CMultiply by the factor cu ⋅(S ) ( du has been switched to cu )∞

a C u C a b C u C(S ) ⋅cu ⋅(S ) = S ⋅db ⋅(S ) ⋅cu ⋅(S ) .u ∞ b u ∞
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By (3.1), (3.2), this means that

a C a b C(S ) = S ⋅db ⋅(S ) .∞ b ∞

This completes the proof of Lemma 6.1.

Let u and v be arbitrary elements of N , and assume that u �
�
� v . Consider the cut=

C =(U, L) in the (open) interval (u, v) for which L=∅ , U=(u, v) . It's borderu, v ��� ���
is B=µ(u, v) , the set of

�
-maximal (lowest) elements of (u, v) . It has a unique��� ���

usigned span, the set of whose elements is B itself, all signed "down". Let us write S for the�
v

Cu u u, vvalue � C � ; that is, S = (S ) .u, v
�
v v

u, v� u u C u, vEntirely analogously, we define S = (S ) ; C =(∅, (u, v) ) .v v ���

aAssume now, in addition to what we have on a, b, D and S , that we have elementsb
x, y ∈ N such that

x ��� !y , x �
�
� a and b �

�
� y . (4)= =

xThe pairs (x, y) satisfying these conditions are the ones for which we have a basic 2-pd Sy
xin the arrangement (

�
, ��� ) , but which no longer appear as pairs x ����� !y . Therefore, Sy

is no longer a basic 1-pd for (
���

, ����� ) , and it must be expressed in terms of the new set of
basic 1-pd's. Lemma 6.2 below does this job.

Note that this is the context which the group of lemmas starting with 3.9.1 in section 3 applies
to. In particular, by 3.9.1(i), we have that x

�
b and a

�
y , and since a and b are on the

border E of D , we have x∈V and y∈M .

6.2 Lemma Assuming (4), we have

x x a � bS = S ⋅ca ⋅S ⋅db ⋅S .y -a b y

Proof Assume u, v∈N , u
�
v . Let us define δ (u, v) as the maximal integer n=

�
for which there is a

�
-chain u=u

�
u
�
...

�
u =v connecting u and v . (When0 1 n

¬(u � v) , δ (u, v) = ∞ .) Note that δ (u, v)=0 iff u=v , δ (u, v)=1 iff u ��� !v ,=
� � �

and u ��� v �
�
� w implies that δ (u, w) < δ (v, w) .=

� �
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The proof of the lemma is by induction on

δ (x, b) + δ (a, y) = δ .� �
x, y

More precisely, the induction statement P(n) is: for every pair (x, y) such that (4) holds
and δ =n , we have the identity in the lemma.x, y

The more detailed plan is as follows:

Basis: δ = 2 (the minimal value!); that is,x, y

δ (x, b)=1 and δ (a, y)=1� �

Within the Basis, we distinguish the cases:
� ⊆ M &

� ⊆ V Case B1.1x y� ⊆ M & ¬( � ⊆ V) Case B1.2x y
¬( � ⊆ M) &

� ⊆ V Case B2.1x y
¬( � ⊆ M) & ¬( � ⊆ V) Case B2.2x y

DEF
(I have used

�
= {z:z

�
x} , etc). The cases B1.2 and B2.1 are dual to each other; it sufficesx

to look at one of them only.

Induction step: δ > 2 .x, y

Case I1: δ (a, y) > 1�

Case I2: δ (x, b) > 1 .�

Of course, cases I1 and I2 are dual to each other.

When we deal with case I1, we will make a reduction of the pair (x, y) to a pair (u, z)
such that

δ (a, z) < δ (a, y) .� �
and

δ (u, b) ≤ δ (x, b) ;� �

in particular, δ < δ .u, z x, y

(end of plan)

Case B1.1:
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This hypothesis means (since x∈V , y∈M ) that x and y are on the border of D : x∈E ,�
� �

y∈E . Remember that a∈E , b∈E .�

We have, by decomposition,

x D x D a D x y D(S ) = (S ) ⋅ca ⋅(S ) = S ⋅dy ⋅(S ) ; (5)∞ a ∞ y ∞

x D xby x ��� !y , we have (S ) = S , the latter a basic 1-pd for the given prescheme.y y

b DBy (0.2) and by decomposition of (S ) , we get∞

a D a b D y D(S ) = S ⋅db ⋅(S ) ⋅dy ⋅(S ) . (6)∞ b y ∞

a DWe substitute the value of (S ) in (6) into (5):∞

x D a b D y D x y D(S ) ⋅ca ⋅S ⋅db ⋅(S ) ⋅dy ⋅(S ) = S ⋅dy ⋅(S ) .a b y ∞ y ∞

By cancellation,

x D a b D x(S ) ⋅ca ⋅S ⋅db ⋅(S ) = S .a b y y

Finally, we note that the cut D , when restricted to (x, a) , has its upper set equal to the���
whole of (x, a) (and its lower set is empty). This is because, by 3.9.1, for every u in���

x D x(x, a) , one has u
�
b . Therefore, (S ) is the same as what we wrote as S .��� a

�
a

b DSimilarly for (S ) .y

This completes the proof in Case B1.1.

We skip to

Case B2.2:

Let

U = (V ∪ � ) -
�

y x
L = (M ∪ �

) -
�

.x y

def
One notes that

� ∩ �
= ∅ , and as a consequence, C = (U, L) is a cut for

�
. By they x
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case hypothesis, we have some v∈ � ∩V , and w∈ � ∩M . Clearly, we may, and do, choose vx y
and w "extremally" so that, in addition, also w

�
!y and x

�
!v .

6.2.1 Sublemma [ B denotes the border of C ] We have
� � �

x∈B , v∈B , a∈B , b∈B , w∈B and y∈B .� � �

Proof of 6.2.1 Assume a
�
s to conclude s∈L . s∈M holds since a∈E . s

�
y would

entail a
�
s
�
y , contradicting a

�
!y (Basis assumption). Also, a∈V , and a∉ �

; thusx
a∈U . This shows a∈B .�

If x
�
s , then s∈L by

� ⊆ L . x∈V and x∉ �
; thus x∈U . This shows x∈B .x x

�

Since v∈ �
by choice, and

� ∩ � = ∅ , we have v∈L . Assume s
�
v . Since x

�
!v , wex x y

must have s∉ �
. But since v∈V , also s∈V , s∉M . This says that s∉L , s∈U . Thisx�

shows that v∈B .

The other three similar claims are dual statements. (End of proof of 6.2.1)

By 3.9.9, we have a ��� w , b ��� w . Dually, also v ��� a , v ��� b .

6.2.1 is used to ensure that the border of the cut C contains various elements so that
decomposition can be applied at those elements as dividing points.

The conditions for Lemma 6.1 are fulfilled to conclude (1.3), and as a result, that

v C v C a b C(S ) = (S ) ⋅ca ⋅S ⋅db ⋅(S ) .w a b w

On the other hand, by decomposition,

-∞ C -∞ C x y C -∞ C v C w C(S ) = (S ) ⋅cx ⋅S ⋅dy ⋅(S ) = (S ) ⋅dv ⋅(S ) ⋅cw ⋅(S ) ;∞ x y ∞ v w ∞

thus, by substitution,

-∞ C x y C -∞ C v C a b C w C(S ) ⋅cx ⋅S ⋅dy ⋅(S ) = (S ) ⋅dv ⋅(S ) ⋅ca ⋅S ⋅db ⋅(S ) ⋅cw ⋅(S ) .x y ∞ v a b w ∞

By decompositions of C � (-∞, a) and of C � (b, ∞) :

-∞ C -∞ C v C -∞ C x C(S ) = (S ) ⋅dv ⋅(S ) = (S ) ⋅cx ⋅(S ) ,a v a x a

b C b C w C b C y C(S ) = (S ) ⋅cw ⋅(S ) = (S ) ⋅dy ⋅(S )∞ w ∞ y ∞
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and thus,

-∞ C x y C -∞ C x C a b C y C(S ) ⋅cx ⋅S ⋅dy ⋅(S ) = (S ) ⋅cx ⋅(S ) ⋅ca ⋅S ⋅db ⋅(S ) ⋅dy ⋅(S ) .x y ∞ x a b y ∞

By cancellation on both sides, we obtain

x x C a b CS = (S ) ⋅ca ⋅S ⋅db ⋅(S ) .y a b y

We have seen before that (x, a) ⊆ V . It is obvious that (x, a) ∩ �
= ∅ . Therefore,��� ��� x

x C x b C � b(x, a) ⊆ U . Thus, (S ) = S . Dually, (S ) = S . We conclude the desired��� a
�
a y y

equality

x x a � bS = S ⋅ca ⋅S ⋅db ⋅S .y
�
a b y

This concludes case B2.2.

The (similar) cases B2.1 and B1.2 are left to the reader.

def
Case I1: We now assume δ (a, y) > 1 . It follows that the set Z = {z:a

�
z
�
!y} is�

!
non-empty; let us choose and fix a ��� -minimal element z of Z . Note that!
δ (a, z) < δ (a, y) .� �

def
By 3.9.2, we have x ��� z and b ��� z . Thus, in particular, for W’ = {u:x �

�
� u ��� z} ,z =

def
and W" = W’∩µ[x, a) , we have x∈W" , and W" is non-empty. ( µ[x, a) is thez z ��� z z ���
set of

�
-maximal elements of the set [x, a) , and x is clearly

�
-maximal in���

[x, a) .) Besides, W" is linearly ordered by ��� . Let us choose u to be the��� z
��� -maximal element of W" . By 3.9.8, we have u ��� !z .z

Let us summarize. We have x and y such that x ��� !y , x �
�
� a and b �

�
� y . In= =

addition, we have u and z such that u∈µ[x, a) , u ��� !z , u
�
b (by 3.9.1), b ��� z ,���

a
�
z
�
!y , and z is an ��� -minimal element z∈Z . By 3.9.7, we have!

(b, z) ⊆ (b, y) .��� ���

def def
Let U = V ∪ � . With L = M -

�
, C=(U, L) is a

�
-cut.y y
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6.2.2 Sublemma We have

� �
x∈B , u∈B , b∈B , z∈B and y∈B .� � �

Proof of 6.2.2 x∈V , hence x∈U . Assume x
�
s . Then s∈M , since x∈E . x

�
s
�
y

contradicts x ��� y ; s∉ � ; s∈L . This shows x∈B .y
�

Next, we show that u∈B .�

Since b∈E , and u
�
b , we have u∈V , and u∈U . Assume u

�
s , to show that s∈L .

s �
�
� x is impossible since it would imply s �

�
� x �

�
� u , * to u

�
s . Likewise, s

�
x is= = =

excluded: u
�
s
�
x , * to x �

�
� u . Thus, either x

�
s (case 1), or x ��� s (case 2). In case 1,=

x∈B implies s∈L as desired.

Assume case 2. Let's compare a and s . s ��� a is impossible: we would have s∈[x, a) ,
with u

�
s , contradicting u∈µ[x, a) . a �

�
� s would say u ��� a �

�
� s , * to u

�
s .��� = =

s
�
a would entail u

�
s
�
a , * to u ��� a . We have proved a

�
s .

It follows that s∈M (since a∈E ). If ¬(s � y) , then s∈M- � = L ; therefore, we mayy
assume that s

�
y , with the intention to derive a contradiction. We do so by making a

comparison of s and z .

Since a
�
s
�
y , we have s∈Z (see 3.(13.1)). Since z is a ��� -minimal element of Z

(3.9.4), we conclude ¬(s ��� z) . s≠z since u
�
s and u ��� z . ? s

�
z : u

�
s
�
z : * to

u ��� z . ? z
�
s : z

�
s
�
y : * to z

�
!y . ? z ��� s : u ��� z ��� s : * to u

�
s . Contradiction!

This completes the proof that u∈B .�

� �
b is in E , and b∉ � . It follows that b∈B .y

Since z∈ � , we have z∈U . If z
�
s , then a

�
z
�
s , thus s∈L ; but s∉ � , sincey y

otherwise z
�
s
�
y , * to z

�
!y . We have proved that s∈L . This shows that z∈B .�

�
The definition of U as V∪ � , together with y∈M , directly shows that y∈B . (End of proofy
of 6.2.2)

6.2.3 Sublemma We have

δ (u, b) ≤ δ (x, b) (7)� �

Proof of 6.2.3 If u
�
!b , since x

�
b , (7) holds. Otherwise, there is u , u

�
!u

�
b ,1 1

with δ (u, b)=δ (u , b)+1 . We have u �
� a , because� �

1 1
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? u
�
a : u

�
u
�
a : * to u ��� a ;1= 1=

? a ��� u : u ��� a �
� u : * to u

�
u ;1 1 1

? a
�
u : a

�
u
�
b : * to a

�
!b .1 1

We have x
�
u , because1

? x ��� u : x ��� u ��� a (!) & u
�
u : * to u∈µ[x, a) ;1 1 1

? u
�
x : u

�
u
�
x : * to x �

�
� u ;1= 1= =

? u ��� x : u ��� x �
�
� u : * to u

�
u .1 1 = 1

x
�
u
�
b says that δ (x, b) ≥ δ (u , b)+1=δ (u, b) . (End of proof of 6.2.3).1

� �
1

�

Since δ (a, z) < δ (a, y) and δ (u, b) ≤ δ (x, b) (6.2.3), the induction hypothesis� � � �
can be applied to the pair (u, z) in place of the pair (x, y) . Accordingly, we have

u u a � bS = S ⋅ca ⋅S ⋅db ⋅S . (8.1)z
�
a b z

Applying decomposition to C � (x, ∞) in two ways,���
x C x y C x C u z C(S ) = S ⋅dy ⋅(S ) = (S ) ⋅cu ⋅S ⋅cz ⋅(S ) . (8.2)∞ y ∞ u z ∞

Substituting (8.1) into (8.2):

x y C x C u a � b z CS ⋅dy ⋅(S ) = (S ) ⋅cu ⋅S ⋅ca ⋅S ⋅db ⋅S ⋅cz ⋅(S ) . (8.3)y ∞ u
�
a b z ∞

Looking at C and noting that C � (x, u) = C , C � (u, a) = C :x, a x, a ��� x, u x, a ��� u, a

x x uS = S ⋅cu ⋅S .�
a

�
u

�
a

(x, u) ⊆ (x, a) ⊆ � by 3.9.1; hence, by b∈E , (x, u) ⊆ V ⊆ U . Therefore,��� ��� b ���
x x Cwe have C =C � (x, u) , and so S = (S ) ;x, u ���
�
u u

x x C uS = (S ) ⋅cu ⋅S (8.4)�
a u

�
a

Look at C � (b, ∞) :���
b C b C y C b C z C(S ) = (S ) ⋅dy ⋅(S ) = (S ) ⋅cz ⋅(S ) .∞ y ∞ z ∞

(b, y) ⊆ �
by 3.9.1; hence, by a∈E , (b, y) ⊆ M , and then also (b, y) ⊆ L .��� a ��� ���
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Therefore, also (b, z) ⊆ L (see 3.9.7), and���
b C b b C b(S ) = S , (S ) = S ,y

�
y z

�
z

and

b y C
�
b z CS ⋅dy ⋅(S ) = S ⋅cz ⋅(S ) (8.5)�

y ∞ z ∞

Comparing (8.3), (8.4), (8.5):

x y C x a b y CS ⋅dy ⋅(S ) = S ⋅ca ⋅S ⋅db ⋅S ⋅dy ⋅(S ) .y ∞
�
a b

�
y ∞

Canceling:

x x a bS = S ⋅ca ⋅S ⋅db ⋅Sy
�
a b

�
y

as desired.

6.2 Lemma is proved.

82



§7 Completion of the proof of 5.1 Theorem

7.1 Lemma a) Suppose τ and θ are signed (
���

, ����� )-spans,
(
���

, ����� )-defining the same cut of (
���

, ����� ) . Then

-∞ τ -∞ θ(i) (S ) =(S ) ; (1)∞ ∞

and more generally,

(ii) if u ����� v , and both u and v are in both τ and θ
u τ u θ(including the possibilities that u=-∞ or v=∞ ), we have (S ) =(S ) .v v

b) Any cut C of (
�

, ��� ) is a cut for (
���

, ����� ) (obviously); the value
u C u C(S ) in the old sense relative to (

�
, ��� ) equals to the value (S )v (

�
, ��� ) v (

���
, ����� )

in the new sense relative to (
���

, ����� ) .

Proof Let's note that, for (a), (i) is sufficient to prove. Namely, assuming (i) proved,
for the general case of (ii), with data as given, let us define the signed (

���
, ����� )-span ζ

by the equalities

def def def
ζ � (-∞, u] = τ � (-∞, u] , ζ � [v, ∞) = τ � [v, ∞) , ζ � (u, v) = θ � (u, v) .

Then, first of all, ζ is (
���

, ����� )-equivalent to θ as well as to τ , by 3.4 applied to the
arrangement (

���
, ����� ) . Apply the present (i) to τ and ζ . Then, appropriately using (4.0)

in section 5, and by cancelling on both sides, we get (ii).

Any (
���

, ����� )-span consists of a sequence 〈x 〉 such thati i=0, ..., n

-∞=x ����� !x ����� !x ����� !... ����� !x ����� !x =∞0 1 2 n-1 n

Recall (3.5') that

* ⋅x ����� !y ����	 (x ��� !y & ¬(x ��
���� y)) � (x=a & y=b) ;

thus, in particular

⋅x ����� !y ����	 x ��� !y � (x=a & y=b) .

In other words, a (
���

, ����� )-span consists of "links" x ����� !y that are either "links" of the
form x ��� !y (satisfying a further condiiton), or else equal to the one proper ����� !-link
a ����� !b .

Assume the link a ����� !b does not appear in the signed (
���

, ����� )-span τ . Then,
obviously, τ is a signed (

�
, ��� )-span as well. As such, it determines some (

�
, ��� )-cut;
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call it C=(U, L) . In fact,

U = {u:∃x∈τ.u � x} ∪ τ ;
 �

L = {u:∃x∈τ.x � v} ∪ τ .

*Let the (
���

, ����� )-cut (
���

, ����� )-determined by τ be C =(V, M) . We have

V = {u:∃x∈τ.u ��� x} ∪ τ ;
 �

M = {u:∃x∈τ.x ��� v} ∪ τ .

⋅ ⋅Since
��� ⊂ �

, we clearly have that V⊆U , M⊆L . But also: N = V∪M = U∪L . It follows that
*V=U , M=L ; that is, C =C . We conclude that τ determines the same cut, a cut of (

�
, ��� ) ,

in both arrangements: (
�

, ��� ) and (
���

, ����� ) .

Let us turn to the proof of (1).

Case 1. Both τ and θ are "old spans": the link a ����� !b do not appear in them.

Since, by assumption, τ and θ (
���

, ����� )-determine the same (
���

, ����� )-cut, by what we
just said, τ and θ (

�
, ��� )-determine the same (

�
, ��� )-cut; i.e., they are equivalent in the

sense of the arrangement (
�

, ��� ) . Therefore, (1) holds by the properties of the given
prescheme on (

�
, ��� ) .

Case 2. Both τ and θ contain the link a ����� !b .

-∞ τ -∞ τ τ a τ b τWe have (S ) =(S ) ⋅ ∂ a ⋅S ⋅ ∂ b ⋅(S ) and∞ a b ∞
-∞ θ -∞ θ θ a θ b θ(S ) =(S ) ⋅ ∂ a ⋅S ⋅ ∂ b ⋅(S ) . Since τ and θ define the same∞ a b ∞

(
���

, ����� )-cut in ( 
 ∞, ∞) , they define the same (
���

, ����� )-cut in (
 ∞.a)����� �����
and (b, ∞) . But in (
 ∞.a) =(
 ∞, a) and (b, ∞) =(b, ∞) , the����� ����� ��� ����� ���
arrangements (

���
, ����� ) and (

�
, ��� ) coincide; therefore, τ and θ define the same

(
�

, ��� )-cuts in ( 
 ∞.a) and (b, ∞) . By the properties of the given prescheme on��� ���
-∞ τ -∞ θ b τ b θ(

�
, ��� ) therefore (S ) =(S ) and (S ) =(S ) . Since τ and θ are equivalenta a ∞ ∞

τ θ τ θfor the particular elements a and b , ∂ a=∂ a and ∂ b=∂ b . It follows that
-∞ τ -∞ θ(S ) =(S ) .∞ ∞

Case 3. Say, τ does, and θ does not, contain the link a ����� !b .

As before, now θ both (
���

, ����� )- and (
�

, ��� )-determines the same (
�

, ��� )-cut
C=(U, L) ; hence, in particular
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-∞ θ -∞ C -∞ C(S ) = (S ) = (S ) ; (2)∞ ∞ (
�

, ��� ) ∞

and also, C is (
���

, ����� )-determined by τ .

From now on, we may forget about the span θ . Instead, we have the (
�

, ��� )-cut C , and
the signed (

���
, ����� )-span τ , (

���
, ����� )-defining C .

What we want is

-∞ τ -∞ C?: (S ) = (S ) . (2.1)∞ ∞

-∞ Cwhere (S ) is meant, of course, in the sense of the given prescheme on (
�

, ��� ) .∞

C CNote that both a and b are on τ . We use the notation ∂ u=cu if u∈U , ∂ u=du if
u∈L .

Note that this will prove part b) of 7.1.

We make a series of preparatory remarks.

Let B be the (
�

, ��� )-border of C , E the (
���

, ����� )-border of C . I claim that B⊆E .
This becomes clear from the expresssions

u∈B ������	 (u∈U & ∀x(u � x ��	 x∈L)) � (u∈L & ∀x(x � u ��	 x∈U)) ,
u∈E ������	 (u∈U & ∀x(u ��� x ��	 x∈L)) � (u∈L & ∀x(x ��� u ��	 x∈U)) ,

and the fact that
��� ⊂ �

.

By assumption, a and b belong to E . Do they belong to B too? Not necessarily!
- -However, we can say this much: if a∈E , then a∈B , and if b∈E , then b∈B . Namely, if
 


-v
�
a , then v

���
a ; if also a∈E , then v∈L ; which shows the first assertion; the second is

similar.

Taking contrapositives, we have

�

b∉B ������	 b∈E ,

�

a∉B ������	 a∈E .


Accordingly, we distinguish the exhaustive, but not necessarily mutually exclusive, subcases:

Case 3.1 b∈B .

Case 3.2 a∈B .
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-Case 3.3 a∈ E - B and b∈ E - B .


Case 3.1: Assume b∈B .

Let us note first that, since b∈B and a
�
b , it immediately follows that a∈U . On the other

hand, it will remain throughout undecided whether b is in U or L . Also, we do not know if
a∈B (probably, a∉B ). On the positive side: we have that a, b∈E .

Let us consider the restriction of the arrangement (
���

, ����� ) to the interval

[a, ∞) = [a, ∞) ∪ [b, ∞) .����� ��� ���

We have, in general

* *x
���
y ������	 x

�
y & ¬(x ����� y) & ¬(y ����� x) .

For x, y∈[a, ∞) , also assuming x
�
y , we have�����

*x ����� y ������	 x ��
�� a & b ��
�� y ������	 x=a & b ��
�� y ,= = =
and

*y ����� x ������	 y ��
�� a & b ��
�� x : false by x
�
y .= =

Thus, for x, y∈[a, ∞) :�����

x
���
y ������	 x

�
y & ¬(x=a & b ��
�� y) ,=

in particular,

x
�
y & x≠a ����	 x

���
y .

As a consequence,

[b, ∞) = [b, ∞) = [b, ∞) ,����� ���

and the arrangements (
�

, ��� ) and (
���

, ����� ) coincide on the interval [b, ∞) . In
particular, the notions of "cut", "border of a cut", "signed span defining a cut" for (

�
, ��� )

and (
���

, ����� ) , when restricted to [b, ∞) , mean the same things.

*Similarly, we can see that the relation x ����� y is identically false when restricted to the
interval

(-∞, a] = (-∞, a] = (-∞, a] ;����� ���

as a consequence, we have that the two arrangements (
�

, ��� ) and (
���

, ����� ) , when
restricted to (-∞, a] , are the same.
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� ���
Next, I'll define a new (

�
, ��� )-cut C=(U, L) . The motivation is to modify C minimally

� �
so that a becomes a member of the (

�
, ��� )-border B of C ; note that a may very well

�
not belong to B . The definition of C is as follows.

�
U = U - {u∈U:a � u} ;

i.e.,
�

u∈U ��������	 u∈U & ¬(a � u) .
� �
U is up-closed: assume x

�
v∈U . Then v∈U and x∈U . If we had a

�
x , then a

�
x
�
v , and

� �
a
�
v , contradicting v∈U ; thus, x∈U &¬(a � x) , and x∈U .

I claim that

u∈U & a
�
u ��������	 b ��
�� u . (2.2)=

*Because: we have ¬(a ��� 
�
�
���� u) , that is,

¬(a ��
�� a & b ��
�� u) & ¬(u ��
�� a & b ��
�� a)= = = =�

�

unless b ��
�� u . Otherwise, a
�
u implies a

���
u , which, together with u∈U , contradicts=

a∈E .

Note that b ��
�� u is incompatible with both u ��
�� b and u ��
�� a . We can conclude that the= =�
(
���

, ����� )-cuts C and C coincide when restricted to the (
���

, ����� )-interval�
(-∞, b) =(-∞, a] ∪ (-∞, b) . In particular, E and E coincide on the same����� ��� ����
interval. Since a∈E , we have a∈E .

7.1.1 Sublemma

� �
e∈(-∞, b] ������	 (e∈E ������	 e∈E ������	 e∈B)�����

���
Proof of 7.1.1 Let's take the point of view of trying to show that B=E (?).

���
Of course, B⊆E by the same general argument as before for C . Assume

� �
e∈E , e

�
u , u∈U , (3.1)


or
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 � �
e∈E , u

�
e , u∈L . (3.2)

to get (hopefully) a contradiction. e
���
u would be a contradiction in case (3.1); and u

���
e

*would be a contradiction in case (3.2). So, we assume that e ��� 
���� u , i.e.,

e ��
�� a & b ��
�� u (4.1)= =
or

u ��
�� a & b ��
�� e (4.2)= =

Assume (3.1).

The second alternative (4.2) is an impossible picture:

u ��
�� a & b ��
�� e & e
�
u & a

�
!b ;= =

as we see by making all possible comparisons of a and e :

?:a
�
e : a

�
e
�
u : * to u ��
�� a ;=

?:e
�
a : e

�
a
�
b : * to b ��
�� e ;=

?:a 
�� e : u ��
�� a 
�� e : * to e
�
u ;=

?:e 
�
�� a : b ��
�� e ��
�� a : * to a
�
b .= = =

Let's look at the first alternative (4.1).

In this case, we must have that a
�
u . (Namely, ?:u ��
�� a gives b ��
�� u ��
�� a , * to= = =

a
�
b ; ?:a ��
�� u gives e ��
�� a ��
�� u , * to e

�
u ; ?:u

�
a gives u

�
a
�
b , * to b ��
�� u .)= =�

However, with a
�
u , we cannot have u∈U ( =U-{u:a

�
u} ) as we do. We are done in case

(3.1).

Assume, second, (3.2).

Now, (4.1) is an impossible picture:

e ��
�� a & b ��
�� u & u
�
e & a

�
!b ,= =

exactly as before. Thus, we have to deal with (4.2).

Alas, however, we cannot exclude this. We are left with the following conclusion, weaker than
what we tried to show first:

� �
e∈E - B ������	 b ��
�� e .=

In turn, this implies that
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� �
e∈(-∞, b) ������	 (e∈E ������	 e∈E ������	 e∈B)�����

(here, we write A ����	 B ����	 C for (A ����	 B)&(B ����	 C) . The first " ������	 " on the right was
noted before).

In fact, we can extend this to include the element b :

� �
e∈(-∞, b] ������	 (e∈E ������	 e∈E ������	 e∈B) (5)�����

� �
since b∈E , b∈E and b∈B ; only b∈E requires checking.

�
We have b∈L=L∪X , X={u∈U:a � u} ; each x∈X satisfies, in particular, that b ��
�� x (see=

�
(2.2)); b itself belongs to X . Assume v

�
b , to conclude v∈U . Since b∈B , v∈U . But

�
v∉X since v

�
b and b ��
�� v are incompatible. Thus, v∈U-X=U as desired.=

(End of proof 7.1.1)

�
Since b∈B and a

�
b , we have a∈U , and also a∈U .

By definition, we have that

-∞ τ -∞ τ a C b τ(S ) = (S ) ⋅ca ⋅S ⋅ ∂ b ⋅(S ) ; (7)∞ a b ∞

also, since b∈B ,

-∞ C -∞ C C b C(S ) = (S ) ⋅ ∂ b ⋅(S ) . (8)∞ b ∞

b CSince b∈B , (S ) makes sense; and in fact, since (
���

, ����� ) and (
�

, ��� ) coincide∞
on [b, ∞) =[b, ∞) , we have��� �����

b τ b C(S ) = (S ) . (9)∞ ∞
� �

On the other hand, a∈B and b∈B by (5). Therefore, by Lemma 6.1, we have

� �
-∞ C -∞ C a(S ) = (S ) ⋅ca ⋅S . (10)b a b

The crucial facts are the following two:
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�
-∞ τ -∞ C(S ) = (S ) ?(11)a a

�
-∞ C -∞ C(S ) = (S ) ?(12)b b

-∞ C(notice that (S ) does not make sense since, very likely, a∉B ).a

For (11): By assumption, τ � (-∞, a] (
���

, ����� )-defines the cut C � (-∞, a] . But
�

C � (-∞, a] is the same as C � (-∞, a] . Therefore, τ � (-∞, a] (
���

, ����� )-defines the cut
� �
C � (-∞, a] . However, the (

�
, ��� )-border B∩(-∞, a] and the (

���
, ����� )-border

� � �
E∩(-∞, a] of C � (-∞, a] coincide (see (5)). τ is a span for E∩(-∞, a] ; thus, τ is a

�
span for C � (-∞, a] . The assertion follows.

�
For (12), one notes that C and C coincide on the interval ( 
 ∞, b) .���

We have enough:

(7)-∞ τ -∞ τ a C b τ(S ) = (S ) ⋅ca ⋅S ⋅ ∂ b ⋅(S )∞ a b ∞
(9) , (11) �

-∞ C a C b C= (S ) ⋅ca ⋅S ⋅ ∂ b ⋅(S )a b ∞
(10) �

-∞ C C b C= (S ) ⋅ ∂ b ⋅(S )b ∞
(12) -∞ C C b C= (S ) ⋅ ∂ b ⋅(S )b ∞
(8) -∞ C= (S ) .∞

This completes the proof in Case 3.1.

Case 3.2 is "dual" to Case 3.1.

-Case 3.3: Assume a∈ E - B and b∈ E - B .



Now a∈U since a∈E , and b∈L since b∈E .


For any pair (x, y) for which x ��
�� y , δ (x, y) denotes the maximal n for which= ���
there is a ��� -chain x=x ��� x ��� ... ��� x =y . δ (x, y)=0 iff x=y , δ (x, y)=10 1 n ��� ���
iff x ��� !y .
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Since a∈U-B , there is y∈B such that a
�
y . Since a∈E , we must have ¬(a ��� y) ;
 


* *a ����� y � y ����� a ; (a ��
�� a&b ��
�� y) � (y ��
�� a&b ��
�� a) ; b ��
�� y ; therefore, b ��� y= = = = =
since b∈L , y≠b .

-Similarly, let x be such that x
�
b , x∈B and x ��� a .

Note that since x∈L and y∈U , we cannot have x
�
y . But y

�
x is excluded since it would=

give y
�
x
�
b , contradicting b ��� y ; y ��� x is out since y ��� x ��� a contradicts a

�
y . We

conclude that x ��� y .

We have shown that there are pairs (x, y) with the properties

x∈B , y∈B , x ��� a � y , x
�
b ��� y and x ��� y . (13)

Call such pairs appropriate. We minimize first the distance δ (b, y) , then the distance���
δ (x, a) , for an appropriate pair (x, y) ; let the appropriate pair (x, y) be so���
minimally chosen.

7.1.2 Sublemma x ��� !y .

Proof of 7.1.2 Assume otherwise. We can take a span (maximal ��� -chain) entirely
within B (see section 3); therefore, there must be z∈B such that x ��� z ��� y .

Note that each of a ��
�� z and z
�
a is excluded: a ��
�� z gives a ��
�� z ��� y , contradicting= = =

a
�
y ; z

�
a gives z

�
a
�
y , contradicting z ��� y . Hence, either z ��� a or a

�
z .

Similarly, either z
�
b , or b ��� z .

Assume z
�
b . We must have z ��� a , since a

�
z gives a

�
z
�
b , contradicting a

�
!b . But

now we have

z∈B , y∈B , z ��� a � y , z
�
b ��� y and z ��� y ;

that is, (z, y) is an appropriate pair; however, since x ��� z ��� a , δ (z, a)<δ (x, a) ;��� ���
thus, we have gotten into contradiction with the minimal choice of δ (x, a) (given that���
δ (b, y) have remained the same).���

Finally, assume b ��� z . Now, we must have a
�
z , since z ��� a gives b ��� z ��� a ,

contradicting a
�
b . In this case,

x∈B , z∈B , x ��� a � z , x
�
b ��� z and x ��� z ,

and a contradiction is reached, since δ (b, z) < δ (b, y) , to the minimal choice of��� ���
δ (b, y) .���
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(End of proof of 7.1.2).

We have (13) , and x ��� !y ; in particular, x ��� a and b ��� y . This is the situation that
Lemma 6.2 and 3.9.1 apply to. We obtain

x x a 
 bS = S ⋅ca ⋅S ⋅db ⋅S . (14)y 
 a b y

x(Here, S is a basic 1-pd of the assumed prescheme on (
�

, ��� ) , on the basis of the facty
x ��� !y .)

Let's look at (13) again. Since a
�
y∈B , we have a∈U ; since x

�
b , x∈B , we have b∈L .

More generally,

Let us repeat what 3.9.1 says:

u∈[x, a] & v∈[b, y] & (u, v)≠(x, y) ��������	 u
�
v . (15)��� ���

⋅[x, y] = [x, a] ∪ [b, y] . (16)����� ��� ���

We want to show (2.1). Note that x, y∈B ; thus,

-∞ C -∞ C C x C y C(S ) = (S ) ⋅ ∂ x ⋅S ⋅ ∂ y ⋅(S ) ;∞ x y ∞

thus, by (14),

-∞ C -∞ C C x a 
 b C y C(S ) = (S ) ⋅ ∂ x ⋅S ⋅ca ⋅S ⋅db ⋅S ⋅ ∂ y ⋅(S ) .∞ x 
 a b y ∞

On the other hand, the case assumption for Case 3.3 says, in particular, that a is signed a ,


b is signed b , for τ ; thus

-∞ τ -∞ τ a b τ(S ) = (S ) ⋅ca ⋅S ⋅db ⋅(S )∞ a b ∞

Therefore, for (2.1) , all I need is

?-∞ τ -∞ C C x(S ) = (S ) ⋅ ∂ x ⋅S (17.1)a x 
 a
?b τ 
 b C y C(S ) = S ⋅ ∂ y ⋅(S ) (17.2)∞ y ∞

We show the first of these equalities; the other one is symmetric.
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� ���

Consider the interval I=(-∞, a) of (N,
�

, ��� ) . Define the cut C=(U, L) in���
� � �

(I,
� � I, ��� � I) by U=U∩I , L=L∩I ; C=C � I .

First note that a is on the border E , in the sense of (N,
���

, ����� ) , of the cut C .
�

Therefore, E∩I is the border for C=C � I in (I,
��� � I, ����� � I) (3.2 applied to

(N,
���

, ����� ) ). However,
��� � I= � � I , ����� � I= ��� � I . Therefore,

�

(*) E∩I is the border of C in (I,
� � I, ��� � I) .

Since x∈B , we have x∈E , and x∈E∩I . Therefore, (*) lets us write

� � � �

-∞ C -∞ C C x C(S ) =(S ) ⋅ ∂ x ⋅(S ) ,a x a

-∞ Cby section 5, clause (iii) for the given prescheme . But x∈B , thus (S ) makes sense,x
�

-∞ Cand equals (S ) .x

�

x CWhat is (S ) ?a

By (15), every element of J=[x, a) is
�
y ; since y∈B , with B the (

�
, ��� )-border of���

�

C , it follows that J⊆U , and thus J⊆U . Since J=[x, a) , and a is on the�����
(
���

, ����� )-border E of C , by 3.2, applied to (
���

, ����� ) , the (
���

, ����� )-border of
�

C � J is E∩J , and since (
���

, ����� )=( � , ��� ) on J ,

�

(**) the (
�

, ��� )-border of C � J is E∩J .

�

�

x C xBut C � J=(J, ∅) . Therefore, E∩J=µ [x, a) . It follows by (**) that (S ) =S .� ��� a 
 a

We conclude that

�

-∞ C -∞ C C x(S ) = (S ) ⋅ ∂ x ⋅S . (18)a x 
 a

In (N,
���

, ����� ) , C is a cut, and τ is a signed span for it; also, a is on the border, in
def

the sense of (N,
���

, ����� ) , of the cut C . Therefore, ξ = τ∩I is a signed span for the
�

cut C=C � I in (I,
��� � I, ����� � I) by 3.3, applied to (N,

���
, ����� ) . However,��� � I= � � I , ����� � I= ��� � I . Therefore,

�

(***) ξ=τ∩I is a signed span for C in the sense of (I,
� � I, ��� � I) .
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It follows by section 5, cluase (iii) for the given prescheme that

DEF
�

-∞ τ -∞ ξ -∞ C(S ) = (S ) = (S ) . (19)a a a

(18) and (19) entail (17.1).
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§8 Proof of Theorem 1.1 and Corollary 1.2

Since we have to deal with "supp" and "Supp" often, I will abbreviate the former by s ,
the latter by S .

�

Let a=(X, a) be a 1-Pd. I will write s (a) for the "inner support" of a that ignores the�

end-point zero-cells. More precisely, we can write a as the composite of 1-cells in a diagram

r r r r1 2 3 m-1X ���������
� X ���������

� X ���������
� ... ������� ��� � � X . (1)1 2 3 m

Here, all displayed items are uniquely determined from a itself; in case m=1 , the minimal
value, a is id :X �

� X . Note that a itself is not a formal entity like a molecule, or aX 1 11
diagram, it is an actual cell in an actual ω-category.

We make the definition

DEF�

s (a) = {X :1≤i≤m} ∪ {r :1≤i≤m-1} .i i

�

s (a) (the subscript 1 indicates we take 1-indets only) is empty if and only if a is an1
identity.

DEF�

It may be tempting to say that s (a) = s(a)-(s(da)∪s(ca)) , except that it would
?

�

be incorrect. However, we do have s (a) ∪ s(da) ∪ s(ca)) = s(a) .

The 1-Pd a displayed in (1) is separated (as defined in section 1) iff the zero-cells
X , ..., X are (pairwise) distinct; note that as a consequence, the one-cells1 m
r , ..., r are (pairwise) distinct as well.1 m-1

I will say that a as in (1) is semi-separated if X ≠X whenever i≠j andi j
{i, j}≠{1, m} ; in other words, we allow the end-points X , X to coincide. If (1) is1 m
semi-separated, the r still will necessarily be all different.j

We have discussed what we mean by the fact that 1-pd's are uniquely typed. To repeat, in
down-to-earth terms, this means that for any a as in (1), there is a diagram, unique up to
unique isomorphism, of the form

� � � �

r r r r�
1

�
2

�
3 m-1

� �

X ���������
� X ���������

� X ���������
� ... ������� ��� � � X ; (1)1 2 3 m
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� � � �

of 0-cells X and 1-indets r , where the zero-cells X , ..., X are pairwise distinct,i j 1 m
� �

and, as a consequence, the one-cells r , ..., r are pairwise distinct. For the composite1 m-1
� � �

(1), a , we have a unique morphism a � � a of Pd's. (This fact looks so trivial that is hard to� �

see why one would even mention it ... .)

A molecule (or Molecule) here always means a 2-m(M)olecule, and atom a 2-atom.

Let either

Φ = (ϕ , ...ϕ )=(ϕ [u ], ...ϕ [u ]) (1.1)1 N 1 1 N N

be a Molecule of positive length N≥1 , or

Φ = (dΦ) , (1.2)

one of length N=0 .

def N
We want to make a simple observation. Recall from §1 : s(Φ) =

� ���
s(ϕ ) when n≥1 ,ii=1

def
and s(Φ) = s(dΦ) when N=0 . The observation is this: writing subscript ≤1 in s in≤1
the sense of restriction to ≤1-indets only, we have

N �

s (Φ) = s(dΦ) ∪
� ���

s (cu ) . (2)≤1 ii=1

(when N=0 , we just have s (Φ)=s(dΦ) ).≤1

Of course, it is essential for this that Φ is, by definition of "molecule", composable. In the
"composition" of the atoms in Φ , going from left to right (actually, from up to down), we
obtain new 0-and 1-indets only because the next 2-indet u introduces new inner 0-indetsi
and (all) 1-indets within its codomain, cu . The formal proof of (2) is a straight-forwardi
induction on the length N .

It is clear that (2) says something directly about the 2-pd Γ defined by Φ . We have, for any
2-Pd Γ=(X, Γ) , N= � X � , that� 2

� *� X � = s(dΓ) ∪
� ���

s (cu) . (2 )≤1 u∈N

From now on, we assume that molecules and atoms are anchored; our subsequent definitions
would be incorrect (because of not serving the purpose at hand) otherwise.
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We say that the (anchored) molecule Φ in (1.1) or (1.2) is separated if

1) Φ is 2-separated (the u are pairwise distinct),i
2) the union in (2) is disjoint:

N
⋅ ⋅ �

s (Φ) = s(dΦ) ∪
� ���

s (cu ) (3)≤1 ii=0
and

3) dΦ is separated, and each cu (i=0, ..., N) is semi-separated.i

(In particular, a length-0 molecule Φ , given by a 1-pd dΦ , is separated if the 1-pd dΦ is
separated).

We cannot fail to see that this directly gives a definition of "separatedness" for a 2-Pd.
However, we already have a notion called "separated" for Pd's (see section 2). Although the
one being suggested now turns out to be equivalent to the original one (in the case of an
anchored 2-Pd), we distinguish the new notion, at least temporarily, by calling it *-separated.
Thus, an anchored 2-Pd Γ=(X,Γ) , N= � X � , is *-separated if� 2

*1 ) Γ is top-separated,�

* *2 ) the union in (2 ) is disjoint:

⋅ � *� X � = s(dΓ) ∪
� ���

s (cu) . (3 )≤1 u∈N
and

*3 ) dΓ is separated, and each cu ( u∈N ) is semi-separated.

Alternatively, the definition for a molecule can be put in a recursive form.

A length-0 molecule Φ=(dΦ) is separated if the 1-pd dΦ is separated. A length-N , N≥1 ,
molecule (1.1) is separated if

def
(a) the molecule Φ � (N-1) = (ϕ , ...ϕ ) is separated,1 N-1

�

(b) s (c(u )) is disjoint from s(Φ � (N-1)) ,N
(c) c(u ) is semi-separated,N

and, finally,
(d) u is distinct from each of u , ...u .N 1 N-1

An (anchored) atom is separated if it is separated as a 1-term molecule.

As an example, let X be a 0-indet, f:X � � X a 1-indet, and u:id �
� f a 2-indet. ThenX
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u is an anchored, separated 2-indet, the 1-pd cu is semi-separated, but not separated.

Extending the example, let, in addition, g:X � � X and v:f � � g be additional indets. Then
the molecule (u, v) is separated, but the atom v is not separated.

The following proposition is easy to prove; still, we give the details, since we are interested in
what we are up against in a future generalization to higher dimensions.

�

8.1 Proposition (i) For every anchored 2-Molecule Φ , there is a map Φ �
� Φ� �

�

from some separated Molecule Φ .�

(ii) Every separated anchored 2-Molecule is projective.

(For "projective Molecule", see §2.)

Proof (i) Since for length 0 the assertion is obvious, we may assume that the
length of Φ is positive. Assume Φ given as in (1.1). To define the separated�

� � � � � �

Φ=(ϕ [u ], ..., ϕ [u ]) and the map Φ �
� Φ , for i=1, ..., N , by recursion we1 1 N N

� �

construct the atom ϕ [u ] , together with a mapi i

f def� � � � � iΦ = (ϕ [u ], ..., ϕ [u ]) ����������� � Φ = (ϕ [u ], ..., ϕ [u ]) .i 1 1 i i i 1 1 i i

� �

We start by letting f :D � � dΦ=dϕ be a map from a separated 1-Pd D to dΦ . By0 1
def def� �

convention, Φ = (D) , Φ = (dΦ) .0 0

�

Suppose i≥1 , and f :Φ �
� Φ have been defined.i-1 � i-1 � i-1

� � � �

Drop the subscript i-1 : write ϕ[u] for ϕ [u ] , ϕ[u] for ϕ [u ] ,i-1 i-1 i-1 i-1
� �

f:Θ �
� Θ for f :Φ �

� Φ . Write ψ[v] for ϕ [u ] .� � i-1 � i-1 � i-1 i i

� � �

The map f:
�
Θ

�
�
� �

Θ
�

of underlying computads restricts to a map f:cϕ ���
� cϕ . But� � ��� ���

cϕ=dψ , although ψ is not in
�
Θ

�
. With ψ=b ⋅v ⋅e , and, as a consequence,�

� � � � � � �

cϕ=dψ=b ⋅dv ⋅e , in
�
Θ

�
we can write cϕ=b ⋅ γ ⋅e uniquely such that f(b)=b ,�

� � � � � � � � �

f(γ)=dv , f(e)=e . In particular, we have the zero-cells X=cb=dγ , Y=de=cγ in
��

Θ
�

.�
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� � �

In a computad X extending
�
Θ

�
, we construct a 1-pd C such that C has the same length�

� � � � � � � �

as cv , dC=X , cC=Y , C is semi-separated, and s (C) is disjoint from s(
�
Θ

�
) . This�

� � �

is done by successively adjoining to
�
Θ

�
new 0-cells and 1-cells forming s (C) ; the�

� ⋅ � �

result is a computad X for which � X � = � �
Θ

� � ∪s (C) . Note that the only obstacle to this�

� �

would be if cv were of zero length and, at the same time, X≠Y ; however, since cv is not
of zero-length ( Φ is anchored), this does not occur.

By the universal property of adjunction of indeterminates, we have the unique map
� �

g:X ��� �
�
Φ

�
extending f:

�
Θ

�
�
� �

Θ
�

such that g(C)=cv .� i � �

� �

In X , we have that the 1-pd's γ and C are parallel; hence, to X , we can adjoin the new
� � � � � � �

2-indet v with dv=γ and cv=C ; we obtain the computad X[v] . In X[v] , we have the
def def� � � � � � � � � �

atom ϕ = b ⋅v ⋅e , and the molecule Φ = Θ^ϕ = (ϕ , ..., ϕ , ϕ ) . Clearly,i i i 1 i-1 i
� �

X[v]=
�
Φ

�
.� i

� � � �

Since g(γ)=f(γ)=dv and g(C)=cv , we can extend g to h:X[v] ��� �
�
Φ

�
such that� i

� � �

h(v)=v . The construction ensures that h(ϕ )=ϕ , and thus h(Φ )=Φ ; we have ouri i i i
�

desired map h:Φ ���
� Φ of Pd's.� i � i

The construction ensures that Φ is an (anchored) separated molecule, according to clauses� i
(a) to (d) above.

This completes the inductive proof of 8.1(i).

�

(ii) By induction on the length N of the separated Molecule Φ .�

Let Φ=(ϕ , ...ϕ )=(ϕ [u ], ...ϕ [u ]) ,1 N 1 1 N N
� � � � � �

Φ=(ϕ , ...ϕ )=(ϕ [u ], ...ϕ [u ]) ,1 N 1 1 N N
� � � � � � �

Φ=(ϕ , ...ϕ )=(ϕ [u ], ...ϕ [u ])1 N 1 1 N N
� � � � ���

Φ=(X, Φ) , Φ=(X, Φ) , Φ=(X, Φ) .� � �

� � � � �

Suppose Φ is separated, f:Φ �
� Φ and g:Φ �

� Φ , to show the existence of h:Φ �
� Φ such� � � � � � �

?
that g � h = f .
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If N=0 , the assertion follows from unique typing for 1-pd's.

� �

Assume N≥1 . Denote the operation (-) � (N-1) by putting a bar on top. We have that Φ�
� �� � � � � �

is separated, we have f:Φ �
� Φ and g:Ψ �

� Φ . By the induction hypothesis, we have� � � �

� �
� � � �

k:Φ �
� Φ such that g � k=f .� �

� �

Drop the subscript N ; let ϕ=ϕ , u=u , ϕ=ϕ , etc.N N N

� � � � � � � � ��� ���

Let the 1-pd's b, e be defined by ϕ=b ⋅u ⋅e ; b, e by ϕ=b ⋅u ⋅e ; b, e by ϕ=b ⋅u ⋅e .

� �� � � � � ���

Claim (e) We have that b, du, e belong to
�
X
�

, b, du, e to
�
X
�

, and b, du, e to
�
��
X
�

; moreover,
� � � � � �

(f) k(b)=b , k(du)=du , k(e)=e .

(In the list
� � � �

f(b)=b , k(b)=b , g(b)=b ,
� � � �

f(du)=du , k(du)=du , g(du)=du ,
� � � �

f(e)=e , k(e)=e , g(e)=e ,

�

the equalities involving f and g hold true, since f and g are defined on the levels of X ,
�

X , not just their restrictions; only the ones involving k are still to be shown.)

For the proof, note first that

� � � � �

c(ϕ ) = d(ϕ) = b ⋅du ⋅e ,N-1
� � � ���

c(ϕ ) = d(ϕ) = b ⋅du ⋅e ,N-1
c(ϕ ) = d(ϕ) = b ⋅du ⋅e ,N-1

� �
� � �

and the items subscripted with N-1 are in the corresponding restrictions X , X , X ; this
� �

shows (e). Since k maps c(ϕ ) to c(ϕ ) , we haveN-1 N-1

� � � � ���

k(b) ⋅k(du) ⋅k(e) = b ⋅du ⋅e . (4)

� �

On the other hand, k(b) and b are both mapped to b , the first by f , the second by g ;
and similarly for the other pairs of factors in the last equality. Now, consider the following���
obvious fact for 1-pd's, that, alas, is less obvious in higher dimensions: with r, s, r, s
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���
1-pd's, suppose r ⋅s=r ⋅s in a computad Z , g:Z � � W is a computad map, and� � � �
g(r)=g(r) , g(s)=g(s) ; then we must have r=r , s=s ; in fact, one of the equalities,� �
say g(r)=g(r) , is enough; one notes that r and r must have the same length, and an
initial segment of a 1-pd is determined by its length.

�

The fact just mentioned implies, by the presence of the map g: � Φ � � � � Φ � , that, in (4), the
factors on the two sides have to be pairwise equal. This proves part (f) of the claim.

� �

We need to extend k to a map h:X � � X such that g � h=f . We need to define the effect of
� �

h on the set s (cu) , a set disjoint from s(dom(h)) .

�
� � � � � � � � � �

Look at the zero-cells X=dd(u)=c(b) , Y=cc(u)=d(e) in X , X=dd(u)=c(b) ,
�

� � � � � � �

Y=cc(u)=d(e) in X , X=dd(u)=c(b) , Y=cc(u)=d(e) in X . Since k(b)=b ,
� � � � � � � �

k(e)=e by the Claim, we have k(X)=X , k(Y)=Y . Write cu in the form (1) above; we
� � � � � � � � �

have X =X , X =Y ; the other items in (1) are the elements of the set s (cu) . In X , cu1 m
� � � � � �

has the same form, with ’s rather than ’s, with the same length m , and X =X , X =Y .1 m

� � � �

There is a unique extension k of k to the computad X[s (cu)] ,

� � � � �

k : X[s (cu)] ��������� � X

� � � � � �

such that k(cu)=cu : for i=2, ..., m-1 , we define k(X )=X ; we then havei i
� � �

k(X )=X for i=1, 2, ..., m-1, m ; after which, for j=1, ..., m-1 , we definei i
� � �

k(f )=f .i i

� � � � � � �

Finally, we adjoin the new 2-indet u , and define h:X=X[s (cu)][u] ������� � X
� � � � � � �

extending k , by setting h(u)=u ; this is legitimate since k(du)=k(du)=du , and
� � �

k(cu)=cu by construction. Clearly, we have made the extension h so that g � h=f .

� � � �

The fact that h is a map of Molecules, h:Φ �
� Φ , follows from h(ϕ)=ϕ , which is a� �

consequence of the Claim.

This completes the proof of 8.1(ii).

We have proved 2.8 Elementary Lemma; and now we know the results of section 2 up to and
including 2.11.
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Before turning to the more mundane task of proving assertions made in section 1, we make
some general remarks.

The notion of projective Pd is very general: a Pd Γ , of an arbitrary dimension, is projective if�

f g hwhenever Λ ��������� Γ �������
� Ξ , we have at least one Γ �������

� Ξ such that g � h=f . Note� � � � �

that if Γ is of dimension n , then, for testing projectivity of Γ , it suffices to look only at� �

Λ , Ξ also of dimension exactly n ; and if Γ is an Indet ( Γ itself is an indet), then Λ , Ξ� � � � �

can also be restricted to be Indets of the same dimension as Γ . When one restricts Pd's�

further, such as "anchored", or belonging to a "standard class" (see section 1), the definition
further relativizes to the class.

In section 1, we mentioned separated Pd's, and computopes; the two are closely related. We
note here that every projective Pd is separated: let Γ be projective; by the Corollary to�

� �

Theorem[M](i) in section 1, there is a separated Γ with a morphism f:Γ �
� Γ ; by� � �

�

projectivity of Γ , there is g:Γ �
� Γ ; but by definition of "separated", g must be an� � �

isomorphism; thus, Γ , being isomorphic to a separated Pd, is itself separated.-

I do not know whether the converse is true.

�

Moreover, if Γ has a "projective cover" Γ �
� Γ , the condition 2) in section 1, "uniqueness of� � �

the type" in Γ being uniquely typed, is satisfied, since for any separated Λ , if there is� �

Λ �
� Γ , Λ must be isomorphic to Γ .� � �

Let us now restrict ourselves to the anchored 2-dimensional case.

We have seen, in the proof of 2.9, that if Φ is a projective (anchored 2-)Molecule, then the�

2-Pd
�
Φ � defined by Φ is projective as well. The converse is also true: if

�
Φ � is� � �

�

projective, then Φ is too: by 8.1(i), there is a projective cover f:Φ ���
� Φ , inducing a map� � �

�

f:
�
Φ � ��� � � Φ � ;

�
Φ � being projective, it is separated; hence, f is an isomorphism;� � �

� �

f:Φ ���
� Φ being an isomorphism, and Φ projective, Φ is projective.� � � �

We now see that the notions "projective" and "separated" for anchored 2-Molecules coincide;
and the three notions "separated", "projective", and "*-separated" for anchored 2-Pd's coincide.

The following proposition and its proof could have been included already in section 1. It is a
general categorical argument based on the universal property defining the notion of computad.
It infers the existence of enough projectives among (n+1)-Indets, on the basis of the same
assumption for n-Pd's (the latter is a special case of the former), plus strong properties of
(n-1)-Pd's. Since the hypotheses are verified for n=2 , we will obtain that there are enough
projectives among 2-anchored 3-Indets, which, in turn, enables us to infer 1.1 and 1.2 from
2.10.
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We fix a standard class of computads (see section 1). All computads, Indets and Pd's are to be
taken from the fixed class (which will remain nameless).

8.2 Proposition (We restrict ourselves to a fixed, although arbitrary, standard
class of computads.) Let n be a fixed integer at least 2 . We make the following
assumptions:

(a) All (n-1)-Pd's are uniquely typed.
(b) There are enough projective n-Pd's: for any n-Pd Γ , there is a projective�

� �

n-Pd Γ together with a map Γ �
� Γ .- - �

Then:

There are enough projective (n+1)-Indet's: for any (n+1)-Indet U , there are a�

� �

projective (n+1)-Indet U and a map U � � U .- - �

Proof For this proof, I'll simplify the notation somewhat. I will drop the underlining
from Pd's; thus, e.g., given U=(X, U) , U may ambiguously mean either U=(X, U) , or U� �

as an element of X . On the other hand, I'll write
�
U

�
for X , the underlying computad of

U .

For any Pd Ξ , we have dΞ , both as a pd and as a Pd. If we return to our pedantic ways, we
have Ξ=(Z, Ξ) ( Z=

�
Ξ

�
) , and dΞ a pd in Z ; we put� -

def
dΞ = (Supp (dΞ),dΞ) ;� Z

similarly for cΞ . We again drop underlining, and just write dΞ in both senses involved.�

Note that we have the inclusion map
�
dΞ

���
���

� �
Ξ

�
; but writing dΞ

�

���
� Ξ is (too)

incorrect; f:Γ �
� Λ also implies that f(Γ)=Λ (!).

Let U be an (n+1)-Indet; dU and cU are n-Pd's. By assumption (b), there are projective
f gn-Pd's Γ and Λ , with maps Γ �������

� dU , Λ �������
� cU . We have the inclusions

α β γ δ�
dΓ

���
�
� �

Γ
�
,

�
cΓ

���
�
� �

Γ
�
,

�
dΛ

���
�
� � Λ

�
,

�
cΛ

���
�
� �

Λ
�
,

ε η�
dU

���
�
� �

U
�
,

�
cU

���
�
� �
U

�
.

The composites ε � f � α:
�
dΓ

�
���

� �
U

�
, ε � f � γ:

�
dΛ

�
���
� �
U

�
give rise to (are) the

respective maps εfα:dΓ ���
� ddU , εfγ:dΛ ���

� dcU of n-Pd's. We have ddU=dcU .
Since (n-1)-Pd's are uniquely typed (assumption (a)), with D the unique type of
ddU=dcU , D must also be the type of dΓ and dΛ ; we conclude that there is a separated

ϕ ψ(n-1)-pd D with maps D ������� � dΓ , D ������� � dΛ such that ε � f � α � ϕ=η � g � γ � ψ .
ρ σSimilarly, we have a separated (n-1)-pd C with maps C ������� � cΓ , C ������� � cΛ such

that f � β � ρ=g � δ � σ .
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We define the computad X by the following colimit diagram:

ϕ��� � � D ����� ψ��� ���	 
� dΓ � � dΛ �
� � �α � � γ� �� �

ξ ζ� Γ � ����������� � X ������������� � Λ �
� �

β � � δ� �� � �
� cΓ ��
�� � cΛ ���� �����ρ ��� ��� σ� C �

We have taken the colimit of the diagram which is the one above without the items X , ξ and
ζ ; X is the colimit object, ξ and ζ are colimit coprojections (and so are the composite
arrows from the objects other than � Γ � , � Λ � ).

def def� �

In the computad X , we have the n-pd's Γ = ξ(Γ) , Λ = ζ(Λ) . Let
�

D=(ξ � α � ϕ)(D)=(ζ � γ � ψ)(D) , an (n-1)-pd in X . Since dΓ=(α � ϕ)(D) ,
� � � � �

D=ξ(dΓ)=d(ξΓ)=d(Γ) . Similarly, D=d(Λ) . For C=(ξ � β � ρ)(C)=(ζ � δ � σ)(C) , we
� � � � �

similarly have C=c(Γ)=c(Λ) . We conclude that the n-pd's Γ , Λ are parallel. Therefore,
� � � � �

we may adjoin a (n+1)-indet U to X with the specification d(U)=Γ , c(U)=Λ , and
� � � �

form X[U] . I claim that U = (X[U], U) is the desired item.

The commutativity of the following diagram:

������� ����������� � D � �������������������������� � ���������� ϕ ψ ���� dΓ �� � dΛ �
� �α � � � γ� �� �

f ε η g� Γ � ����������� � � dU � ����������� � � U � ������������� � cU � ������������� � Λ �
� �

β � � δ� �� � �
� cΓ ��! ����� ρ σ � � cΛ �� ����� �������#"� ����$ % ���������������� � C � �����������

and the colimit property of the previous one shows that there is a unique arrow h:X � � � U �
such that the following commutes:
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X �� � � ������ ������ � ���ξ ��� � ��� ζ��� � h ������ � � � ������ � ������ � ��
f ε η g� Γ � ����������� � � dU � ����������� � � U � ������������� � cU � ������������� � Λ � .

� �

From these two commutativites we infer that h(Γ)=dU , h(Λ)=cU . Therefore, it is
� �

legitimate to require of a map k:X[U] ��� � � U � that it extend h and maps U to U ; we do
�

so! We have obtained the map k:U � � U of (n+1)-Indets.

� � �
mTo verify that U is projective, assume we have U ������� � V ��������� W , to show that there is

�
nU ������� � W such that m � n=

�
.

?

We have the induced maps

� �� ξ m
� ζ mΓ �����������

� dV , dW ������� � dV , Λ �����������
� cV , cW ������� � cV .

p q �

Γ and Λ are projective: there are Γ �������
� dW , Λ �������

� cW such that m � p=
� ξ ,

�

m � q=
� ζ . Let's write θ: � dW � � � � W � , τ: � cW � � � � W � for the inclusions.

The following diagram commutes:

������� ����������� � D � �������������������������� � ���������� ϕ ψ ���� dΓ �� � dΛ �
� �α � � � γ� �� �

p θ τ q� Γ � ����������� � � dW � ����������� � � W � ������������� � cW � ������������� � Λ �
� �

β � � δ� �� � �
� cΓ ��! ����� ρ σ � � cΛ �� ����� �������#"� ����$ % ���������������� � C � �����������

The reason is that, for instance, the two upper composites, c =θ � p � α � ϕ and1
�

c =τ � q � γ � ψ , when applied to the element D in � D � , give the same value, namely D2
cdef 1

���������
� �

= ddW=dcW ; we have two parallel maps D D of (n-1)-Pd's; they must be
���������

�

c2
equal: c =c (follows from assumption (a)).1 2

We again apply the colimit definition of X : we obtain r:X ��� � � W � such that the following
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commutes:

X �� � � ������ ������ � ���ξ ��� � ��� ζ��� � r ������ � � � ������ � ������ � ��
p θ τ q� Γ � ����������� � � dW � ����������� � � W � ������������� � cW � ������������� � Λ � .

� � � �

It follows that r(Γ)=dW , r(Λ)=dW ; we have n: � U � =X[U] ��� � � W � extending r and
� �

mapping U to W . We have n:U � � W .

When the maps m � n and
�

(whose equality we want) are restricted to X , they are equal,
� �

by the uniqueness part of the colimit definition of X , and m � p=
� ξ , m � q=

� ζ . As a result,
�

m � n=
�

holds since the one remaining indet U in � U � is mapped by both to W .

The proof is complete.

I repeat that for the standard class of 2-anchored computads, and for n=2 , we have (a)
trivially, and (b) by 2.9. Therefore, the conclusion holds for 2-anchored 3-Indets.

2.6 (that we already know) immediately implies

f
�������

�

8.3 Proposition Parallel maps V U of 2-anchored 3-Indet's must coincide:�
�������

� �

g
f=g .

f � S(dV)
�������������������

�

Proof The reason is that we have the induced maps dV dV ,�
�������������������

� �

g � S(dV)
f � S(cV)

�������������������
�

cV cV of anchored 2-Pds, which, by 2.6, must pairwise coincide; f=g�
�������������������

� �

g � S(cV)
follows since the only item beyond s(dV)∪s(cV) on which they act is the indet V itself,
which they both map to U .

We have now proved 1.1 Theorem and 1.2 Corollary. Indeed, consider conditions 1) and 2) (in
section 1) defining "uniquely typed" for 2-anchored 3-Pd's: 1) is a special case of 8.3; and 2)
holds by 8.2 and the remarks after 8.1.
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§9 Higher–dimensional pasting preschemes

Substitution and up–substitution

We need to recall some things essentially dealt with in sections 8 and 9 in [M].

�
Suppose X is a computad of dimension n , Γ is an n-pd in X , and u is an n-indet in�
X . We say that u occurs in Γ exactly once if, for some, or equivalently, for all, n-molecule
Φ = (ϕ [v ], ..., ϕ [v ]) representing Γ , there is exactly one j∈{1, ..., M} such1 1 M M�
that v =u . (By section 2, it is indeed true that if the condition holds for Φ , it holds for anyj
Ψ such that

�
Φ � = � Ψ � .) .

�
Assume that, indeed, u occurs in Γ exactly once. Now, let u be a (new) indeterminate of
dimension n+1 attached to X by du � cu , both n-pd's du , cu in X , such that, in� � �
addition, ddu=du and ccu=cu . We are going to define the result of substituting u for u�
in Γ , despite the fact that u is of one-higher dimension than u . I will denote the result of� � �
this substitution by Γ[u/u] , or sometimes, sloppily, Γ[u] , when u in Γ=Γ[u] is
"understood". Γ[u] is going to be an (n+1)-cell in X[u] . Moreover, we will have that

d(Γ[u]) = Γ[du] and c(Γ[u]) = Γ[cu] ; (1)

where Γ[du] , Γ[cu] are ordinary substitutions, defined by the universal property of�
X=Y[u] , via the mappings

f������������������	
Y[u] X����������������	

g

�
which are the identity on Y , f maps u to du , g to cu ; these are legitimate by

def def� �
du = ddu , cu = cdu (=ccu ) , etc.; Γ[du] = f(Γ) , Γ[cu] = g(Γ) .

The definition of Γ[u] seems fairly obvious, at the first sight at least. Take any
Φ = (ϕ [v ], ..., ϕ [v ]) representing Γ ; let j be the one subscript for which1 1 M M�
v =u ; write ϕ=ϕ ; write Λ=ϕ [v ] ⋅... ⋅ ϕ [v ] ,j j 1 1 j-1 j-1� �
Ξ=ϕ [v ] ⋅... ⋅ ϕ [v ] ; thus Γ=Γ[u]=Λ ⋅ ϕ[u] ⋅ Ξ . Recall that, as an atom,j+1 j+1 M M�
ϕ[u] can be written in the form

� �
ϕ[u] = b ⋅(b ⋅(...b ⋅u ⋅e ...) ⋅e ) ⋅e (2.1)n-1 n-2 1 1 n-2 n-1

for some b , e such that dim(b )=dim(e )=i . Therefore, we can definei i i i
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DEF
ϕ[u] = b ⋅(b ⋅(...b ⋅u ⋅e ...) ⋅e ) ⋅e (2.2)n-1 n-2 1 1 n-2 n-1

?

and

DEF
Γ[u] = Λ ⋅ ϕ[u] ⋅ Ξ . (3)

?

Although this calculation will be important, as a definition it has the fault that it is not clear
that the value Γ[u] is independent from the choice of the molecule representing Γ[u] , and�
worse, from the choice of the presentation of the atom ϕ[u] which we used.

However, in section 8 of [M], there is a construction of the so-called collapse of the�������
(n+1)-dimensional computad X[u] to an n-dimensional one, X[u] . The set of n-indets

⋅ �������
of the latter is X ∪ {u} ; also, X is a subcomputad of X[u] . Moreover, as an n-cell inn������� � �
X[u] , u is parallel to u (since d (u)=ddu=du , and similarly for c ). Thus, we�������

X[u]� ������� �
can map X=Y[u] to X[u] by mapping Y identically, and mapping u to u ; write�������
f:X ����	 X[u] for this map, ϕ[u] is defined to be f(ϕ) , and Γ[u] is defined to be
f(Γ) . Once Γ[u] is thus well-defined, we see that, with the data for the molecule Φ and�
for the atom ϕ[u] in (2.1) chosen in any way, (2.2) and (3) are true, simply because f is a
map of ω-categories.

Moreover, the equalities (1), with d and c understood now in the sense of X[u] of
course, are true too: clearly, since dim(Λ)=dim(Ξ)≤n , d(Λ ⋅ ϕ[u] ⋅ Ξ) =
Λ ⋅d(ϕ[u]) ⋅ Ξ ; and by (2.2), d(ϕ[u]) = ϕ[du] , etc.

� � �
Expected facts such as (b ⋅ Γ)[u/u] = b ⋅(Γ[u/u]) ( b∈X , Γ∈X , u and u asn n+1
before) are immediate from (2.2) and (3).

There are certain obvious commutativity and associativity rules concerning substitution,
including up-substitution; they follow directly from the universal-property-induced definition
of substitution; we tend to use them without comment.

Pasting preschemes

Let X be a computad, N a finite set of (n+1)-indets in X . As in section 9 of [M] , we
associate with the elements of N appropriate new n-indets in a bijective manner: we have a� � � � �
map (u∈N) � ����	 u such that u is an n-indet, u∉ � X � , and du=ddu , cu=ccu . We� � �
write N for the set {u:u∈N} ; N has the obvious attachment to X ; we can consider the�
computad X[N] .

�
The elements of N are called niches. They are to be distinguished from the other
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n-indeterminates in X . The set of niches in a pd Γ is written n(Γ) .

� �
For a subset S of N , S (of course) denotes {u:u∈S} .

Suppose that we have an irreflexive partial order � on N .

Let S be an (unsigned) span of (N, � ) , that is, a maximal � -antichain.

� �
Let Γ be an n-(dimensional) pd in X[N] . We call Γ an S-frame if n(Γ) = S and every� �
u∈S occurs in Γ exactly once.

⋅ � �
Let Γ be an S-frame. Consider any signing of S : a partition S=S∪S ; let's write S for the�

� �
S S �

signed span so obtained. For u∈N , let's write ∂ u=du if u∈S , and ∂ u=cu if u∈S .�

Let R be a subset of S ; of course, R is necessarily a � -antichain. We are going to define� � �
an n-pd, denoted by Γ 〈S 〉[R] , in the computad X[N] ; it will be obtained by "partially� � �
filling" the frame Γ . The notation indicates that we will have n(Γ 〈S 〉[R]) = R .

� �
Define Γ 〈S 〉[R] by:

DEF �� � S �
Γ 〈S 〉[R] = Γ[∂ u/u]u∈S-R

�
(repeated, or simultaneous, substitution; it is legitimate since ∂u � u ).

We have

�� � � � S �
Q⊆R ������� Γ 〈S 〉[Q] = Γ 〈S 〉[R][∂ u/u] (4)u∈R-Q

�� � S � �
When R=∅ , we omit it from the notation: Γ 〈S 〉[∅] = Γ 〈S 〉 = Γ[∂ u/u] ; Γ 〈S 〉 isu∈S�
an n-pd. The n-pds of the form Γ 〈S 〉 are called the n-cuts, or the hyperplanes, of the PPS�
Γ .

We are ready to define the notion of an (n+1)-dimensional pasting prescheme, (n+1)-PPS. It
is an object of the form Θ=(Y, N, � , Θ 〈S 〉) ; it is given byS � -span

a n-dimensional computad Y ;
a finite set N of (n+1)-indeterminates attached to Y ; we write X=Y[N] ;
an irreflexive partial order � on the set N ;

and
for each span (maximal � -antichain) S in N , an S-frame Θ 〈S 〉 , an n-pd in the
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�
computad Y[N] ;

such that the following condition, the "matching equality", is satisfied:

� � � ����� � �����
C[S] = C[T] ��������� Θ 〈S 〉[S∩T]=Θ 〈T 〉[S∩T] . (5)

� �
(we have abbreviated Θ 〈S 〉 〈S 〉 as Θ 〈S 〉 ; and similarly for T ).

As a consequence, we will have

� � � � � �
R⊆S & R⊆T & C[S] = C[T] ��������� Θ 〈S 〉[R]=Θ 〈T 〉[R] ; (5')

� �� � S Tthis is because of (4): note that if C[S] = C[T] , then for any u∈S∩T , ∂ u=∂ u .

Let's note that the case of (5') when R is a maximal antichain is vacuously true: the� �
antecedent of (5') implies that R=T and S=T .

Using the matching equalities, we can define, for a cut C of (N, � ) and R an � -antichain�
in the boundary B[C] of C , the quantity Θ 〈C 〉[R] by

DEF� � �
Θ 〈C 〉[R] = Θ 〈S 〉[R]

� �
for some/any signed span S such that C=C[S] and R a subset of S , the underlying span�
of S .

� �
We write Θ 〈C 〉 for Θ 〈C 〉[∅] . Θ 〈C 〉 = Θ 〈S 〉 for any signed span S defining C .

�
[Before proceeding, let us (again) adopt the following notational conventions. C , C , D� � � �
denote cuts in (N, � ) ; C=(U, L) , C=(U, L) , D=(V, M) ; B. B , E are the borders of�
C , C and D , respectively.]

There is a further equality implied by the logic of the situation.

Suppose R is a � -antichain, C , D cuts. Let us say that C≡D (mod R) if R is a subset
of the boundaries of both cuts, and the cuts coincide outside R : R⊆B , R⊆E and U-R=V-R
(and, equivalently, L-R=M-R ). Note the special case when R is maximal: in this case, if
both R⊆B and R⊆E , we always have C≡D (mod R) .

We claim that

� �
9.1 Lemma C≡D (mod R) implies Θ 〈C 〉[R] = Θ 〈D 〉[R] .
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Proof To see this, first note

9.1.1 Sublemma C≡D (mod R) implies that, for any x such that R∪{x} is (still) a
� -antichain, x∈B iff x∈E .

As we know

x∈B � ����� ∀y∈N.[(y � x ��� y∈U) & (y � x ��� y∈L) , (5.1)
x∈E � ����� ∀y∈N.[(y � x ��� y∈V) & (y � x ��� y∈M) . (5.2)

Assume C≡D (mod R) , R∪{x} is a � -antichain and x∈B , to show x∈E . If x∈R , the
assertion is true since R⊆E . Assume x∈N-R . The RHS of (5.1) holds. Then the RHS of
(5.2) holds, since if either y � x or y � x , we must have y∉R ( R∪{x} is a � -antichain),
thus, y∈U iff y∈V , and y∈L iff y∈M . (End of proof of 9.1.1)

Assume R is an antichain and C≡D (mod R) . Let S be any maximal � -antichain such� �
that R⊆S⊆B . By 9.1.1, R⊆S⊆E . Let S and T be the signed spans with underlying span S� �
such that S defines C , T defines D : to each element of S give the sign according to
where it lies with respect to the cuts. Since C≡D (mod R) , the signing of each u∈S-R is� �� � S Tthe same in S as in T , and thus ∂ u=∂ u for u∈S-R . Looking at the formulas for� � � �
Θ 〈S 〉 〈S 〉[R] and Θ 〈S 〉 〈T 〉[R] , we now see that these two quantities are equal. This� �
means precisely that Θ 〈C 〉[R]=Θ 〈D 〉[R] .

The following is an elementary fact, properly belonging to section 3.

9.2 Lemma Let � be an irreflexive partial order on the set N . Let S be a maximal� �
� -antichain, and let S , S be signed spans, both with underlying span S , given by the1 2

⋅ � ⋅ � �
partitions S=S ∪S =S ∪S , and let C =(U , L ) be the cut determined by S . Then� 1 1 � 2 2 i i i i
C ≡C (mod S) .1 2

Proof Immediate from the equivalences

⋅u∈U � ����� u∈S � ∃s∈S.u � s ,i � i� ⋅u∈L � ����� u∈S � ∃s∈S.u � s .i i

Note that an (n+1)-PPS is entirely given within the context of the n-computad Y . Although�
there are references in it to the n-indets u , which are not in Y , they are purely formal, and
derived from the (n-1)-dimensional information inherent in the (n+1)-indets u∈N . In the�
definition of the Θ 〈S 〉 , we use the n-dimensional information given in the u∈N ; that
information is part of Y .

On the other hand, an (n+1)-PPS's can be pasted to obtain a well-defined (n+1)-pd in the

111



computad Y[N] , the pasting of the PPS. This, of course, is the justification of the expression
"pasting scheme". We will arrive at the pasting of the pasting prescheme in due course.

Examples and constructions of PPS's

It is easy -- in fact, "too easy"; this is the reason for the "pre" in "prescheme"; see also below
-- to give examples for PPS's.

[1] Molecules are PPS's

The simplest ones are the top-separated molecules. In fact, in the next few paragraphs, we
realize that an (n+1)-PPS whose underlying "backbone" order � is a total order is the same
thing as a top-separated (n+1)-molecule.

Let's start with a total order � on the set N of N distinct (n+1)-indets, with an
enumeration N={u , ..., u } chosen so that u � u � ��� i<j . We have the following:1 N i j

There are N+1 � -cuts C =(U , L ) , U ={u :1≤i≤k} , L ={u :k<i≤N} ,k k k k i k i
k=0, ..., N , and N spans S ={u } , k=1, ..., N ;k k �

u
� � �

each span S has two signed versions S and S : S =∅ , S ={u } ,k k k � k k k
u � uS ={u } , S =∅ ;� k k k�

uS defines the cut C , S the cut C ; the pairs of signed spans defining thek k-1 k k
u

�

same cut are (S , S ) , corresponding to the cuts C , k=1, ..., N-1 (all cuts exceptk k+1 k
the top and the bottom).

Therefore, for a PPS Θ based on (N, � ) , the data will consist of frames Θ 〈S 〉k
(k=0, ..., N) . The matching equalities for R a non-empty, necessarily singleton,
� -antichain are vacuous (since they are maximal antichains); the remaining matching equalities
are for R=∅ , and they are

u
�

Θ 〈S 〉 = Θ 〈S 〉 ( k=1, ..., N-1 )k k+1

We have C ≡C (mod{u }) ; and these are the only non-equality instances of thek-1 k k
relation C≡D (mod R ) .

What we have is precisely an (n+1)-molecule

Φ = (ϕ [u ], ..., ϕ [u ])1 1 N N

where

�
ϕ [u ] = Θ 〈S 〉[u /u ] = Θ 〈S 〉[u ] = Θ 〈C 〉[u ] = Θ 〈C 〉[u ] .k k k k k k k k-1 k k k
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In terms of the atoms ϕ , the frames arek

�
Θ 〈S 〉 = ϕ [u ] .k k k

We have
� �

Θ 〈S 〉 (= Θ 〈S 〉 〈S 〉 ) = d(ϕ [u ]) = ϕ [du ] ;k k k k k k k
u uΘ 〈S 〉 (= Θ 〈S 〉 〈S 〉 ) = c(ϕ [u ]) = ϕ [cu ] ;k k k k k k k

and the matching equalities become

(cϕ =) ϕ [cu ] = ϕ [du ] (= dϕ ) ,k k k k+1 k+1 k+1

which are the defining property of a molecule.

[2] Planar PPS's are PPS's

The planar pasting preschemes of sections 4 and 5 also give rise to pasting preschemes, in this
case 2-dimensional ones.

�
Let (N, � , �

� , M, P, S) be a planar pasting prescheme (see section 4). Let S be any
maximal � -antichain in N . S is a maximal �

� -chain, pictured as

-∞=u �
� !u �

� !u �
� !... �

� !u �
� !u =∞ ;0 1 2 m-1 m

( S is the set {u , ..., u } ; u and u are mere symbols.)1 m-1 0 m

For each k=0, ..., m-1 , for x=u , y=u , and the empty interval (x, y) , wek k+1 �
�

DEFx x Chave the 1-pd S = (S ) given in the planar pasting scheme, with the unique cut C iny y
(x, y) (thanks to the empty set!). For our new notation for PPS's, we define the S-frame

�
�

Θ 〈S 〉 by

DEF u u u u0 � 1 � � m-2 � m-1Θ 〈S 〉 = S ⋅u ⋅S ⋅u ⋅... ⋅u ⋅S ⋅u ⋅S . (6)u 1 u 2 m-2 u m-1 u1 2 m-1 m

�
Note that under this definition, with any signed version ξ=S of S , we obtain

u u u u0 ξ 1 ξ ξ m-2 ξ m-1Θ 〈 ξ 〉 = S ⋅ ∂ u ⋅S ⋅ ∂ u ⋅... ⋅ ∂ u ⋅S ⋅ ∂ u ⋅S ,u 1 u 2 m-2 u m-1 u1 2 m-1 m

-∞ ξa quantity that was denoted by (S ) in section 5 (after (ii)).∞
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Moreover, for any u and v such that u �
� v , for

u �
� !v �

� !v �
� !... �

� !v �
� !v1 2

�

a span in the interval (u, v) and ξ a signed span with underlying span {v , ...v } ,
�

� 1
�

the quantity

DEF u v v vξ 1 ξ ξ
�

-2 ξ
�

-1Θ 〈 ξ 〉(u, v) = S ⋅ ∂ v ⋅S ⋅ ∂ v ⋅... ⋅ ∂ v ⋅S ⋅ ∂ v ⋅Sv 1 v 2
�

-2 v
�

-1 v1 2
�

-1

u ξequals (S ) . Thus, if ξ and ζ define the same cut in (u, v) , then, by the definitionv �
�

of "planar pasting prescheme", we have Θ 〈 ξ 〉(u, v)=Θ 〈 ζ 〉(u, v) .

Now, let R⊆S , R⊆T , ξ, ζ signed spans with respective underlying spans S, T , and
assume that ξ~ζ ( ξ and ζ define the same cut). Let {w �

� w �
� ... �

� w } enumerate1 2 m
the set S-R . We have, directly by the definitions, that

� ξ ξΘ 〈 ξ 〉[R] = Θ 〈 ξ 〉(-∞, w ) ⋅ ∂ w ⋅ Θ 〈 ξ 〉(w , w ) ⋅... ⋅ ∂ w ⋅ Θ 〈 ξ 〉(w , ∞) ,1 1 1 2 m m� ζ ζΘ 〈 ζ 〉[R] = Θ 〈 ζ 〉(-∞, w ) ⋅ ∂ w ⋅ Θ 〈 ζ 〉(w , w ) ⋅... ⋅ ∂ w ⋅ Θ 〈 ζ 〉(w , ∞) ;1 1 1 2 m m

� �
hence, by the above, Θ 〈 ξ 〉[R]=Θ 〈 ζ 〉[R] (note that ξ

�
(w , w ) ~ ζ

�
(w , w )j j+1 j j+1

ξ ζand ∂ w =∂ w ). This shows that the matching equalities hold, and we indeed have aj j
2-PPS.

[3] Restriction by extending the backbone order

We construct a new PPS out of a given one by restriction.

Let � , � be two irreflexive partial orders on the same finite set N , � extending � ; � ⊆ � .
Obviously, any antichain for � is an antichain for � ; any cut for � is a cut for � .
However, a maximal � -antichain is not necessarily a maximal � -antichain.

Let Θ denote an (n+1)-PPS ; we use the notation developed above. Let � be any
(irreflexive) partial order on the set N extending � : � ⊆ � . Then one can restrict Θ to a
new (n+1)-PPS denoted

Θ
� � = (Y, N, � , (Θ

� � ) 〈R 〉) ;R � -span

the frames (Θ
� � ) 〈R 〉 are defined as follows.

�
Let R be a maximal � -antichain, and choose an arbitrary signing R of R , given by a

⋅ � �
partition R=R∪R . R � -determines a � -cut C . But then, C is also a � -cut. Moreover,�

� �B [C] ⊆ B [C] ; this is clear from (5.1), (5.20 , applied to both � and � . Therefore, R is
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�an � -antichain such that R ⊆ B [C] .

� �
Since C is a � -cut, R is an � -antichain contained in B [C] , Θ 〈C 〉[R] is well-defined.

� �
Moreover, if R and R are both signed � -spans with underlying � -span R , and C is1 2 i�
the � -cut � -determined by R , then C ≡C (mod R) with reference to (N, � ) : see 9.2,i 1 2

�applied to (N, � ) ; since R is an � -antichain such that R ⊆ B [C] , we have that� �
C ≡C (mod R) holds with reference to (N, � ) ; by 9.1, Θ 〈C 〉[R] = Θ 〈C 〉[R] .1 2 1 2

We conclude that, for any � -span R , the definition

DEF � � � �
(Θ

� � ) 〈R 〉 = Θ 〈C 〉[R] (C=C [R] , R signed � -span based on R ) (7)

is unambiguous.

� �
To verify the matching equalities, let us calculate the quantity (Θ

� � ) 〈R 〉[Q] provided� �
Q⊆R , R signed span based on the � -span R . Let C be the � -cut � -defined by R .

� �As we noted above, B [C] ⊆ B [C] : the � -border of C is contained in the � -border.
� � �Since R⊆B [C] ⊆ B [C] , we can take the maximal � -antichain S in B [C] such that� � �

R⊆S . Let S be the signed version of S corresponding to C ; clearly, S extends R . We
have

� � �� � � R � � S � R �
(Θ

� � ) 〈R 〉[Q] = (Θ
� � ) 〈R 〉[∂ u/u] = Θ 〈S 〉[∂ v/v] [∂ u/u] =u∈R-Q u∈S-R u∈R-Q

! �� S � � � �
= Θ 〈S 〉[∂ v/v] = Θ 〈S 〉[Q] = Θ 〈C 〉[Q] .u∈S-Q

The � -version of (5'),

� � � � � � � �
Q⊆R & Q⊆R & C [R ]=C [R ]=C ��������� (Θ

� � ) 〈R 〉[R]=(Θ
� � ) 〈R 〉[Q]1 2 1 2 1 2

�
is true, since both quantities in the last equality are equal to Θ 〈C 〉[Q] .

The pasting of a pasting prescheme

Start with an (n+1)-PPS Θ=(Y, N, � , Θ 〈S 〉 ) . Recall the operationS � -span
(Θ,� ) � 	 Θ

� � of restriction. Recall that we concluded that if � is a total order extending
� , then Θ

� � is, essentially, an (n+1)-molecule; let us write Θ
� � too for the

(n+1)-molecule which is "essentially" the restriction Θ
� � .
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9.3 Proposition Let Θ be any (n+1)-PPS .
(i) Θ defines a unique (n+1)-pd

�
Θ � , the pasting of the pasting scheme Θ , by the

formula
�
Θ � = � Θ � � � for some/any total order � extending � .

(ii) We have d
�
Θ � =Θ 〈C 〉=Θ 〈C 〉[∅] , c

�
Θ � =Γ 〈C 〉 , where C , C ared d c d c

the cuts C =(∅,N) , C =(N,∅) (these are equalities of n-pd's ).d c

(iii) All frames Θ 〈S 〉 are parallel to each other: dΓ 〈S 〉=dd
�
Θ � ,

cΓ 〈S 〉=cc
�
Θ � (the frames are n-pd's; we have equalities of (n-1)-pd's here).

(iv) For any partial order ��� extending � , the restriction Θ
�
��� has the same

value as Θ :
�
Θ � =

�
Θ

�
��� � .

Proof We have to show that
�
Θ

� � � = �
Θ

� � ’ � (8?)

for any two total orders � , � ’ extending � .

Let us say (again?) that � is switched to � ’ at (u, v) , in notation � (� , � ’) , ifu, v
u� !v and

⋅� ’=� -{(u, v)} ∪ {(v, u)} . (9)

Write � (� , � ’) for ∃u, v. � (� , � ’) .u, v

Note that if � is a total order on N and u� !v , then (9) defines another total order on N :
there is unique � ’ to which � is switched at (u, v) . If � (� , � ’) thenu, v

� (� ’, � ) . If � (� , � ’) , � is compatible with the partial order � , and u, v arev, u u, v
incomparable in � , then � ’ is also compatible with � . It is an elementary fact that for any
two total orders � , � ’ on N , both compatible with � , there is a finite sequence

� = � , � , ... , � = � ’1 2 m

of total orders on N , all compatible with � , such that � (� , � ) (k=1, ..., m-1) .k k+1

(Proof: define the distance of � and � ’ , δ(� , � ’) , as the number of pairs (u, v) such
that (u, v)∈� and (v, u)∈ � ’ . Note that if � (� , � ’) , then δ(� , � ’) = 1 . Moreover,
if δ(� , � ’)>0 , u � !v , (v, u)∈� ’ , and � (� , � ") , thenu, v
δ( � ", � ’)=δ(� , � ’)-1 . Assume � , � ’ are compatible with � , and δ(� , � ’)>0 ,
that is, � ≠ � ’ . There must be (u, v) such that u� !v , (v, u)∈� ’ ; otherwise, the
list u � !u � !... � !u enumerating all of N in the order � is also a correct order for1 2 N
� ’ , which then must be the total enumeration of N in the order � ’ , and � ’=� . Take such
(u, v) . Since both � and � ’ are compatible with � , we must have that ¬(u � v) and
¬(v � u) ; thus, for the � ’ for which � (� , � ") , � " is also compatible with � . � " isu
� in the the sequence above; clearly, in fact, m=δ(� , � ’)+1 . )2
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Therefore, it is enough to show (8) when � (� , � ’) ; we assume this now. We have thatu, v
u and v are � -incomparable.

Let u , ..., u be the enumeration of N such that u � u � ��� j<k . Let i be such that1 N j k
u=u ; then v=u .i i+1

We now put together what we have in [3] on a restriction Θ
� � , and what we know from [1]

about a PPS such as Θ
� � whose backbone-order is total.

The molecule Φ=Θ
� � is of the form Φ=(ϕ [u ], ..., ϕ [u ]) , with the already fixed1 1 N N

DEF
indexing u , i=1, ..., N . With any w∈N , we use the notation ϕ =ϕ [w] = ϕ [u ]i w w j j
for the specific j such that w=u .j

The molecule Φ’=Θ
� � ’ = (ϕ’[u’], ..., ϕ’[u’]) has u’=u except for j=i and1 1 N N j j

DEF
j=i+1 ; u’=u =v , u’ =u =u . ϕ’=ϕ’[w] = ϕ’[u’] for j such that u’=w .i i+1 i+1 i w w j j j

We have

w �� wϕ [w] = Θ 〈 � 〉[w] = Θ 〈 � 〉[w] ; (10.1)w

w w� �
(we have dropped { , } in Θ 〈 � 〉[{w}] ); here, the � -cut � =(U, L) is the one for�

wwhich z∈U � ��� z� w , z∈L � ��� z� w ; and � =(V, M) has z∈V � ��� z� w , z∈M � ��� z� w .= =
Similarly,

w �� wϕ’[w] = Θ 〈 � ’ 〉[w] = Θ 〈 � ’ 〉[w] (10.2)w

w �� wwith the appropriate meaning for the cuts � ’ , � ’ .

w w � �� � w wClearly, � = � ’ and � = � ’ unless w=u or w=v . Therefore,

ϕ’[w]=ϕ [w] unless w=u or w=v . (11)w w

u � v �� v � uLet us denote � = � by C=(U, L) , � ’ = � ’ by D=(V, M) . They are both � -cuts.
To repeat, we have

U = {x:x� u} = {x:x� v} ,=
V = {x:x � ’v} = {x:x� ’u} ,=
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L = {y:y� v} = {y:y� u} ,=
M = {y:y � ’v} = {y:y� ’u} .=

C and D are obtained from each other by "switching" u and v :

V = U -{u} ∪ {v} , M = L -{v} ∪ {u} ,
U = V -{v} ∪ {u} , L = M -{u} ∪ {v} .

u and v are on the border of both C and D .

By (10.1) and (10.2),

ϕ [u] = Θ 〈C 〉[u] , ϕ [v] = Θ 〈C 〉[u] ,u v

ϕ’[v] = Θ 〈D 〉[v] , ϕ’[u] = Θ 〈D 〉[u] .v u

Let S be a span (maximal � -antichain in N ) such that S is a subset of the border of C ,�
and S contains both u and v (see section 3). Let S be the signed span with underlying� �
span S that defines C : S=S∩U , S=S∩L . Of course, u∈S , v∈S . We have (see section� �
3)

⋅x∈U � ����� x∈S � ∃s∈S. x � s�
� ⋅x∈L � ����� x∈S � ∃s∈S. x � s .

� � ��� � �
Let us "switch" S to S’ by putting S’ = S-{u}∪{v} , S’ = S-{v}∪{u} ; S’ is a��� �

� �
signed span with the same underlying span S ; S and S’ are identical except on u and
v , on which they are of opposite signs.

When we take the definition of the cut C’=(U’, L’) defined by S’ , we see that we get
C’=D :

⋅x∈V � ����� x∈S’ � ∃s∈S. x � s�
� ⋅y∈M � ����� y∈S’ � ∃s∈S. y � s .

The definitions tell us that

� �
S � S �

ϕ [u] = Θ 〈S 〉[∂ w/w] , ϕ [v] = Θ 〈S 〉[∂ w/w] , (12.1)u w∈S-{u} v w∈S-{v}
� �
S’ � S’ �

ϕ’[v] = Θ 〈S 〉[∂ w/w] , ϕ’[u] = Θ 〈S 〉[∂ w/w] . (12.2)v w∈S-{v} u w∈S-{u}

Consider the frame Θ 〈S 〉 . We have an n-molecule Ψ=(ψ [x ], ..., ψ [x ]) such1 1 M M

118



�
that Θ 〈S 〉 =

�
Ψ � ; for every s∈S , s occurs as x for exactly one p ; andp� �

{x , ...x }∩N=S . In particular, we have unique q and r in {1, ..., M} such that1 M� �
x =u , x =v .q r

We have two cases to distinguish: q<r or r<q ; the two, however, are mirror images of
each other; thus we may assume q<r .

We have the n-atoms

�
ρ[u] = ψ [x ] ,q q�
σ[v] = ψ [x ]r r

and the n-pd's

Λ = ψ [x ] ⋅.. ⋅ ψ [x ] ,1 1 1 q-1 q-1
Λ = ψ [w ] ⋅.. ⋅ ψ [w ] ,2 q+1 q+1 r-1 r-1
Λ = ψ [w ] ⋅.. ⋅ ψ [w ] ;3 r+1 r+1 M M

of course, any of the latter may be equal to an identity n-cell. Thus,

� �
Θ 〈S 〉 = Λ ⋅ ρ[u] ⋅ Λ ⋅ σ[v] ⋅ Λ .1 2 3

� �
u and v do not occur in the n-pd's Λ , Λ and Λ . Let, for i=1, 2, 3 ,1 2 3

� �
�

S � S’ �
Λ = Λ [∂ w/w] = Λ [∂ w/w] .i i w∈S-{u, v} i w∈S-{u, v}

� � � �
S S S’ S’Then, by (12.1) and (12.2), since ∂ u=cu , ∂ v=dv , ∂ u=du , ∂ v=cv , we have

� � � � � �

ϕ [u] = Λ ⋅ ρ[u] ⋅ Λ ⋅ σ[dv] ⋅ Λ , ϕ [v] = Λ ⋅ ρ[cu] ⋅ Λ ⋅ σ[v] ⋅ Λ ,u 1 2 3 v 1 2 3

� � � � � �

ϕ’[v] = Λ ⋅ ρ[du] ⋅ Λ ⋅ σ[v] ⋅ Λ , ϕ’[u] = Λ ⋅ ρ[u] ⋅ Λ ⋅ σ[cv] ⋅ Λ .v 1 2 3 u 1 2 3

DEF DEF� � � � �

Let α = Λ ⋅ ρ[u] ⋅ Λ , and β = σ[v] ⋅ Λ . Then dα = Λ ⋅ ρ[du] ⋅ Λ , and1 2 3 1 2
similar equalities hold for cα , dβ , cβ . We obtain that

ϕ [u] = α ⋅dβ , ϕ [v] = cα ⋅ β , ϕ’[v] = dα ⋅ β , ϕ’[u] = α ⋅cβ ,u v v u

and the equality
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ϕ [u] ⋅ ϕ [v] = ϕ’[v] ⋅ ϕ’[u] (13)u v v u

becomes an instance of the commutative law

(α ⋅dβ) ⋅(cα ⋅ β) = (dα ⋅ β) ⋅(α ⋅cβ) (14)

(whose precondition, ccα =ddβ , holds as a consequence of the fact that the two sides of the
equality (14) are known to be well-defined).

(11) and (13) tell us that
�
Φ � = � Φ’ � , and therefore that (8?) is indeed true.

This completes the proof of 9.3(i).

9.3(ii) and (iii) are consequences of (i). 9.3(iv) is obvious.

(Constructions of PPS's, continued)

[4] Slices of a PPS

There is another way of restricting any given (n+1)-PPS Θ=(Y, N, � , Θ 〈S 〉) , this time toS
the slice of a slicing (C , C ) of (N, � ) (see "Convex sets" in section 3). The result1 2
depends not only on the slice, however, but also on the slicing itself. The result is called the
(C , C )-slice of Θ , and it is denoted Θ

�
(C , C ) . The set of (n+1)-indets of1 2 1 2

Θ
�
(C , C ) will, as expected, be the slice P(C , C ) of (N, � ) .1 2 1 2

As particular cases of the construction, we will be able to restrict Θ to any upward closed set
U , and to any downward closed set L ; letting C=(U, L) , C =(∅,N) ,min
C =(N,∅) , we will have Θ

�
U=Θ

�
(C , C) , Θ

�
L=Θ

�
(C, C ) .max min max

Let (C , C ) be a slicing in (N, � ) , P=P(C , C )=L ∩U the corresponding slice.1 2 1 2 1 2

� � �
Let R be a maximal antichain in (P, �

�
P) . Let D=(V, M) be any cut in (P, �

�
P) such� � � ⋅ �that R⊆E=B[D] ; any two such D are ≡ (mod R) in (P, �

�
P) . Define V=U ∪V ,1� ⋅ ⋅M=M∪L . Then V is up-closed, M is down-closed in N , and V∪M=N ; D=(V, M) is a cut2

in (N, � ) . Any two such D obtained from R are ≡ (mod R) in (N, � ) .

R is a subset of E=B[D] ; indeed, if u � r∈R , then we must have u∈V , and if v � r∈R ,
then v∈M . Therefore, the expression Θ 〈D 〉[R] is well-defined.

Abbreviating Ψ=Θ
�
(C , C ) , we define1 2

DEF
Ψ 〈R 〉 = Θ 〈D 〉[R] .

In this formula, D is determined up to ≡ (mod R) ; therefore, Ψ 〈R 〉 is unambiguously
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defined.

� �
As to the matching equality, let R and R be two signed � -spans in (P, �

�
P) with1 2� � �

respective underlying spans R and R , R and R defining the same cut D in1 2 1 2� � � �
(P, �

�
P) , and let Q=R ∩R . Let S and S be signed spans containing R and R ,1 2 1 2 1 2�

respectively, defining D , where D is derived from D as above. Then

� �
R R� i � � i �

Ψ 〈R 〉[Q] = Ψ 〈R 〉[∂ u/u] = Θ 〈S 〉[R][∂ u/u] =i i u∈R -Q i u∈R -Qi i� � �
S R S� i � i � � i �

= Θ 〈S 〉[∂ v/v] [∂ u/u] = Θ 〈S 〉[∂ v/v]i v∈S -R u∈R -Q i v∈S -Qi i i�

� �
R Si i∂ u=∂ u�

= Θ 〈S 〉[Q] = Θ 〈D 〉[Q] ,i

independently from i=1, 2 . This shows what we want.

Furthermore, we have the following expected equalities:

(Θ
�
U )

�
U = Θ

�
U ,2 1 1

(Θ
�
L )

�
L = Θ

�
L ,1 2 2

Θ
�
(C , C ) = (Θ

�
U )

�
(L ∩U ) = (Θ

�
L )

�
(L ∩U )1 2 2 1 2 1 1 2

( L ∩U is up-closed in U , down-closed in L . However, as we said, it is not possible to1 2 2 1
write Θ

�
(L ∩U ) , since for a general convex set P , Θ

�
P is not defined unambiguously);1 2

(Θ
� � ) �

(C , C ) = (Θ
�
(C , C ))

�
(� �

(L ∩U ))1 2 1 2 1 2
where � ⊇ � , and C ≤C are cuts for (N, � ) (and, hence, for (N, � ) as well).1 2

Moreover,

d
�
Θ

�
(C , C ) � = Θ 〈C 〉 ,1 2 1

c
�
Θ

�
(C , C ) � = Θ 〈C 〉 ,1 2 2�

Θ � = � Θ �
U � ⋅

�
Θ

�
L � (15.1)

( (U, L) is a cut in (N, � ) )�
Θ � = � Θ �

U � ⋅
�
Θ

�
(C , C ) � ⋅

�
Θ

�
L �1 1 2 2�

Θ � =Θ 〈 ∅ 〉 when N=∅ ; (15.2)��
Θ � =Θ 〈{u} 〉[u/u] when N={u} . (15.3)
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9.4 Proposition Under the indicated definitions of Θ
�
U , Θ

�
L ( U upclosed, L

downclosed), but with the definition of
�
- � for PPS's removed, the equalities (15.1), (15.2),

(15.3) define a unique evaluation operation Θ � 	 � Θ � from (n+1)-PPS's to (n+1)-pds.

[5] Substitution of PPS's

The most interesting construction of a new PPS is by substituting one into another.

Let Θ=(Y, N, � , Θ 〈S 〉) be an (n+1)-PPS; Ψ=(Y, P, � , Ψ 〈R 〉)S � -span R � -span
another one. Let u∈N be a particular indet; we are going to substitute Ψ for u in Θ . We
assume the framing condition: d

�
Ψ � =du , c � Ψ � =cu (for d

�
Ψ � and c

�
Ψ � , see 9.3(ii)

and 9.3(iii)).

We will define the PPS Ξ=Θ[Ψ/u] = (Y, Q, ��� , Ξ 〈Q 〉) .Q ��� -span

DEF ⋅Q = N-{u} ∪ P ; we are assuming that N and P are disjoint.

For v∈Q , x∈Q :

(v, x)∈ ��� � ����� v, x∈N-{u} & v � x
� v, x∈P & v ��� x
� v∈N-{u} & x∈P & v � u (!)
v∈P & x∈N-{u} & u � x .

In other words, two elements of N-{u} are related in ��� as they are in � ; two elements
of P as they are in � ; and an element of N-{u} and another one of P are related as the
first is related to the fixed "slot" u in � . It is clear that ��� is a partial order on Q .

As for cuts, we have a similar "substitutional" situation. A cut C=(U, L) of (Q, ��� ) may
be of two kinds. A cut C=(U, L) of (Q, ��� ) , is given as follows:

⋅either there is a cut D=(V, M) of (N, � ) and we have u∈V & U=(V-{u})∪P &
⋅L=M or u∈M & U=V & L=(M-{u})∪P [" C does not cut through P "]

or there are: a cut D=(V, M) of (N, � ) and a cut E=(W, N) of (P, � ) such that
⋅ ⋅u belongs to the border B of D , and we have U=(V-{u})∪W , L=(M-{u})∪N . (The

two cases are not exclusive of each other: the one as in the first case is obtained in the second
case only if u∈B ; in that case, we take W=∅ when u∈M , and N=∅ when u∈V .)

Similarly, a span S of (Q, ��� ) is either a span in (N, � ) such that u∉S (case 1) or
⋅ ⋅S=Q∪R , where Q∪{u} is a span in (N, � ) , and R is a span in (P, � ) (case 2).

DEF DEF ⋅ �
In case 1, Ξ 〈S 〉 = Θ 〈S 〉 ; in case 2 , Ξ 〈S 〉 = Θ 〈Q∪{u} 〉[Λ 〈R 〉/u] .

9.5 Proposition The substitution operation is well-defined. Moreover,�
Θ[Ψ/u] � = �

Θ � [ � Ψ � /u] .
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The proof is left to the reader.

The name "pasting scheme" should be given to a pasting prescheme Θ only when Θ is
"complete" in some sense. Let me say that a pasting prescheme Θ is complete, and that is a
pasting scheme, if every molecule Φ which represents the value of Θ ,

�
Φ � = � Θ � , appears as

one of the restrictions Θ
� � , for a total order � extending the backbone order � of Θ .

(Note that since � is the order of indeterminates in Θ
� � , for two different � and � ’ ,

Θ
� � and Θ

� � ’ are different; there can be at most one � such that Θ
� � is a given Φ .)

A pd is displayable if there is a pasting scheme, a display of the pd, defining it; I don't know if
the display is necessarily unique if it exists.

Note that, in particular, a top-separated pd Θ can be displayable only if Γ has unique
factorization (see section 2).

Let us call the PPS Ψ an expansion of the PPS Θ if Θ is a restriction of Ψ : Θ=Ψ
�
� ,

where � is the backbone order of Θ ; Ψ is a proper expansion of Θ is Ψ≠Θ , that is
��� ⊂ � , where ��� is the backbone order of Ψ .≠

Let us write Θ � Ψ to indicate that Ψ is a proper expansion of Θ .

Let's call a PPS Θ maximal if it has no proper expansion.

Note that "complete" implies "maximal", or, what is the same, "non-maximal" implies
"non-complete": if ��� ⊂ � , then there is at least one total extension � of ��� , which is not≠
total extension of � , giving rise to a molecule representing

�
Ψ � which is not among the

restrictions of Θ .

It is a triviality that every pd has at least one maximal PPS representing it: a chain of PPS's
Θ � Θ � ... � Θ � ... induces a strictly decreasing sequence of partial orders1 2 k
� ⊃ � ⊃ ... ⊃ � ⊃ ... on the fixed finite set N .1 2 k

The top-separated 2-pd ρ ⋅ σ of the Example after item (vii) in section 4 cannot be
displayable, since it is not uniquely factorable. In particular, "maximal" for PPS's does not in
general imply "complete".

9.6 Proposition (i) For Θ a complete PPS, every slice Θ
�
(C , C ) is1 2

complete.

(ii) A displayable pd has strong unique factorization.

Proof (i): Let
�
Φ � = � Θ �

(C , C ) � , and let Φ , Φ be molecules such that1 2 1 2�
Φ � = � Θ �

U � ,
�
Φ � = � Θ �

U � . Then for the molecule Ψ=Φ ^Φ^Φ ,
�
Φ � = � Θ � . By1 1 2 2 1 2

the completeness of Θ , there is � such that Θ
� � =Φ . Then

Φ = Ψ
�
(C , C ) = (Θ

� � ) �
(C , C ) = (Θ

�
(C , C ))

�
(� �

P) ,1 2 1 2 1 2
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where P=L ∩U . This completes the proof.1 2

DEF DEF
(ii): Suppose Γ =

�
Φ � ⋅

�
Ψ � , U = [Φ] , L = [Ψ] . Let � =< . Since ΘΦ^Ψ

is complete, as the backbone order of the molecule Φ^Ψ defining Γ , � is compatible with
the backbone order (N, � ) of Θ , in particular, C=(U, L) is a cut for (N, � ) and for
(N, � ) ; and Θ

� � =Φ^Ψ . It follows that

Φ = (Θ
� � ) �

U = (Θ
�
U)

�
(� �

U) ,
�
Φ � = �

(Θ
�
U)

�
( � �

U) � = �
(Θ

�
U) � ,

the last equality being the definition of
�
(Θ

�
U) � , the main point being that�

(Θ
�
U)

�
(� �

U) � does not depend on � �
U (9.3).

We have shown that in a factorization Γ =
�
Φ � ⋅

�
Ψ � ,

�
Φ � depends only on the set [Φ] .

Similar statement holds for Ψ . This completes the proof.
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§10. Final arguments

We first discuss the possibilities of a converse of the construction [2] in section 9: getting a
planar prescheme out of a 2-PPS.

A 2-dimensional pasting prescheme does not necessarily arise from a planar one, since not
every partial order

�
of N can be made into a planar arrangement (N,

�
, ��� ) , and, on the

other hand, by restriction, any
�

will appear as the backbone order of a 2-PPS.

Given 2-PPS Θ=(Y, N,
�

, Θ 〈S 〉) . Let S be any span; then Θ 〈S 〉 is of theS
�
-span

form

u u u� ∞ � 1 � m-1 � mΘ 〈S 〉 :=: S ⋅u ⋅S ⋅u ⋅... ⋅S ⋅u ⋅S (1)u 1 u 2 u k ∞1 2 m

vfor some, distinct, elements u of N , and 1-pd's S in the computad Y ; every item in (1)i w
is uniquely determined from Θ 〈S 〉 itself; we have that 〈u :1≤i≤m 〉 is a resultingi
repetition-free enumeration of S .

We define the relation ��� on N byS

u ��� v ���
	 ∃i, j. i<j & u =u & u =vS i j

with reference to (1) (of course, ��� ⊆ S×S ).S

It is clear that ��� is an irreflexive relation.S

We show that the definition "does not depend on S ":

u, v∈S ∩S �
�
	 (u ��� v ���
	 u ��� v ). (2)1 2 S S1 2

The proof is an argument similar to the one used for 6.1 in section 6.

��� �To do the proof, we consider the expressions Θ 〈C 〉[u, v] , that is, Θ 〈C 〉[R] with
���R={u, v} ; Θ 〈C 〉[u, v] is defined iff u, v∈B (=boundary of the cut C ).

Let us fix u≠v , both in N . Consider the set 
 of cuts C such that u, v∈B(=B[C]) .u, v
DEF ���For C∈ 
 , Θ{C} = Θ 〈C 〉[u, v] will have one of the following two types, type-1 oru, v

type-2:

C � C � CΘ{C}= a ⋅u ⋅a ⋅v ⋅a (3.1)1 2 3
C � C � CΘ{C}= a ⋅v ⋅a ⋅u ⋅a ; (3.2)1 2 3
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of course, only one of the two forms can be present for any one Θ{C} ; and the ingredients
Ca are uniquely determined. Note that (2) will follow if we can show that the type is constanti

throughout 
 ; this is because, while C runs through 
 , the Θ{C} run throughu, v u, v
appropriate substitution instances of Θ 〈S 〉 for all S such that u, v∈S .

We make two observations.

� �

One is that if C, C∈ 
 , C and C are shifts of one another, then they are of the sameu, v
�

Ctype: Θ{C} is obtained from Θ{C} by replacing a consecutive part of one of the a byi
another 1-pd.

Two is that is that if C, D∈ 
 , and ρ(C, D)>0 (for ρ(C, D) , see section 3), then thereu, v
� � � �

is C∈ 
 such that ρ(C, C)=1 ( C is a shift of C ), and ρ(C, D)=ρ(C, D)-1 . (Twou, v
�

is shown by taking w∈µU∩M or w∈νL∩V , and letting C be the w-shift of C ; w is
��

-incomparable to u and v , thus by 9.1.1 for R={w} , C∈ 
 ).u, v

The desired assertion follows by induction.

We can thus define, for u, v∈N ,

u ��� v ���
	 ∃S.u ��� v ���
	 ∀S(u, v∈S�
	 u ��� v) . (4)S S

10.1 The 2-dimensional PPS Θ arises from a planar pasting prescheme if and only the
relation ��� defined in (4) is transitive.

Sketch of proof Assume that ��� is transitive.

It is clear that for any u≠v in N , exactly one of the relations u
�
v , v

�
u , u ��� v , v ��� u

holds. (N,
�

, �
� ) is a planar arrangement.

For any span S , in the expression (1) for Θ 〈S 〉 , we have that i<j implies u ��� u .i j
Since S is a maximal

�
-antichain, we also have u ��� !u and -∞ ��� !u , u ��� !∞i i+1 1 m

in the obvious senses. Thus, (1) is the same as (6) in section 9, except that we should see that,
vin (1), the expressions S for v ��� !w , now allowing also v=-∞ , w=∞ , are independent ofw

S .

More generally (but actually, equivalently), we need the following (we assume that v≠-∞ ,
w≠∞ in the formulation given next; but we need suitable versions with v=� ∞ and/or w=∞ ,
which we leave to the reader to formulate) :

given an closed interval [v, w] (see section 3: we now do have a planar���
arrangement, thus we can use what we know about such) , a maximal span
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v RR={v=u ��� !u ��� !... ��� !u =w} in [v, w] , there is a 1-pd [S ] of the form1 2 k ��� w

u uv R � 1 � � k-1 �[S ] = u ⋅S ⋅u ⋅... ⋅u ⋅S ⋅u (5)w 1 u 2 k-1 u k2 k

xwith each S a 1-pd in Y , such that for every C∈ 
 ={C:R⊆B[C]} ,y R

� C v R CΘ 〈C 〉[R] = b ⋅[S ] ⋅b (6)1 w 2

C Cfor suitable b , b ∈Y . This is proved by a similar "continuity" argument as was done1 2
above, as follows.

�Certainly, we do have, for any Θ 〈C 〉[R] , C∈ 
 , a uniquely determined expression of theR
v Rform (6) , with (5) for the middle factor, if we allow the middle factor [S ] and itsw

v R, C v Ringredients in (6) to vary with C∈ 
 : having [S ] instead of [S ] . What we needR w w
v R, C v R, C v R, Dis [S ] is constant; or what is the same, [S ] =[S ] for any C, D∈ 
 .w w w R

We recall 9.1 , 3.4, 3.4'. By 3.4', any C is determined by its restrictions to (� ∞, v) ,���
[v, w] , (w, ∞) ; and these restrictions can be arbitrarily and independently prescribed;��� ���
for brevity, call these restrictions C , C and C , in the given order. Note that1 2 3
C≡D (mod R) iff C =D and C =D . Given any C, D∈ 
 , we can find a connecting1 1 3 3 R
sequence C=C , C , ..., C =D consisting of adjacent pairs C , C of cuts that are1 2

�
i i+1

shifts of each other by an element either in (� ∞, v) , or in (w, ∞) . The desired��� ���
conclusion is now fairly clear.

�Consolidating a practice found in previous parts of this paper, we reserve the notation A[S]
� � �for a n-pd A such that every u∈S occurs in A exactly once. We use S , as before, as a set
�of distinct and "new" n-indets v , one for each v∈S , S a set of (n+1)-indets, such that

� �dv=ddv , cv=ccv .

We will prove two lemmas, 10.2 and 10.3, for the purposes of 10.4 Theorem, which is
intended as the main theorem of the paper.

� �10.2 Suppose S is a finite set of anchored 2-indets, A=A[S] and B=B[S] are
1-pd's such that

127



� �for every u∈S , A[cv/v] = B[cv/v] . (7)v∈S-{u} v∈S-{u}

Then A=B .

Remark This is false without the condition "anchored"; let u and v be two distinct
��� ���2-indets such that cu=du=cv=dv=1 , and let A=u ⋅v , B=v ⋅u .X

Proof of 10.2 By induction on #S . For #S=0 , the assertion is obvious.

Suppose #S≥1 , and

� � �A = A ⋅u ⋅A ⋅u ⋅... ⋅u ⋅A , (8.1)0 1 1 2
� �

+1
� � �B = B ⋅v ⋅B ⋅v ⋅... ⋅v ⋅B . (8.2)0 1 1 2

� �
+1

Suppose u ≠v , to reach a contradiction. We have
�
≥i>1 such that u =v and

�
≥j>11 1 i 1

such that u =v .1 j

Let us write u=u and v=v .1 1
� �Let us make the two substitutions [cx/x] and [cx/x] ; we obtain from (7) :x≠u x≠v

� �A ⋅u ⋅(A ⋅cu ⋅... ⋅cu ⋅A ) = (B ⋅cv ⋅B ⋅... ⋅B ) ⋅u ⋅... ⋅B0 1 2
� �

+1 0 1 j-1
�
+1

and
� �(A ⋅cu ⋅A ⋅... ⋅A ) ⋅v ⋅... ⋅A ) = B ⋅v ⋅(B ⋅cv ⋅...cv ⋅B ) .0 1 i-1

�
+1 0 1 2

� �
+1

� �and thus, since u and v occur only at the places indicated,

A = B ⋅cv ⋅B ⋅... ⋅B , B = A ⋅cu ⋅A ⋅... ⋅A .0 0 1 j-1 0 0 1 i-1

Since cu , cv are non-identity 1-pd's, we got that A and B are proper initial segments0 0
of each other; contradiction.

Returning to (8.1) and (8.2), we now have that u =v =u . Making the substitution1 1
�[cx/x] , from (7) we obtain thatx≠u

A =B (9)0 0

and {u , ..., u } = {v , ..., v } = S’ = S-{u} .2
�

2
�

Let
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� �A’ = A ⋅u ⋅... ⋅u ⋅A ,1 2
� �

+1
� �B’ = B ⋅v ⋅... ⋅v ⋅B .1 2

� �
+1

We see that the condition (7) for S’ , A’ and B’ in place of S , A and B , is a
consequence (7) for S, A, B , by using (9) and cancellation. The induction hypothesis tells us
that A’=B’ ; A=B follows by (9). (End of proof of 10.2)

*10.3 Suppose that Θ and Θ are 2-PPS's both based on the "backbone" (N,
�
) such that

DEF * * *Ξ = � Θ � = � Θ � is an anchored 2-pd. Then Θ≈Θ , that is, Θ 〈S 〉=Θ 〈S 〉 for all
�

-spans
S .

Proof of 10.3 Let Θ=(N,
�

, Θ 〈S 〉) be any PPS. Let u∈N , and � a total order ofS
ΘN extending

�
. The (� , u)-atom of Θ , denoted ϕ (� , u) , is defined to be

Θ 〈C 〉[{u}] , where C=(U, L) is the
�

-cut "modulo {u}" for which v∈U-{u} ���
	 v� u ,
Θ Φv∈L-{u} ���
	 v� u . If Θ ��� is the molecule Φ , then ϕ (� , u) = ϕ [u] , in our earlier

notation for atoms in molecules.

Let's make the assumptions of the lemma.
*Θ ΘSince Ξ has unique factorization (2.1), it follows that ϕ (� , u) = ϕ (� , u) for all u∈N

and total extensions � of
�

.

*Write A=Θ 〈S 〉 , B=Θ 〈S 〉 . Let u∈S . Since S is an
�

-antichain, there is a total order �
of N such that v � u for all v∈S-{u} (take the ordered sum of the following four total
orderings: a total order of the set {x∈N:∃v∈S.x � v} , then one of the set S-{u} , then the
one of the singleton {u} , and finally a total ordering of the set {x∈N:∃v∈S.x � v} ).

*Θ � ΘFor this pair (� , u) , ϕ (� , u) = A[cv/v] , and ϕ (� , u) =v∈S-{u}
�B[cv/v] . By the above, the hypothesis of 10.2 is satisfied, and we have ourv∈S-{u}

desired conclusion. (End of proof of 10.3)

10.4 Theorem (i) Every PPS defining a top-separated anchored 2-Pd can be extended
to a planar pasting prescheme.

(ii) Every PPS defining a top-separated anchored 2-Pd can be extended to a complete
PPS.

(iii) Any top-separated anchored 2-Pd has a unique maximal PPS defining it, and this
PPS is both complete and planar.

Proof This could, probably, be done directly by modifying the proof of 4.2 Theorem.
But, fortunately, there is a shortcut to the result that uses 4.2.

Let Γ be a top-separated anchored 2-Pd.�
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4.2 constructs a planar pasting prescheme pΘ associated with Γ . pΘ gives rise to a PPS Θ�
by the construction [2] in section 9. By definition, the backbone order

�
of pΘ and of Θ is
Γthe intersection of the total orders < associated with all molecules Φ∈G defining Γ ; andΦ

Γ4.2(ii) says that every Φ∈G equals the restriction Θ � < . In other words, Θ is a completeΦ
PPS defining Γ .

* * *Given any PPS Θ defining Γ , for its backbone order
�

, we have
� ⊆ � , since every

* Γ *total extension � of
�

is < for some Φ∈G , namely Φ = Θ ��� , and therefore everyΦ
* *total extension of
�

is a total extension of
�

. Consider the restriction Θ � � . By 10.3, we
* � *must have Θ � � =Γ . We conclude that Θ extends Θ . This proves both (i) and (ii).

*If Θ is a maximal PPS defining Γ , we still have that the given Θ extends it; but then, we
*must have Θ =Θ . This proves (iii).

To deal with the last assertions of section 2, let us start with a complete planar pasting
�prescheme, (N,

�
, ��� ,ddΓ,ccΓ,S) in the notation of 4.2 in section 4, defining the

anchored 2-Pd Γ=(X, Γ) . We use the notation and terminology of section 8, as well as the�
notational conventions put down at the start of section 6: C=(U, L) , D=(V, M) , etc.

All indets and pd's are in the computad X .

Let C be any cut. I claim that

10.5

�
s( � C � ) ⊆ s(dΓ) ∪

� ���
s (cv) . (10)

v∈U

This is seen by induction on the cardinality #U of U as follows.

-∞ CWhen #U=0 , (S ) =dΓ , and the assertion holds.∞
� � �

Let #U>0 . There is C such that C<!C , C is the u-shift of C (see section 3), u∈B ,�
� �

u∈B , #V=#U-1 .

�

Since C and C agree on the open intervals ( � ∞, u) , (u, ∞) , we have��� ���
DEF

�
DEF

�

-∞ C -∞ C u C u CS = (S ) = (S ) , S = (S ) = (S ) .1 u u 2 ∞ ∞

Also,
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�

-∞ C(S ) = S ⋅du ⋅S (11.1)∞ 1 2
-∞ C(S ) = S ⋅cu ⋅S , . (11.2)∞ 1 2

�

By the induction hypothesis, (10) holds for C in place of C ; thus, by (11.1), s(S ) ,1�
s(S ) are subsets of s(dΓ) ∪

� ���
s (cv) . By (11.2),2 �

v∈U=U-{u}

-∞ C �
s((S ) ) = s(S ) ⋅s (cu) ⋅s(S )∞ 1 2

since the the left and right end-0-cells of cu are included in S , resp. S .1 2

(10) for C follows.

The inequality, going in the opposite direction,

-∞ C� ���
s(cu) ⊆ s((S ) ) , (12)∞u∈B�

follows (11.2) being true, with suitable 1-pd's S and S , for any u∈B .1 2 �

More generally, with the same proof, we have

10.5' If D<C then

�
� D � ⊆ � C � ∪

� ���
s (cw) . (12')

w∈U-V

Now, assume that Γ is separated.

�
10.5" For any cut C=(U, L) , v∈L , we have s (cv)∩ � C � =∅ .

This is immediate from 10.5, and the definition of "separated".

Take two different cuts C and D . There is v such that either v∈U∩M or v∈V∩L .
Assume, for instance, the first alternative. Take u∈B=µU such that v

�
u . Then, of course,�

u∈B∩M .�

�
Remember (item (3) in section 8) that the sets s(dΓ) , s (cx) (x∈N) are pairwise
disjoint.
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�
Since Γ is anchored, the set s (cu) is non-empty.

� -∞ CBy (12), s (cu) is a subset of s((S ) ) ; and the same set is disjoint from∞
-∞ Ds((S ) ) by (10) applied to D in place of C . We conclude∞

-∞ C10.6 (Γ is anchored and separated) The mapping C � � (S ) , from cuts to 1-pd's is∞
-∞ Cone-to-one. In fact, the mapping C � � s((S ) ) from cuts to sets of 0- and 1-cells is∞

one-to-one.

-∞ CThe 1-pd's in X of the form (S ) , C∈ 
 , are called the 1-cuts of Γ .∞ �

A 1-pd a being 1-separated has been defined; it is the same as being top-separated. It means
that, a being the composite of the 1-pd's r 's as ini

r r r r1 2 3 m-1X ��������� � X ��������� � X ��������� � ... ������� �
� � � X , (13)1 2 3 m

that the r are pairwise distinct, without saying anything about the zero-cells.i

s (a) denotes the set supp(a)∩ � X � .1 1

10.7 (i) In a separated anchored 2-Pd Γ , all 1-cuts are 1-separated.

(ii) In a separated positive 2-Pd Γ , all 1-cuts are separated.

-∞ CProof (i) Let C=(U, L)∈ 
 , a=(S ) . If U=∅ , the assertion is true by the∞
definition of Γ being separated. We prove the assertion by induction on #U , the base case
#U=0 having been handled.

�

Assume U≠∅ , and let u∈µU=B . Let us shift u "down", to get the cut C . Then, with�
� �

-∞ C -∞ C u C u CS =(S ) =(S ) , S =(S ) =(S ) , we have1 u u 2 ∞ ∞

-∞ C� C � =(S ) = S ⋅cu ⋅S ,∞ 1 2
�

�
-∞ C� C � =(S ) = S ⋅du ⋅S .∞ 1 2
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� � �
We know that s � C � ⊆ s(dΓ) ∪

� ���
s (cv) . Therefore, s (cu)⊆s (cu) is1�

v∈U=U-{u}
�

disjoint from both s (S ) and s (S ) . By the induction hypothesis, � C � is1 1 1 2
1-separated; hence, both S and S are 1-separated, and s (S ) , s (S ) are disjoint.1 2 1 1 1 2
From the expression for � C � , it now follows that � C � is 1-separated.

�

(ii) The proof for (i) is to be repeated, with the following addition: since � C � is
separated, and du is not an identity, we have that ddu≠ccu . This is enough to conclude

�

that, given that � C � is separated, so is � C � .

10.8 Let ρ=ρ[u] , σ=σ[v] be 1-atoms, and assume that ρ ⋅ σ is well-defined. Assume
DEF

that cu , dv are proper (not identities), and that ρ � σ = cρ=dσ is 1-separated.

Then ρ � � � σ (see section 2, after item 2.1) if and only if

s (cu)∩s (dv)=∅ . (14)1 1

Proof "If": Assume (14), to show ρ � � � σ .

� �
Let ρ � σ be displayed in (13); the r 's are distinct. Let ρ=b ⋅u ⋅e , σ=b ⋅v ⋅e .i

We have ρ � σ = cρ = b ⋅cu ⋅e ; since cu is proper, there are 1≤i≤j≤N such that
cu=r ⋅... ⋅r . Similarly, we have 1≤k≤

�
≤N such that dv=r ⋅... ⋅r . Clearly, (14)i j k

�

iff either j<k (case 1), or
�
<i (case 2). In the first case, let S=r ⋅... ⋅r (whenj+1 k-1

k=j+1 , S=id ); we have now the condition 4.1(i) with S as given; thus, ρ ��� σ . TheXk
second case gives σ ��� ρ .

"Only if": Clear from the "moreover" part of 4.1(i).

a , b denote 1-pd's.

The 1-pd a is a part of the 1-pd b if b=b ⋅a ⋅b for suitable b and b ; notation:1 2 1 2
a⊆b . If b is separated and a⊆b , then a is separated. If both a and b are separated,
then a⊆b iff s(a)⊆s(b) . If b is separated, a⊆b and db,cb∈s(a) , then a=b .

From now on, we assume that Γ=(X, Γ) is positive and separated. All indets and pd's are in�
X -- unless stated otherwise. With Y=X � ≤1 , Θ=(Y, N,

�
, Θ 〈S 〉) denotes the completeS

PPS displaying Γ ; we know Θ is planar.�
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10.9 Let C=(U, L) be any cut in (N,
�
) , B its border, x∈N . Then x∈B iff�

�cx⊆ � C � , and x∈B iff dx⊆ � C � .

Proof The "only if" assertions are obvious.

We show that if u∈U-B , then ¬(cx⊆ � C � ) .�

Assume u∈U-B . There is v∈U such that u
�
!v . By 4.3(v), let Φ be such that u

�
!v� Φ

Φ Φand ¬(u � � � v) ; that is, for ρ=ϕ [u] , σ=ϕ [v] , we have ¬(ρ � � � σ) . By 10.8, weΦ
have s (cu)∩s (dv)≠∅ .1 1

Let f∈s (cu)∩s (dv) . Let the cut D=(V, M) be defined by V={w:w � v} . We have1 1 =
u, v∈V and D<C .

�

I claim that f∉s( � D � ) . Namely, for D obtained from D by shifting v down,
� �

� D � = d ⋅dv ⋅d ; and � D � = d ⋅cv ⋅d with the same d and d . But � D � is1 2 1 2 1 2
separated (10.4); in particular, s (dv) is disjoint from s (d )∪s (d ) . Therefore,1 1 1 1 2
since f∈s(dv) , we have f∉s(d )∪s(d ) . Also, s (cv) is disjoint from s (dv) . It1 2 1 1
follows that f∉s( � D � ) .

Since D<C , we have the relation (12') (10.5'). For all w∈V-U , w≠u (since u∈V ) and so� �
s (cw) , s (cu) are disjoint; f∈s(cu) and f∉s(cw). It follows that f∉ � C � . We
have shown that ¬(cx⊆ � C � ) .

�Similarly, v∈L-B implies that ¬(dx⊆ � C � ) .

Assume that cu⊆ � C � . u∈L would imply s (cu)∩ � C � =0 (see 10.5), which, since1
s (cu)≠∅ , contradicts cu⊆ � C � . Thus, u∈U . But then u∈B , since u∈U-B would imply1 � �
¬(cu⊆ � C � ) .

10.10 Every 1-pd is a part of a 1-cut.

Proof By induction of N=#N , the number of 2-indets in Γ .

The assertion is clear when N=0 .

Assume N>0 , and let x∈N be
�

-maximal (lowest): no v∈N such that x
�
v . Consider the

� ��
-cut C=(U, L) for which L={x} , U=N-{x} , and consider the restrictions Γ � U , Γ � L

� � �(see [4] in section 9). Let Λ= � Γ � U � , ϕ=Γ � L � ; ϕ is an atom ϕ[x] , and [Λ]=U . Γ � U
�is a complete PPS (see section 9); thus, by 10.4, Γ � U is the unique planar complete PPS

displaying Λ . Thus, we can apply the induction hypothesis to Λ (having one fewer 2-indets
�than Γ ) and Γ � U the "display" PPS given by 4.2 for Λ .
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�With X'=supp(Γ � U) , we have the Pd Λ=(X’, Λ) and the fact that � X � =� ≤1
⋅ �

� X' � ∪ s (cx) (by 8.(2) and separation). Therefore,≤1
�

(15) for any X∈s (cx) , if a 1-indet f in X is incident on X ( X=df or0
X=cf ) , then f∈s (cx) .1

Let a be a 1-pd in X . We distinguish two cases. Case 1: s (a)∩s (cx)≠∅ , Case 2:1 1
otherwise.

We treat Case 1, and leave the similar Case 2 to the reader.

Assume Case 1.

It follows from (15) that there is a unique 1-pd b such that s (b)=s (a)∩s (cx) ;1 1 1
moreover, b is a part of both of cx and a . b may be denoted as cx∩a . b is
proper (not an identity 1-cell).

Let us write cx in the form (13).

Consider the following four mutually exclusive and jointly exhaustive cases:

Case 1.1: b is a proper initial segment

r r1 k-1X ��������� � ... ������� �
� � � X1 k

of cx ( 1<k<m );

Case 1.2: b is a proper end segment
r ri m-1X ��������� � ... ������� �
� � � Xi m

of cx ( 1<i<m );

Case 1.3: b = cx ;

Case 1.4: r ∉s(b) , r ∉s(b) .1 m-1

In case 1.1 , we must have that ca=cb=X , since there cannot be any f∈s (a) withk 1
df=X . Therefore, with a’ the initial segment of a ending in X ( a’ is possiblyk 1

�

improper), the 1-pd a=a’^dx is well-formed, and it is in X’ . The induction hypothesis for
Λ in place of Γ says that there is a cut C’=(U’, L’) of (N’,

�
’)=(N-{x},

� � U) such
�

that a is a part of � C’ � .

� � � � � ⋅Form the cut C=(U, L) of (N,
�
) for which U=U’ , L=L’∪{x} ; by the choice of x ,

� � �

C is a cut. Let B be the border of C .
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� �
Since dx is a part of � C � , we must have that x∈B (10.9). Therefore, we can shift x up,

� ⋅ �

and form the cut D=(V, M) for which V=U∪{x} , M=L-{x} = L’ . It is clear that
a=a’^b is a part of � D � .

Case 1.2 is similar to case 1.

Case 1.3: we now have that a=a ^cx^a , with a and a possibly improper; we can1 2 1 2
�

pass to a=a ^dx^a , a 1-pd in X’ . From here, we proceed similarly to case 1.1.1 2

Case 1.4: In this case we must have that a=b⊆cx . a⊆ � C � for the cut C=(U, L) for which
U=N , L=∅ , since x∈B for B the border of C .�

The proof is complete.

A long 1-pd is one whose domain is ddΓ , codomain is ccΓ . Every 1-cut is long. As a
consequence of the above, we have

10.11 The mapping C � � � C � is a bijection from cuts to long 1-pd's.

� �
For any separated 1-pd a , a part b⊆a , and another 1-pd b parallel, we can substitute b� � �
for b in a , and get the 1-pd a[b/b] : if a=a ⋅b ⋅a , then a[b/b] = a ⋅b ⋅a .1 2 1 2
Note that, without the assumption of separatedness of a , the substitution notation would not
be sound, since it would not necessarily be unambiguous.

This notation will be used in three ways.

On the one hand, as a simple general formula valid for any atoms ψ[w] ,

cψ = (dψ)[cw/dw] (16)

for all i=1, ..., m .

On the other hand, if C<!D are
�

-cuts, and D is obtained by shifting u up, then

� D � = � C � [cu/du] . (17)

(Write

-∞ C C u C -∞ C u C� C � = (S ) ⋅ ∂ u ⋅(S ) = (S ) ⋅du ⋅(S ) ;u ∞ u ∞

and

-∞ D D u D -∞ D u D� D � = (S ) ⋅ ∂ u ⋅(S ) = (S ) ⋅cu ⋅(S ) ,u ∞ u ∞
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-∞ C -∞ D u C u Dand note that (S ) =(S ) , (S ) =(S ) ; this makes (17) clear.)u u ∞ ∞

The third use is an extension: it is up-substitution. Given separated 1-pd a . a part b⊆a , and
a 2-pd Λ such that ddΛ=db , ccΛ=cb ( Λ is "parallel" to b ), we can write a[Λ/b]
for a ⋅ Λ ⋅a , where a=a ⋅b ⋅a .1 2 1 2

This substitution operation has certain obvious properties, which are best mentioned if at all
when they are used.

If 2-pd's Γ and Λ are in the relationship that Γ=b ⋅ Λ ⋅e for suitable (and obviously unique)
1-pd's b and e , we say (somewhat temporarily ...) that Λ is a truncation of Γ . Two
2-pd's are truncation equivalent if there is a third one which is a truncation of both; note that
any 2-pd has a unique "smallest" truncation that has no truncation other than itself; "truncation
equivalent" is the equivalence relation generated by "being a truncation of".

Recall the "slices" of subsection [4] of section 9. A slice of a PPS Θ is another PPS,
Θ � (C , C ) , for suitable data C , C . Given an anchored, and in fact here positive, 2-pd1 2 1 2
Γ , a slice of Γ is the 2-pd which is the value of a slice of the complete PPS displaying Γ .
More formally, a slice of Γ is � Θ � (C , C ) � , for Θ the complete planar pasting1 2
prescheme displaying Γ (10.4) and for any pair C ≤C of cuts of the underlying backbone1 2
order (N,

�
) of Θ .

10.12 ( Γ=(X, Γ) positive separated 2-Pd). Let Λ be any 2-pd in X .�
(i) Λ is separated.
(ii) Λ is the truncation of a slice of Γ .�
(iii) [Λ] (the set of 2-indets in Λ ) is a

�
-convex subset of N = [Γ] .

(iv) Every
�

-convex subset P of N is the set of 2-indets of some 2-pd in X ; there
is a 2-pd Λ such that [Λ]=P ; every convex P is "composable" (in this new sense being
introduced now).

(v) If P is a horizontally full convex set, then, up to truncation equivalence, there is a
unique 2-pd Λ such that [Λ]=P ; every horizontally full convex set of 2--indets is "uniquely
composable" (in this new and restricted sense being introduced now).

Proof of 10.12 Let Λ be any 2-pd in X . Λ is represented by a molecule

Ψ = (ψ [w ], ..., ψ [w ]) .1 1 m m

At the moment, we are not even assuming that Ψ is top-separated, although it will soon
transpire that in fact Ψ must be separated.

Consider dΛ , cΛ ; let X=ddΛ , Y=ccΛ . By 10.10, there is a (non-unique)
�

-cut C such
that

� C � =b ⋅dΛ ⋅e (18)

for suitable 1-pd's b and e ; we fix C . As usual, we write C=(U, L) , B the border of
C .
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� C � being separated (10.7), b and e are uniquely determined by the relation (18) as the
(X, Y)-segment of � C � , where cb=X and de=Y .

As a part of the separated 1-pd � C � , dΛ is separated.

dw is a part of dΛ=dψ . We have1 1

dψ = cψ = (dψ )[cw /dw ] . (19)2 1 1 1 1

�Being a part of dΛ , dw is a part of � C � . By 10.9, w ∈B . By shifting w , we obtain1 1 1
from C=C the cut C . We have1 2

� C � = � C � [cw /dw ] . (20)2 1 1 1

�
Since Γ is separated, s (cw ) is disjoint from s � C � (10.5"), and a fortiori, from1 1� �
s (dΛ) = s (dψ ) .1

(18) says

� C � = b ⋅dψ ⋅e (21)1 1

By (21), (20) and cψ =dψ ,1 2

� C � = b ⋅dψ ⋅e (22) .2 2

What we have seen so far is the beginning of an obvious induction. By induction, we prove
that

(**) there are cuts C , ..., C , such that, for all i=1, ..., m , C is obtained1 m+1 i+1
from C by shifting w up .i i

Of course, there can be at most one the sequence C , ..., C as described; only the1 m+1
existence is a question. We add the relation

b ⋅cψ ⋅e ( i=2,...,m+1 )i-1� C � = (23)i b ⋅dψ ⋅e ( i=1, ..., m )i

to the inductively proved properties of the C .i

Suppose
�
≤m , and the above has been established for i≤

�
.
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dw is a part of dψ , and, by (23) for i=
�

, dψ is a part of � C � . Thus, dw is a� � � � �

�part of � C � . It follows (10.9) that w ∈B . In particular, w ≠w for i<
�

since� � � �
i

w ∈U .i
�

-w ∈B says that we can shift w up and obtain the cut C from C . By (17), we have� � � �
+1

�

� C � = � C � [cw /dw ] . (24)�
+1

� � �

Therefore,

� C � = � C � [cw /dw ] = (b ⋅dψ ⋅e)[cw /dw ] = b ⋅dψ [cw /dw ] ⋅e =�
+1

� � � � � �
i

� �
�

� �

(24)
(23)(i=

�
) dw ⊆dψ� �

= b ⋅cψ ⋅e = b ⋅dψ ⋅e ,� �
+1� �

(16) dψ =cψ if
�
<m�

+1
�

which is (23) for i=
�
+1 . The induction for (**) is complete.

�
Let i∈{1, ..., m} . By 10.5", s (cw ) is disjoint from s( � C � ) , since w ∈L . Sincei i�
dΛ is a part of � C � , s (cw ) is disjoint from s(dΛ) . The w are distinct; Γ isi i�
separated; the s (cw ) are disjoint from each other. We have shown that Λ is separatedi
(part (i) of 10.12).

At this point, we may observe that we have proved 2.13 Proposition.

Note that the set

P={w , ..., w } equals L ∩U = N-U -L . (25)1 m 1 m+1 1 m+1

Consider the slicing given by the pair C ≤C of cuts (see part [4] fo section 9). Let Ξ be1 m+1
the slice defined by the slicing: Ξ= � Θ � (C , C ) � ; Θ is the complete planar PPS1 2
displaying Γ .

By definition, [Ξ]=P . On the set M={w , ..., w } , let the order � be defined by1 m
w � w iff i<j . Since with C =(U , L ) , w ∈L and for i<j , w ∈U , w

�
wi j j j j j j i j j= i

is impossible; � is compatible with
�

. By the completeness of Θ � (C , C ) (9.6), there is1 2
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a molecule Φ such that < = � and � Φ � =Ξ . By definition, we haveΦ

Φ = (ϕ [w ], ϕ [w ], ..., ϕ [w ]) .1 1 2 2 m m

I claim that

ϕ [w ] = � C � [w /dw ] = � C � [w /cw ] ; (26)i i i i i i+1 i i

in particular

cϕ ( i=2,...,m+1 ) (26.1)i-1� C � =i dψ ( i=1, ..., m ) (26.2)i

To prove this, we note first that � C � =dΛ=dϕ , � C � =cΛ=cϕ by section 9.1 1 m+1 m

From d(ϕ [w ])= � C � , it follows that1 1 1

ϕ [w ]= � C � [w /dw ] : (27)1 1 1 1 1

since � C � is separated, w can be fitted to it in only one way.1 1

Similarly, since c(ϕ [w ])= � C � ,1 1 2

ϕ [w ]= � C � [w /cw ] .1 1 2 1 1

Next, we have

c(ϕ [w ]) = � C � [cw /dw ] ;1 1 1 1 1

this follows from (27) without any additional assumption. From (18) and (**),

� C � [cw /dw ] = � C � ,1 1 1 2

and, of course,

d(ϕ [w ]) = c(ϕ [w ]) ;2 2 1 1

thus, by the last three displays,

d(ϕ [w ])= � C � ,2 2 2

from which (the main step),

ϕ [w ] = � C � [w /dw ] .2 2 2 2 2
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And so on by induction; this suffices for the claim.

Let us put (26) and (23) together. We obtain

ϕ [w ] =i i
= � C � [w /dw ] = (b ⋅d(ψ [w ]) ⋅e)[w /dw ] =i i i i i i i
= (b ⋅ ψ [dw ] ⋅e)[w /dw ] = b ⋅ ψ [dw ][w /dw ] ⋅ei i i i i i i i

= b ⋅ ψ ⋅e .i

Since Λ=ψ ⋅... ⋅ ψ and Ξ=ϕ ⋅... ⋅ ϕ , by the distributive law (see [M]), we have1 m 1 m
Ξ=b ⋅ Λ ⋅e . We have shown that Λ is a truncation of the slice Ξ .

We have proved (ii). Parts (iii), (iv) and (v) follow from section 9.

2.15 is fairly clear from 10.12. Given any 2-pd Λ in X , we have C ≤C as in 10.12; we1 2
write Γ = � Θ � U � , Ξ= � Θ � (C , C ) � =b ⋅ Λ ⋅e , Γ = � Θ � L � ; with u � Λ , u new, let1 1 1 2 2 2
* *Γ =Γ ⋅(b ⋅u ⋅e) ⋅ Γ ; then Γ=Γ ⋅ Ξ ⋅ Γ =Γ [Λ/u] .1 2 1 2

Part (c) of 2.15 is seen because, using the notation of the proof of 10.12, we have the fact that
Γ is separated, and

m⋅ �
s(Λ) = s(dΛ) ∪

� ���
s (cw ) ,ii=1

* ⋅ ⋅ � ⋅ � ⋅ � � �
s(Γ ) = {u} ∪ s(dΛ) ∪ s (b) ∪ s (e) ∪ s (cΛ) ∪

� ���
s (cx) ∪

� ���
s (cy)

x∈U y∈L1 2
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