Rearranging colimits: A categorical lemma due to Jacob Lurie

§1 Statement of thé result

A: a locally presentable category.
A transfinite system of length o, or briefly, an o-system ( o : an ordinal), in A, is a functor
A: [l —A

where [a] is the ordered set of all ordinals B<a , ordered in the usual way. We write A B
for A(f) ,and Ayﬁ’ or a,g. for A(y<p) :AYAAB . Of course, we have

o App = 1d (B<a) ,
BB Aﬂ

28y .. 1B ., 258 .

B=2s

o Ag 8 (6<y<P<a) ,

a
The system is continuous if, for every limit ordinal B, B<a, (AY——-—w—éAB) v<B isa

a
colimit cocone on the diagram Al [<f] (= (AY’ Aa——ﬂeAy) 5<y<f ) (itis
automatically a cocone).

Since we are interested only in continuous transfinite systems, henceforth, by "transfinite
system" we mean a continuous one.

a
The arrows A Y—Y’-EIHA y+1 are called the /inks of the system. The arrow

8yqi80 8 I8 the composite of the system.

) and a . for a

o oT "

We also write aﬁ_l_ for aﬁ o

(=A B
Instead of ordinals, we may use elements of any well-ordered set to index transfinite systems,
without any essential change of the concept.

With I any class of arrows, C[I, ] is the class of all composites of continuous transfinite
systems of length o whose links are from the class Iu{all isomorphism arrows} .

DEF DEF
ClI] = CIlI,»] = \J CIlI,da]
oeOrd

DEF
Clr,<a] = \JCII, B}
B<a
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Note that C[C[I]]=CI[TI]

Po[I] is the class of all pushouts of arrows in I : the class of all arrows A—>B for which
there is a pushout diagram

A—— B

| =)

with (X—>Y)eI.

Remark: These concepts will be used in two contexts: in a (fixed) category called A, and the
functor category a® , with a (fixed) (small) exponent category G . We may (but not always
will) put A, or AG ,in a sub_sp;ip@ position, spch as C " [ 11 , to indicate context.

T T e

The combination C[PoI] is written S[I] .

Py o4
Given an o-system A in the notation above, and an arrow A0 —£>AO , we can take the

pushout of the system A along the arrow p, , and get an Q-system

A A A a A
A = (Ap, A —IB—eA :

Ap Ay B y<psa
for.any B<a, we define the object ‘ZAxﬁ and the arrows éoﬁ:‘ao %}AXB, pﬁ:A'B—ﬂA&B by
taking the pushout

A
AO—QLA

Bl o lnp
Ay ———4g
aoﬂ

It follows that the square

o L
Ay—‘a—’yﬁ—xlkﬂ



is a pushout square whenever y<f<o ; from which both defining conditions for A being an
element of C[Po(I),a] (continuity at limit ordinals, and the links being pushouts of
I-arrows) follow.

Thus, C[Po(I), ] is closed under pushouts, Po(C[Po(I),0a]) = ClPo(I),a] .In
fact,

SiSir1] = StI1l .

A class X of arrows in category A is S-closed if S[X]=X.An S-closed class X is
small-S-generated if there is a small set I such that S[I]=X; asmall-Sgenerated class is,
in particular, S-closed. &

-

Consider a small-S-generated class X of arrows in the category A, and let G any small
category. The class (X, G) of arrows in A€ is defined to be the class of all arrows
F:U—> V (natural transformations) in 2% such that every component F,: U(G) —> V(D)
( GeOb (G) ) belongsto X . It is obvious that if X is S-closed (in A), then (X, G) is
S-closed (in AG) as well.

Lemma (J. Lurie) Assume A is a locally presentable category, G a small
category. If X is a small-S-generated class of arrows in A , then so is the class (X, G) in

a%.

I have found this interesting, since the proof seems to require something unexpected:
systematical rearranging of colimits, in particular, transfinite composites, into other types of
colimits.

§2 Rearranging colimits in general

CAT : the super-large category of possibly large categories (so that Set , the category of
small sets, in in CAT ). Let A be|"normal" category (in CAT and locally small; later: locally

X
presentable). Form CAT/A, the comma-category (whose objects are | , and whose arrows
A
X—Y
are commutative triangles \Io / ). We have a pair of (partial) adjoints ( D is total, L
A
is partial)
D
_
A CAT/A L-D
—C
L



A/A
D: Apb> l

A
A _ CAT/A ;

L = colim

In more detail: D is defined by:

A CAT/A
A/A
Al— ld
Za
A/JA— S sa/A
A—A' — 4 OZ//é/
A
e \

a { LJ‘ ‘ . X 4 x 2, ax
o v Shale where d stands for "domain" (J l\—éx ) ,and (X—A) > (X A')
\,\f\T \Fy T ‘ T A

e // Indeed, the adjunction bijection
,‘k/\‘.“ \(/ L(fr) _f——% A f
2 coliml——— A
G =
JI' ————>D(n) ¢ — Y sa/a

t A

expresses that cocones with vertex A on diagram T are in a bijective correspondence with
arrows f:coliml —A.

G
To say that A is small-cocomplete, is to say that L(l) is defined for all small G.

b

Let us apply the fact that (partial) adjoints preserve colimits.

(For easier reading, we will write Colimit with a capital C when it is used in CAT or
CAT/A .)

What that means is that if in CAT/A we have a diagram A of objects at each of which L is
defined, and Colim(A) existsin CAT/A,then,in A, L(Colim(A)) is defined if and



only if colim(LeA) exists, and they are the same:

Fact 1

L(Colim{A)) ¥ colim(LoA)
[ ~ : Kleene's "complete equality”" (IM p. 327). Here it means that if either side is defined, so
is the other, and the two values are isomorphic (rather than equal as in Kleene)].
In the applications of this fact, we also use that Colimits in CAT/A are computed as in
CAT : the forgetful functor CAT/A—>CAT preserves (in fact, creates) Colimits.
We will apply the above in the following "rearrangement" form.

' od

<Let A:P—>A be a diagram, and assume that AT=col im A exists,

1 e e

~ [ S,
' ! T
Suppose

g
Q:Q——Cat (erl—%QX, xLyHQX—EéQy)

is a diagram in Cat (cCAT) , and P=Colim Q in Cat , with coprojections q,:0,—P.
Let A: P—A bea diagrale in A, and let ,P{qx: o, —A be the restriction of/lV( x€Q).
Assume that Bx = colim (/P'oqx) exists for all xeQ; let, for ue Qx ,

buT: q,u ——%BX be the coprojection. We have a canonical arrow bx —?y: Bx%By s
defined by the property
N quu = l"qu £U L ‘ ) o
’ e ‘\JE'JL Y ’ & V\'!
By b By q{q T
XY y
for all ue QX . We have a diagram B:Q——>A, B(x) =Bx s B(x—fﬁy) =bx—f%y;

this is what we call a rearrangement of the original diagram A .

Fact 2 The rearrangement has the same colimit as the original diagram, and in fact, one
colimit exists iff the other one does:

colimB & colim A

This is an application of Fact 1. A: Q—>CAT/A is given by



Ox
x | L To q,
A
9
XYy Q. \‘———"—/Q},
A
p Q
We have that ColimA = A | , the original diagram; LoA is the rearrangement B | ; the
A

A
colimit ( L ) of the first is the same as the colimit of the second.

We will use Fact 2 in a certain special kind of situation.

Suppose A:P—>A is a diagram on the poset P.Let Q be a collection of subsets of P, and
consider Q to be the poset ordered by containment ( c ) . Define the diagram ®:Q—CAT
as "identity": ® (X) =X (more precisely, the poset X with the order induced by that of P on
X), with ¢(XcY) = inclusion:X—Y.

Assume that Colim ® is P; more precisely, assume that the family of inclusions

(X__l% P) ye 0 is a colimit cocone in CAT . ™

Note that it is not enough to have a colimit in POSET ; POSET _incl a7 does not
preserve all Colimits.

One case when (*) holds is when we have 1) and 2) as follows:

1) Jo=\UX =P,

XeQ

2) O is directed under the subset-ordering: if X, YeQ, then there is ZeQ such
that XcZ and YcZz.

Another case when (*) holds is this. We have subsets X and Y of P such that XUY=P, and
for xeX- (XNY) , yeY- (XnY) , x and y are incomparable in the order on P; we take
0={XnY, X, Y} . In this case, with the posets meant to be the induced subposets of P, the
colimit Colim @ is given by the diagram



with all arrows inclusions, a Pushout in CAT .

Although the just stated case of rearrangement is one that is important for us, it might be noted
that it falls under the more general conditions, ensuring (*), which are 1) above, the condition
that each Xe Q is an initial segment of P, and the condition that X, YeQ imply XnYeQ.

A third case when (*) holds is when RCP is an initial segment of P (x<ye€R => x€R) ,

and, with x|={yeP:y<x} , we have Q={R}U{Rux]|:xeP-R} . Note that, for
x, ye P-R, RUx|cRuUyl| iff x<y;and R is the bottom element of Q.

Of course, in all three cases, the verification of (*) is a routine check.

A collection QcP(P) satisfying the assumption (*) gives rise to a rearrangement of the
diagram A as follows.

Let, for each XeQ, A, denote a (choice of) colim(AlX) , with AMX:X—>A the

restriction of A to X, with the ordering on X induced by that on P . Let
(a,y: A, DAL o x bethe corresponding colimit cocone.

We stipulate that when X has a top (maximum) element w (that is, weX and for all xeX,
DEF o
we have x<w), then A, = A  and aXx=awa Na ooe J e { ¢ P o 5’,@@‘)(‘}‘)

Whenever XcY, X, YeQ, we have the canonical map a xv* AXeAY for which

Ayy°8, x=8. v (xeX) . It is easy to see that we have a diagram A[Q] :Q—>A,

AlQl=(Ay ayy) v yeo, xcv

a
The assertion is that, under the foregoing conditions,

Fact 3 colim(A[Q]) ¥ colim(A) .

This is a special case of Fact 2: the diagram B of Fact2is A[Q] .

We make two, essentially equivalent, detailed assertions out of Fact 3, the "direct" and the

"converse" versions. The direct version says (in a detailed manner) that if colim(A) exists,
then so does colim(A[Q]) ; the "converse" version says the converse.



(i)(direct) Let (a X_I_:AXHAT) be a colimit cocone on A, and define,

for XeQ, a %AT by

A
X
axX axT
o
Ax a Ar

XT

xT 8%

for all xeX . Then (a is a colimit cocone on the diagram A[Q] :Q—>A.

XT>X€Q

(ii)(converse) Let {a XT:AXHAT) Xe 0 be a colimit cocone c?n the diagram
A[Q] :0—>A, and define, for xe P, ax_l,:Ax——éAT as a _=ay_°a with some/any

Xe Q such that xeX . (By 1), there is such X ; and by the directedness axiom 2), one sees that
a, ., so defined is independent of the choice of X.) Then (a X_T_:AXHAT)X cp isa

colimit cocone.

§3 Good diagrams

K is an infinite regular cardinal.
In this section, we only assume of the category A that it is (locally small and
small-)cocomplete. Of course, it still make sense to say of an object that it is x-presentable.

Let P=(P, <) be a partial order. < is the irreflexive version of < . u, v, w, x, ... range
over P. x| ={y:y<x}; x|l = {y:y<x}.

We make two assumptions on P:

1) P has a least element L (for which 1<x forall x).
2) < is well-founded (no decreasing infinite sequence Xy >X]>Xy> ).

Let xeP.If x|/ hasa top (maximum) element x (such that y<xe=y<x ), wecall x

isolated, %~ is the predecessor of x . Note that the notion of "successor" is not well-defined:
it may happen that different points have the same predecessor (unlike in the linearly ordered
case).

A point x which is not isolated, and which is unequal to L, is called a limit point. (We
could call a limit point "colimit point", in view of the role this notion is going to have.)

P is of k-good if forall xeP, #(x])<K.

A good diagram in A,



a
- Xy .
A=(A, AX——ﬁA})x,yEp; x<y P A
is a functor from a good poset P to the category A such that, for every limit point x , the

subdiagram Al (x]) is a colimit diagram: the family 7=<ayx:AyﬁAx>y<x is a colimit

cocone on the diagram Al (x|]) (the fact that y isacoconeon Al(xl]) is already
given).

Note that, in the notation introduced for Fact 3, the goodness condition can be expressed by
saying that the arrow ayll < By 1l —A, is an isomorphism whenever x is a limit

pointof P.

The good diagram is k-good if the underlying poset is K-good.

Let us denote the colimit colim(A) by Ap. We write a wr B AL for the colimit

coprojection ( xe P ). The composite of the good diagram A is the coprojection

a ;A LA the composite of the good diagram A is sometimes denoted

(A) A AL

Clearly, the notion of good diagram essentially generalizes that of transfinite system. The only
ndifference” in the two concepts is that, in "transfinite system", we have included the
composite itself as data. More precisely, if A is a transfinite system of length =1, then
Ata = AM{B<a} is a good diagram, and its composite is isomorphic to the composite of A
(in the original sense of "composite" of a transfinite system).

The links of a good diagram are (using the notation above) the arrows a _ for the isolated
X X

points x .

Let G[J) be the class of composites of (small) good diagrams all whose links are in J. We
let G[J, (<x)] denote the class of composites of k-good diagrams all whose links are in

J. KV\[

For A a cardinal number, G[J, 2] will denote the Composites (A) of good diagrams
A:P—A such that #(P-{1})=4.

DEF
GlJg, <A1 = \J GI[J, u) , where p ranges over cardinal numbers <A .
A

us

We use G[J,(<K),A] in the sense” G[J, (<k)1nG[J, A); and similarly with <A replacing
A ; etc. /L_w,_w____‘,_j

-

—

T2 e

The first fact, 1. Proposition, that justifies the passage to the more general concept of good
diagram is that'it shares the main property of transfinite systems. As a matter of fact, however,
1. Proposition will not be used for our technical purposes.

Let ¢ and r be two arrows in the category A . We say that { is left-orthogonal to r,
equivalently, . r is right-orthogonal to £, in notation {.ir,if

9
J
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g . g .

for every ll 0 lr , there is l\[ /°k/' lr .

]

If R is a set of arrows, then ¢1R means VreR. {Lr ; and similarly for other combinations.

1. Proposition Let reArr (A) . Suppose that A is a good diagram and for every link
? in A, {1r.Then (A)Lir.

The proof is "the same" as for transfinite systems. For completeness, we outline it.
Let A be a good diagram; we use the notation above.

Let r:X—>Y. Letus fix g:A —X and h=h_:A —Y such that

we seek k_l_:AT —> X such that

g

A
1
(a) - r ()

B / /kT °
AT h-l— Y

By recursion on the well-founded relation < (the order on P) (!), we define k A Y
such that

10



g g
AJ_—————————)X

A /ﬁx o
° — alxl “
a / r, that is, k (H
1x k X
X ° A —m—>5X
X
A Y
X a o r /
hX = hTa *T XTJ l N
A ——— Y
T h_r
. "/77 ) . . .
(here, a Ix is the structure map in the diagram A ; a is the colimit coprojection), with

the additional condition that the k  are compatible: every time y<x , we have

qyx ° : )

in other words, (kX: AxeX )X c p 1sacocone with vertex X on the diagram A.

-

DEF

For x=1, k L =95 the assumption ensures that we are in the right for (1); (2) is vacuous.

For x limit, use the cocone (k_:A_ —>X) yex on Al (xl|l) ,to get the unique map

kX:Ax(=colim(AT(xli))—>X that makes (k_:A AX)YSX into a cocone on the

diagram Al (x)]) ; we have ensured (2). (1) will be true because: the upper commutativity is
the cone property of (ky:Aye X) y<x tested with Y =<y, =% since g=h L and for

the lower commutativity, the two maps A, : Y that are to be shown equal are equal when

composed with aYX:A —A_ (y<x), and x is the colimit of Al (x|]) .

Y

For x isolated: use the assumption that a 1 r, to obtain a, such that




(‘K

You will see that both (1) and (2) will follow for the present x ; in case of (2), for y=x
first, and then for all y<x.

(17) is shown as the inductive case for x limit (although " x=T " we cannot say).

This completes the proof.

Below, we will see that, in fact, the two operations C[Po[-1] and G[Po[-]] coincide
(in particular, if one accepts as known that 1. Prop. holds for C instead of G, then 1. Prop.
itself becomes superfluous). The point of the new G-operation lies in the parameter K, in the
specific version G[-, (<k) ], which has no direct counterpart for the C-operation.

For posets P and Q, we write PLQ if P is a non-empty initial segment of 0: P isan
induced subposet of Q (for x, yeP, x< (P) y & x< () y ), and P is closed downward
in 0: xeP and y< (Q)x imply that ye P.

(For a subset X of a poset P, XLP means that X is a non-empty initial segment of the

poset P in the usual sense ( X is closed downward); for two subsets X, Y of P, we write
XLy in the obvious appropriate sense.)

If O isagood poset, and P2@, PLQ,then P is good as well; if Q is k-good,sois P.

Let O be a good poset. Let PLO . Then for every xeP, (xll) (P)_ (xl) () I
x =max ( (x|]) (Q) ) exists, then x <x,thus x e€P,and max((x|]) (P)) =
max { (x/|]) () ) . We see that for xe P, the concepts of "isolated point", "predecessor",
"limit point", are the same in P asin Q.

Therefore, if B: 0—A is a good diagram, P20, PLQ, then BI'P is a good diagram as
well; if B is k-good, BI'P is k-good as well.

For good diagrams A:P—A and B:Q—>A, we write ALB if PLO and A=B!P. Note
that, in this case, we have the canonical arrow c=c[A, Bl
=c[PLQ] A —>B_ for which cea _=b__ for all xep.If ALBLC, then

Let A:P—>A bea k-good diagram. Consider the family O of all nonempty XCP such that
#X<x . QO is ordered by containment c; and Q is k-directed: any union of initial segments
of P is an initial segment, and the union of x-many ones is of cardinality <x.

Fact/zf case one, is applicable: 1) holds by P being x-good; 2) has been checked. In this
situation, we will use the "direct version" of Fact 3 , in the situation stated under 1) and 2)
there.

Let's record this special case as

12



Fact 4 Let A:P—>A bea k-good diagram. Let P be the collection of all initial
segments of P cardinality less than x.

1) (13, c) isa <k-directed ( x-filtered) poset

2) P gives rise to a rearrangement A=A [lg] of A (in the sense of Fact 3).

Note that A: P—>A can be treated as a subdiagram of A: Pa , by identifying P with a
subposets of P, under the identification of a with al ; recall that we had A, L= A .

Although its use is less essential, it is convenient to use p for the poset of all non-empty
initial segments of P, ordered by inclusion, and A the rearrangement diagram for A on P.

The concept of "end-segment” and the facts about it, to be treated next, are obvious in the case
of transfinite systems; they are not hard, and they are also important, in the general case.

DEF
Let A: P—>A be a good diagram, RCP a non-empty initial segment of P; P[R =

{1}U(P-R) (here L is the bottom element of P); P|R also denotes the induced subposet
of P.

The diagram A|R:Q/>A is defined thus:

A|R: P|R _ A

X A

RUx|
Fact § 1) A|R is good, k-good if A is, its links are pushouts of links of P, and

its composite (A|R) equals the arrow a RTBRAT
2) In particular, aRTEG [Po[I],A]l for A=# (P-R) , I=the set of links
of P.

More generally, for RESCP , by the foregoing applied to Al'S, we have
aRSEG[Po [1],A] for A=#(S-R) .

R DEF .
3) (P|R) = pP||R = {XeP:RLX & #(X-R) <K} , by the map
Y5> RUY . The diagram (A|R) is thereby identified with Al (P||R) , the restriction of the

13



diagram A to the subposet P||R of B.

Proof of 1) The last fact about the composite is the "third case" of Fact 3 stated
above.

Temporarily, we write Q for P|R,and B for A|R.

More generally, for any non-empty initial segment X of Q, by using Fact 3 for RUX in
place of P, we can, and do, take BX (=colim BX) to be ARUX , and bXY:BX—eBY to

A — AL,y (1€ xCvyLCo).

be a RUX

RUX, RUY'

Forany xeQ-{1}, (xll) (@ _ {L}U(x)1-R) . Therefore, if x isolated for Q, then
the corresponding B-link

b
-, (Q)
B - (0 = == By
(x )
equals the arrow
~ qrux| |, Rux]|
ARux' ] = Aruxll Apux] -

Let xeQ beisolated in P.Then x is isolated in Q as well: either x| |-R#0 , in which
case x ,the P-predecessor of x,isin x||-R (otherwise x €R,and since R is closed

downward, x |=x|l cR,and x|/|-R=0),and (x ) (Q)_ - ;or x[l-R=0 and
(Q)

(x) =1.
Let xe P-R, and consider the diagram of inclusions:
Rux|| ———Rux]
x| ——— x|

This is a Pushout in CAT , as in "case two" of Fact 3. Therefore,

14



a

A —>A

Ruxl | RUx|
Axll a ; AxJ,

with each a being the corresponding " a-arrow", is a pushout in A .

If x is a limit point of P, the lower horizontal a is an isomorphism; if x is isolated in

P, the same is a link of A . Thus, the upper horizontal is always in Po [I] . Therefore, if
xe O is an isolated point of Q, the corresponding B-link, being the upper horizontal in the
last diagram, is in Po[I] .

Finally, if x is a limit point of Q, then (as we saw above) x is a limit point of P as well,

b : a .
B ——B, 18 Ap 1l —Ap x . and the latter arrow, being a pushout of

(xL 1) (@
. . a . . . .
the isomorphism Ax 1l ———>Ax L is an isomorphism itself.

This completes the (overly fussy?) proof of Fact 5. -

2. Proposition

(i) GlJ)l cClpolJdl) .Infact, GIJ, Al cC[Po[J]l, Al for any infinite
cardinal A~ -

(ii) For any cardinal number (=initial ordinal number) A>x,
GlJ, (<x),<Al ¢ ClpPolJd], Al
[In other words: if A:P—>A isa k-good diagram such that A=#P2k , and the links of A

are in the class J, then there is a transfinite sequence B: [A] —A of length the initial
ordinal A, whose links are in Po[J] , such that (A)=(B) .]

Proof We remind the reader of a well-known fact: for any well-founded partial order
(P, <) , there is a well-ordering (well-founded total ordering) < of P extending < ( x<y
implies x<y ).

[The proof is by Zorn's lemma. Let & consist of all well-ordered sets (X, < X) such that
XCP & Vx, yeX(x<y = x<,y) & Vx, yeX(y<x=yeX (&x<y¥))
( <5 extends < !X ;and X is an initial segment of (P, <) );

and let << be the partial ordering of "initial segment" on 4':

15



(X, 1) <Y, Ky) &=
Xc;Y&VXlx2(xl<Xx2=>xl<Yx2) &VyeY.VxeX. (y<Yx=>yeX) .

Clearly, the union of any <<-chain in % is again a member of &'.Let (X, < X) be in

(¥, <<) , and let ue P-X . Define Y=xU{u} ,and <y on Y such that <y extends {Y,
and x< YU for all xeX . Then (Y, {Y) belongs to 2 ; note that <Y extends <Y,

because u<x with xeX is impossible, since ugX and X is an initial segment of (P, <) .
Thus, with (X, {X) maximal, X=P.]

To prove part (i), let A: P—>A be a good diagram; let < be a (total) well-ordering of the
set P extending the given well-founded partial order < on P.

Note that 1 , the bottom element for <, is necessarily the least element for < as well.

Forany xeP,let [x)={yeP:y<x} and [x]={yeP:y<x} . Define the subclass Q of
P(P) as

0 = {[x]:xeP} U {[x) :xeLim , (P) }

(Lim < (P) is the set of points that are limit points with respect to the well-ordering <).

Clearly, QcP(P) is suitable for a rearrangement of the diagram A in the sense of Fact 3. In
addition, O is well-ordered by C (strict subset relation). The limit points of (Q, c) are the
sets [x) for x a <-limit point. [x] is a successor unless x=1:the C-predecessor of

[x] is [x) .

In fact, the order type of (Q, C) is equal to that of (P, ) if the latter is a limit ordinal;
and one more if the latter is a successor ordinal.

We have, in the notation of Fact 3, the diagram A[Q] : Q—>A such that colim A[Q] =
colim A, and (A[Q])=(A) ; adding a top element to A[Q] gives us a transfinite system.
The continuity of the transfinite system is an application of rearrangement (Fact 3, first
situation), coming from the fact that, for a <-limit point x, [x) is the directed union

x) = \Jlylv Uy
y<x y<_x
y<{-1limit

As to the links of A[Q] : 0->A, the typical A[Q]-link a [x), [x] appears in the pushout

diagram

16



AN

)

a
[x), [x]
Alx) Ax]
xll, [x) 4%, [x]

which is the result of "Fact 3, second type" rearrangement, according to the CAT-Pushout

[x) —> [x]

N

xll—— x|

of induced subposets [we have [x)nx)=xl), [x)ux|=[x],andany ye [x)-xl] is
not <-comparable to any zex|-xl| (otherwise: z=x; z=x<y would imply x<y, false

since ye [x) ;so y<x,contradicting ygxl] )].

a
By the assumptions on A, the lower horizontal A 1l —M—eAx is an isomorphism

when x is a <-limit, and an element of J when x is isolated (in this case A_ LITA ).
X
Thus, the A[Q]-links are all in Po[J] .

This proves part (1).

To see part (ii), assume the hypotheses of (ii) on A . An elementary argument shows that now
the well-ordering < of the above proof can be chosen so that the order-type of (P, <)
equals the (initial) ordinal A .

[In the next few lines, each of the symbols <, < is used in two different senses. They are
used in the standard senses in contexts like fB<o, B<a for ordinals o,f ; and they are used
in the sense of the given k-good partial order on P, in contexts like x<y, x<y for

X, yeP ]
Let (ab>x,) be a bijection [A) —> P . Keeping with the notation x|={ye P:y<x} , with
the original x-good ordering < of P, let

Xa=xa‘L - ﬁyaxﬁl .

P is the disjoint union P=\J X _,and Y =\ J Xp=x_| isclosed downward
o o o
o< Bsa
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( z<ye Y, = Y€ Y, ). Let oe[x] denote the ordinal a for which XEXO([X] . Choose a
well-ordering < o of X o (which set, of course, may be empty) such that < o extends
<X o by the opening general fact above. Define the relation < on P by

x<y &— either a[x]<B[x] or (alx]=B[x]=a and x{ay) .
< is a well-ordering of P in order-type the ordinal sum
Yy &
o<r &
where & o s the order-type of (X, <) -

< extends the partial order < on P:let x, ye P, a=0[x] , B=aly] , and assume x<y,

to prove x<y.Since \J X, is closed downward for < on P, wehave xe \J X v and
< Y<B

thus a<f . Then either o< B, in which case x<y as desired; or a=J, in which case x< y
implies x< oY implies x<y as desired.

Since P is k-good, each set x| 1is of cardinality <k ; hence each set X oS X aJ, is of
cardinality less than k ; hence, since K is regular, 1) oK Therefore, since k<A and K is
regular, we have ) & aS?L . Of course, as the order-type of the set P of cardinality A,

<

o
y 0 aZl . Therefore, ) o o the order-type of (P, <) , equals the initial ordinal A .]
o< o<A

As the italicised sentence above says, the well-ordered set (Q, c) , constructed in the proof
above in part (i), has order-type that of (P, <) , the latter being the limit ordinal A
therefore, the transfinite system A[Q] constructed in the proof of part (i) is of length equal to
the initial ordinal A as desired.

The converse of 2. Prop., 3. Prop. below, is somewhat more difficult. In preparation for 3.
Prop., we introduce some constructions.

Directed union of good diagrams

Here is the first construction on good diagrams, directed union, that we will need.

Suppose A”:P' A isagood diagram for ieI, where I=(I, <) isa non-empty directed
poset ( (1, jeI)==3keI.i<k&j<k); and at C Al whenever i<j . Then we can
define the union A = \Tj al . a good diagram, such that A'Ca forall ieT.

ieI
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Namely, we let P = \D P, the poset whose underlying set is the union of the underlying
ieI
i

(P) (P7)

sets of the posets Pi , and for which x< y & x< y for some, equivalently any,
ie I such that x, y are both elements of P’ . Clearly, P1EP (ieI) . P isa good poset:
check that each of the conditions 1), 2) follows from its truth for (some/)all Pt . Similarly, if

each PT is K-good, sois P.

The diagrams at , A7 must agree on their common domain, since we have some k=i, j
and 2% extends both A% and A7 . Thus, it is meaningful to define A: P—>A by the
condition that AtPT=AT . A so defined is a good diagram; . k-good if each At is x-good.

Let us apply Fact 3, "converse" version (ii), to the collection Q= { P.: ie I} of initial

segments of P . We are allowed to do that since P is the directed union of the members of
O . Let's repeat, in a suitable notation, what we get now.

i . i . I i i i L

= : <

Let Al colim(A™) with coprojections a_ _:A —>A_. For i<j, let

atl=c[at, a’1 :A11_ —aAi , the canonical arrow. These data form a diagram A:I—A .

Let AT=colim(A) = colim(al) with coprojection alT:A_T_—éAT.

ieTI
i PEF i+ i i
For xeP, a = at'eg ,_:A-—>A_ forsome/any i suchthat xeP, .
y
XT xT'"'x T 1

We have that the a__. for xeP= @j p* form a cocone on the diagram A= \Tj A, and in
ier ier
fact, this is a colimit cocone.

Here is the second construction we will need, actually two similar constructions, both
adjoining a new link to a diagram.

Adjoining a link

Given a good diagram A:P—>A, and an initial segment XCp of P. Let Ay denote
colim(AalX) ; when w=max(X) exists, we put AX=AW. Let ayX:Ay%AX be the
colimit coprojection ( yeX), and a x7=C [X, P] 1Ay AL the canonical map; when

u=max (X) exists, a (yeX) (in particular, an=1dAw ), and ay =a, ..

yX=ayw

Suppose also given an arrow f:A,—B (thus, the domain of £ is the given object Ay, its
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codomain B is arbitrary). We construct the new diagram B = A[f/X] , the result of
"adjoining £ to A at X", as follows.

We define the new poset Q by adjoining two new elements, x and x* ,to P.Welet

0= PU{x}0{x"};

Q)

u<( vV &

(P)

(u, vée P & u< v) v (ueX & (v=xvv=x+)) Y, (u=x&v=x+) .

P is an initial segment of O . We have that (xl]) (@ _x.
If max(X) does not existin P, x is a limit point in Q; if w=max(X) does existin P,

then x isisolatedin Q and x =w.

x* isisolated: x* ™ =x . Q is goodif P isgood; Q is k-goodif P is x-good and
#HX<K.

We define the diagram B:Q—>A by stipulating that

Blp=A4,
B =Ay,
B =B,
+
X
vx = 3yx (yeX)
b  =f.
+
XX'

If max(X) does not exist, the construction ensures that the continuity condition at the new

limit point x holds true; in this case, there is just one new link, b .= f . In case
XX

w=max(X) does exist, there is no new limit point, and there are two new links, wa=id 2
X
and b L=t
XX

If A is good, thensois A[f/X] .If, in addition, #X<x,and A is k-good, then A[f/X]
i1s K-good.

The important fact about this construction is that the diagram
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_—_—
AT BT
a ] b
XT] ] x+ T
=A,————>
B AX F B

is a pushout; in other words, the canonical arrow from the colimit AL of the original diagram
A to that of the extension, A[f/X] T is a pushout of the adjoined link £ .

Conversely, if we define the items B , ¢ and b by the pushout

_—
Ay

=A, ——F—>
Bx AX f

W>——> We
o

then, for the diagram B=A[f/X] , we can take colim B=BT to be BT=1§ , with colimit

(ue p) , bXT=bof=Coa and

cocone (b XT

b+=b.
X T

:ByeB)yEQ givenas b _=cea .

yT

These two facts are the direct and converse aspects of the rearrangement of the diagram
A[£/X] , according to Fact 3, in the second case mentioned there, with the roles of X, Y,

XNy and P=XuY played by the sets XU{x, x+} , P, X and Q, respectively.

3. Proposition Assume the domain of each arrow in the set I of arrows is
k-presentable. Then -

) ClPo[I]] @GlPolI], K]

and more specifically:

() CIPolI1,<A'1 cGIPolIl, (<K), SA]
The following are immediate consequences of 3. and 2. Prop's.
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4. Corollary Assume A is a (small-)cocomplete category, and I is any class of
arrows in A . Then

) C(Po[I]] = G[Po[I]] .
If, in addition, the domain of each arrow in the class I is K-presentable, then
(ii) CI[Po[I]] =@G[Po[I],<Kk],

and, for any initial ordinal (=cardinal) A2x,

(iiiy ClPolI],<A*] =C[PolI], <Al .
1
() ( yasollys )
Proof of 3. Prop., par {cr)/ Assume A is a transfinite system of length o all
B

whose links are from y transfinite recursion, we define, for each B<a, the following
items:

1) A x-good poset P[3 such that, for y<f<a, P? is an initial segment of PB
( pYCP).

2) A k-good diagram Bﬁ :P[3 —>A with links in Po [I] such that BE:AO (asa

DEF
(8P

good diagram, Pﬁ has a least element L B ; on the left, Bﬁ ), and such that,

for y<B <a, Bﬁ is an extension of BY (in other words, By=Bﬁ rp¥ ).

3) For any B<a, a colimit cocone (bﬁ Bﬁ —A [3) with vertex the given

Xe PB
object A ik on the diagram Bﬁ such that bET=a 0B (note that this makes the given A i the

colimit of B[3 , and the given 2,8 the composite of BB ) such that, for y<f<o and

X€E Pngﬁ (and so B}Z:Bg ), we have

(which makes the canonical ¢ [By, Bﬁ ] :By%Bﬁ equal a_p).
T T B
To start, for =0, PB={J_} , etc.
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Suppose we have B<a, and we have defined all the above items for subscripts y with
y<B , with all the required compatibilities satisfied below f3.

Suppose first that f is a limit ordinal. Then we can take Bﬁ = @j BY, according to our

Y<
definition of "directed union" above. Thereby, we have fulfilled requirements 1) and 2) for all
subscripts <f3 .

: - B B .gB B _. Y wi
I claim that if, for xe P" , we define be.Bx—éAB as bXT—a 8 be with some/any

Y
Y<B such that xe P[3 , then bg + SO defined is independent of the choice of y<f, and 3)

holds for 8<7y<p . This follows from Fact 4, and the fact that A 8 is the colimit of
Al [<fB] , with coprojections aYB:AyeAﬁ .

It remains to handle the case when B<a is a successor ordinal, B=y+1.

By assumption, we have a pushout diagram

] s

D ——¢C

with fe I . We apply the induction hypothesis for y. A y is the colimit of the x-good
diagram BY. According to Fact 4, applied to BY as A inFact4, A ¥ is a the x-directed

colimit of (BY1x) _, b with colimit coprojections by : (BV1x) T A

 Pxy) xCve BT
where P7 is the poset of all <k-size non-empty initial segments of pY.

;y’

Let us abbreviate (Ber)_r by Cx-

Since, by assumption, the object D is k-presentable, there are Xe p? and r:D-> Cy such
that p=by_er. We construct the following diagram:

23



A
Y ¥ B
Yr 40 /'
p| 1o Cy — 9 sE 3. |q. 2)
///éz 2o R;\\\\
D = c

E, g and d are defined by making the square 20 a pushout. e is then defined by
stipulating that the triangle 3o and the square 4 commute. We have factored the pushout
diagram (1) (the outside square in (2)) as the composite of the pushout 2o and the
commutative square 4o . It follows that 40 is a pushout.

DEF
We put Bﬁ - BY[ g/X] , according to the construction "adjoining a link". Since g isa
pushout of f£,and f isin I, g, the new link in BB ,isin Po[I] (a possible second
link is in Po[I] since it is an identity arrow).

Concerning the data in 3):

For uePy:

DEF bY a

B Y . rY u vB :

buT = ayﬁ bu : Bu AY Aﬁ’
DEF b7 a

B _ N XT Y8 :

bx_r = ayﬁ bXT : BX—CX AY AB,
DEF

bﬂ = e.

X+

The requirement that (bg . Bg —>A B> be a colimit cocone is ensured by the basic

B
ue P
property of the "adjoining-a-link" construction, specifically the "converse" version: the
requisite pushout now is the part 4o of the diagram (2) .

Since #X<k, the diagram Ba=By[g/X] is K-good.

This completes the recursive construction of the items under 1), 2) and 3) .
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The diagram P:B—>A required for the proposition is @j Bﬁ , a directed union of k-good
ﬁ<0¢
diagrams. Clearly, #P is no more than 2-#a : the requirements of part (ii) are satisfied.
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§4 Using good diagrams

As before, Kk is an infinite regular cardinal, A is cocomplete category.

We let I be a class of arrows in A such that

T T T

-
both the domain and the codomain of each arrow in I is K-presentable.

We define X\be the class C(Po[I1) . From previous work, we recall that

X=0G(PolIl, (<K))

Let us start with two k-good diagrams

A:P—A ,

and the corresponding extensions

A:P—A ,

(recall that Xe P = XL[P & #X<K).

We use the notation we introduced before to deal with such diagrams.

Suppose given arrows r, s in A such that

ey

>

A 4T
1 T
r ° s
B B
1 bJ_T T

DEF

A factor for p = (r, s) ,orfor (A, B, r, s) ,isatriple (X, U, u)

and an arrow u as in

a

a

1X XT
1 ’AX
r o u °
B B >
1 bLU U bUT

B:Q——A

LGB
1Y

Ar
[s
B

0]

@

with XeP, UeQ

( o indicates commutativity as usual). We say that the factor (X, U, u) starts at X.
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Note the obvious fact that if (X, U, u) is a factor for (A, B, r, s) ,and (U, V, v) isone
for (B, C,p, q) ,then (X, V, vou) isa factor for (A, C, por, ges) :

a xr

Y
-

D
>

«

<
o
Q -

o
(__mP_
o
<—me

]
aQ
(!

1 c 1% c T

Most of the time, in the definition the pair p=(r, s) is fixed; we omit "for p" when p is
understood.

If é=(X, U, u) and n=(Y, V, v) are factors , we write £<n if

a

Xy
Ay Ay
u ° v

Given a factor &= (X, U, u) , and any veQ such that ULV, the triple é= (X, V, seb)

is a factor as well. é is referred to as a (codomain) shift of & ,the V-shift of & .
Y al
()0

5. Lemma (i) Given p=(r, s) asin(2),and any Xe P , there is a factor of p
starting at X

Moreover, if & is a factor starting at X, and XL Ye P, then there is a factor 1 starting at Y
such that €<n.

(ii)  For any two factors, &
¢, such that élsc and §2sc.

1 and 62 , of the same p , there is a third one,

Proof of (i) First, we show the assertion for xe P, that is, for Xe P of the form

x| .
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By recursion of the well-founded order < on P, we define, for all xe P, a compatible
family of factog@%@?ns §X= (x, U, u) starting at x : we have, for all y<x in P that

gt
y X ped”
Reminder: we require
a a
1X XT
1 Ay T
r 1o uX 20 S (3)
B B B

+ b, U, by T

For x=1,we put Ulz{'LQ} ,and u =r.

Let x be a limit point. The construction of the factor (x, U_, u_) is straightforward: we

u
X
take the colimit of the compatible system of factorizations (y, U v uy) for yex|| .Ina bit

more detail, here it goes.

DEF
We take U, = \J Uy . The system (aYX:A A >yEXJ,J, is a colimit cocone on

yexll y X

the diagram Alx|| ; the system

uy UyUx
(A B B. )
y u, U, yexll

of composites is a cocone on the same diagram; therefore, we have uX:AxﬁBU such that
oo T X

u o u (4)

Uuu
Yy x

commutes for every yex]| . It follows that (3) holds for x: 1o because y=l1ex|]; 2o
because A is a colimit of Altx|] , and (3) holds for all yex|| in place of x.

Let x be isolated in P.
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By assumption, there are p—Lf ycer anda pushout as in the upper square in

D £ o
i 0 lc
Ax— a o _ AT
xx XT (5)
u J o s
X—
B B (_,—._,,‘ e e = - : [[
b T i | -
Uu_T | Tl o v 0o |

X—
We use that C is k-presentable. By Fact 4, the system

a/) ) hd\ 5 P 5

(b —B.) .

Ur’ U UeQ

is a colimit cocone on the k-directed diagram B:Q-—>A. Therefore the composite

Sea _oC: CoA factors through by :By—> By for some Ue Q which we can take to

contain Uy > that is, U, cU. That is, we have g as in

D £ c
d 1o cj a
XT
_——9 —
A, ——5 A AL
X X
g
UX_J 20 S
30
€yl ’ é‘ ‘
Z
By b, o By ~78r -
X— XT/ -

to make the commutativity 2o hold, where 2o is the equality of the two arrows from C to
BT .
Looking at the two parallel composites from D to B, in the diagram, denoted

h
..—__.; . . v
. By, we see that they are coequalized by by BUHB T{lerefore since D is

k-presentable, and 'Lé_r is the colimit of the K‘-ﬁltered system of theB\stRve can choose U

D

— URIRR s

LI
so that, in addition] we also have the commutativity 3 : that is, h=k .

Next, since A, is a pushout as shown, we have {: tA By producing the c\o\rmnutatlvmes

',)
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4o and 5., equalities of arrows A _ By, respectively C _ By
D £ c
d 1o cl
XT
———9 —_
Ay a Ay T
X—X Se g
Us— ); 20 s
40
B B
U b U T
X— v, U b
We put U _=U and ux=£ .
We have
a, axT
Ay Ay T
u
6o s ;
x—l 4o Ux= L l
B B B
Uy by v voby s T

4. was achieved before; 6o is true since each of the pushout coprojections c: C—>A_ and

a
X=X . SN
_— .
A A equalizes the two arrows A B

This ensures (3), and (4) for all y<x (for the latter, also because (4) holds for x— in place
of x).

This completes the construction

(xeP) I—> (UXGQ, uX:Ax—>BUx)

satisfying (3) and (4).

Now, let Xe f’ arbitrarily . In a nutshell, (X, UX s uX) is defined as the colimit of the

compatible system of all (x, U, > u) for xeX.

30



In more detail, define Uy= \J Ux . We have that U_e P, since #X<Kx , each #UX<K' , and

xeX X H
K is regular.
Define uy:A,=colim (AlX) —9BUX by the condition that uX°axX=bUXUX° u, for all
xe X . The proof that (X, UX’ uX) is a factor is similar to the proof for (x, UX, ux) the

case of x limit above.

The moreover part of (i) follows from the main part, by applying it to the derived good
diagrams A|X:P|X—>A, B|U:Q|U—A, and to the situation

a

XT
X T
u ° s
B B
U b T
where &= (X, U, u) .
Proof of (ii) First, we prove the assertion for the special case when both ‘51 and 62

start at the same point x in P (rather than at a general Xe P ). More specifically, we prove,
by induction on x according to the well-founded relation <, that factors '1’:1 and 52

starting at x have a common shift.

Let §.=(x U, u,) (ie{1,2}).

The proof for x=1 is similar to that for x limit, to which we turn now.

Let x be a limit point; the argument now is a straightforward appeal to the "uniqueness
property" of colimits.

In more detail:

We have Ax=colim(Al‘xll) .

For each yex/|| ,and for each ie {1, 2} , we have the factorization 77}1,= (v, U, u}ll) s

1 . . . . .
where u =u.oa_ _:A —B starting at y ; by induction hypothesis, there is Y_ such
y Ui’ 8yx ity U, gat y; by yp y

that the Y_-shifts of nl and n2 are equal.
Yy y y
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A e \\
J

Let Y= \J Y _.Thenthe Y-shiftsof nl and n2 are equal for all yex|| . Define
yexll ¥ vy
DEF .
h; = bUiYoui:AXHB@/;i (ie{1,2} ).
Since V

is a colimit cocone on the diagram Alx|| , and, for each yex||,

1 2
h1°ayx = bU Youy= bU2Y°uy= h2°ayx .Ay——éBY ,

it follows that h =h,, which means that the Y-shifts of uy and u, are equal.

DEF
Let now x be isolated. Define v, = ujea, (i=1, 2) . We have the factorizations

(x—, U, Vi) starting at x— . By the induction hypothesis, their shifts are equalized at some

veQ. Foreach i=1, 2, consider the diagram

f
dl a 10 5
XT
Ax—— Ax -
- X—X
\\ u.
~~ ° 1 lo js
™~
Vi \\\\
3 B B B
Ul b Y b T
Ui Y YT

obtained from the fact that a, ,€Po (1] . Since (x, U ui) is a factor, we have the

commutativity 1. . Therefore, the two arrows C:B are equal. Since C is

T

K-presentable, we can choose YeQ such that, in addition, for both i=1, 2, the two arrows in -
the same diagram C_ (B, are equal. N o . ‘\
e S
Let w.=b ou, . Then, on the one hand, as we just saw o . f@"v‘
i ULy "1 e s

1 ’\/\\A\\“f\‘
W1°C = W2°C 5

and on the other hand,
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Wioy y = Vioby y=Vyeby y=wyea

1 2 X—X

since, by the induction hypothesis, 2 and v, are equalized at Y. Since ¢ and a, .

are pushout coprojections, it follows that Wy =W, . This means that the Y-shifts of uy and

u,, are equal as desired.

2
Finally, for the general case of (ii): let §i= (Xi’ U, ul.) (i=1, 2) . Let X=X,UX, ;

XeP. By the "moreover" part of part (i), we have factors { , and 4 5 » both starting at X,
such that é;isg ; - The assertion will follow for 51 and §2 if we can show it for § , and

4 5 In other words, we may assume that 51 and 52 start at the same XeP.

This case now follows from the special case, for factors starting at points xe P, proved above,
by a colimit argument, exactly as above the case of x being a limit point was handled.

This completes the proof of 5.Lemma.

R — ~.

N J— — - B T —

S (/f loes O . ’
T i DEF

Next, we let G be a category such that #G ( = #( L homG(G, H)) ) isless than x,

- ) G, HEOb (G)

e

G H ... range"c;{/é"r Bbjééts of G.

We consider the functor category a%.

We recall that (X, G) denotes the class of all arrows ¢@:®—>¥ in A% such that PEX for

all G. NEEE
(\Iv’
Let ¢:®—>Y be an arrow in (X, G) ; let GeG. By (1), we have k-good generating

diagram Ay P—A with links in Po [I] such that

_ _aG . _ aC G_
9g=(ag=al :06-25———>al-¥c .

Let us fix a system {A of generating diagrams A G Relative to the fixed system, we

G} GeG
say that a factorization @=0¢p,

6

in the category a® , is good if, for each G, the factorization afT=(pG=0Go Ps is one that is
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| given by the diagram A G in the form

G G
—>A
XG T

& O A

Peg=231x } f g
G G

G X G,T
for some choice of sets X F£Pa (x a is an initial segment of P, not necessarily of
cardinality <k ), one for each GeG. The sets X o are referred to as the carriers of the

factorization, X a being the carrier at G.

i The factorization is k-good if, in addition, X &£ Pe ( #X <K ).

e

Thus, a k-good factorization of ¢ is given by a complex

((X €P). -, (Tg) ) )
G GGee c-9sHeq

such that, for each g:G—H, (XG, X Cg) is a factor for (AG s Ay &g, Yg) :

e e
e 1Xq e X7 e
A XG T
®g ° g o Yg
H H H
A i AXH - Ar
J.XH XHT

and, every time hog=k in G, we have that Thel'g=T'k .

The triple (X, U, u) being a factor involves the condition that the initial segments XxCp,
ULQ are of cardinality <k . If we remove this condition, the above, originally stated for
x-good factorizations, gives a characterization of a good factorizations in general. (We don't
want to use "k-good factor" for "factor”, since the expression "factor" is used often in the
meaning set as it is now. )

From now on, we assume that KZRl .

6. Lemma  For any system ( YG) cea of sets Y€ lgG, , there is a x-good factorization (7)
of ¢ suchthat Y, C X, forall GeG.
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Proof We define, recursively for nelN , sets Xge PG , one for each GeG, and

arrows un:AG %AH , one for each g:G->H, such that, for every nelN,
g xg X+l
H

+1 |
1) for each G, ngxg ;

DEF
n +1 n, .
2) for each g:G—H, ég = (Xg,, Xg , ug) is a factor for

(AG” AH, ®g, Yg) ;

n+l

g as factors for (AG,, A, ®g, ¥Yg) ;

3) for each g:G—H, éjgsé

n+1 n+l n G

4) | every time k=goh, we have u o= up <>ugoaXnGX?;l : in other words,

with 6-Z> -5k, ¢%=8°9 k| we have the commutativity
G
aXn +1
e s Re
+1
XG XG
uP o un+l
g k
H K
AXn+1 un+1 Xn+2
H h K
0 DEF
We put Xo = Yoo
Next, for each g:G—>H, weuse 5.(i) and let V_e pr and v :AGo HAI; such that
g 9%, g
0 : 1
(XG” Vg, vg) is a factor for (AG’ A 0g, Yg) . For every GeG, we let XEPs be the
set Xi=XOU \J {V_:codom(g) =G} . For every g:G—H ; we define, u2:a¢ A
GG g g 0] 1
X X
G H
as ul=a” 1°Vg: We have satisfied 2) for n=0 .
VvV X
gH
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Now suppose that n>0 and we have defined all Xg for m<n+1, and all ug for m<n;

we'll define the Xg+2 and the ug+l

A H +1
For every g:G— H, we define VgePH and v_:A —>Ay, such that XII-]I EVg,

SC%; (Xg+l, Vg’ Vg) is a factor for (A A, @g, Yg) , and ﬁg < Cg; for this, we use
(1).

Next, let us fix the triple (g, h, k) = (6-Lu 39 K, GE—% K) ; we construct the
following diagram:

G
a v
a% a® +l——k—%A§ K
xg X'Z, K\\\\
3
1o v 30 AK
5 ¢ P
g
H Ag ¥ Ag — gk
%o g 7
H K_ K
A el v Ay a
x2 h h

(we have omitted the subscripts from the a-arrows).

w and w are chosen so that n=(V 7 W, w) is a factor for (AH, AK, ®h, ¥k) such that

Ch= (X?I’Ll, Vi Vh) < 1 ; this makes 2o hold.

Since &_,'g: (Xg+l, Vg’ vg) is a factor for (AG, .AH’ ®g, ¥Yg) , and n= (Vg, W, w) 1sa
factor for (AH, AK’ Oh, ¥Yh) , and, ® and ¥ being functors, dk= (®g) o (dh) and
Yk=(Yg) - (¥h) , it follows that 8= (Xlg;l, W, wo vg) is a factor for (AG, A, ok, Yk) .

Since § = (X'Z,+1, Vs Vk) is another factor for the same (A o AK, Ok, Yk) , by 5.(i1),
there is a common shift of 6 and § K this is precisely the existence of Z in (7) so as to

make 3o hold.

Let us re-denote the set Ze Py as 2 (g, h) to emphasize its dependence on the composable

pair (g, h) ( k=heg) .

Next, consider an object K of G, and define

36



22y {Z(g, ny : (g h) composable, codom (h) =K} .

Define, for k: G—>H, the arrow

n+l |G K
A —>A
k xn+1 Xn+2
G K

+1 +2 _n+l +2
so as to make §k=(XZ ,XZ Uy ) the X; -shift of the factor

+1
Ck—= (XHG 1) Vka Vk) .
. nDEF Xn Xn+1 n n+l DEF X.r1+l Xn+2 n+l
With ék = (X5 Xp T, up) ék = §k=( G Xk > Up ) , we do have that

&ﬁséﬁ*l , to satisfy condition 3) .

Returning to the a triple (g, h, k) as before, and the corresponding diagram (7), with
2=z , we have 10 by the inductive assumption égs Cg . We complete the diagram (7)
K
with an arrow Z (g, h) LX.?z , and we see that the composite arrow
G K G K
A —A —A
+1 +2 +1 +2
X Xy Xy Xy
that the requirement 4) holds as the commutativity of the outside of the completed diagram

(7).

(g, h)

equals u£+l , and the one A equals uﬁ’q . We obtained

1) holds with n+1 in place of n. 2) holds as stated.

The recursive construction is complete.

We complete the proof of 6. Lemma by taking colimits.

In more detail:

For Ge G, define XG——:n\eJINXg' Since RO<K, and K is regular, XGe Pg.
For GeG,let T'(G) = A%

e

.For g:G—H, let
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I'(g) = colim ug : ' (G)=colim a° — scolim A§n+1=F(H) ;
G H

in other words, I' (g) is determined by the commutativity of

G I'(g) o
AX AX

G H

G H
aXn e aXn+1
Jeute H XH
G AH
n +1
%5 Y %y

for every n . Indeed, on the one hand, the left vertical arrows are the colimit coprojections of
a diagram B:IN—>A ; this fact is a case of rearrangement according to Fact 3, "case one". On

n H
u a

the other hand, the composites a% ——g—aA;Hl —————)A;Jr for n=0, 1, 2, ...
G H H

form a cocone on the same diagram B, as a consequence of item 3) in the construction.

Let nelN, and let cZH —h» K, k=hog, and consider the diagram

AC I'(g) H I' (h) K
XG XH XK
1o afﬂ 20 alﬁ
n+1l
a® AH Uh AH
n +1 +1
ug " ¥y 7 Xy
/ 3 /<
- — a
A)C;n n A§n+l
G Uy K

1+ and 2 hold by the definitions of T'(g) and I (h) . 3. is item 4) of the construction.
The resulting outside commutativity says that

G I'(h) -I'(g) K
AX AX

G K

G ° H
a a
G K

A A
n +1
Xg Uy Xy
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commutes for all n -- which says that T (h) I'(g) answers the description of, and
therefore equals to, I' (k) .

This completes the proof of 6. Lemma.

7. Proposition Assume:

is a regular cardinal, KZRl ;

is a category such that #G<k ;

is a cocomplete category;

is class (set) of arrows in A such that for every feI,both dom(f) and
f) are K-presentable.

o

~H

codom

Then

G .
¢ porz11,6) = ¢®) 1(c'® [pol11, <K1,G)]

Proof The fact that the class on the right-hand side is contained in the one on the

left-hand side is obvious.

Let @:®—Y be an arrow in the class on left-hand side. By the conclusion (1) stated at the —

start of this section, drawn from the work in previous sections, we have, for each GeG,a . -

K-good diagram A g PgA with links in the class Po [I] , and such that //' \ . uaC

- . r V- AR

(AG)—(pGJDG%‘PG . Q\\}: t /

Recall the notion of good (not just k-good) factorization. . 7 - e - 4
JI— RS a}r@ , 42 (P.j‘ -

With a limit ordinal o, let (Xﬁ> B<a be aﬁwindexing by ordinals of the set || P

G
GeG w) 10 a)“ Yo

. N . »0r

We are going to construct, by transfinite recursion, a transfinite system ( wock /

p o
(rgea®, o—Lorg—Powy g

of good factorizations of y , with carriers Xg (GeG, PB<a) ,"carrying" the arrows

. —_— G H —_— .
Fﬁ(g) .FﬁG-A B—HAXB—FBH (g:G—H) , C))

XG H
and with the following additional properties:

1) For a fixed Ge@G, the carriers Xg form an increasing continuous system whose

unionis P :
G
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a)  y<P<a — ngxﬁ ;
b) for B limit ordinal, \ J Xg = Xg ;
v<B
c) for G, B and xe P, if 1 (x) =Xy for 1 the coprojection

) . . Y+1
L:Pg—> GEGPG (briefly, if X,f P ), we have xex["~.

2) Whenever B+l<o, # (Xg+l— g) < K ("small increments").

3) Forany g:G—H in G,and y<f<a, the diagram

aG ﬂ
Y
G Xe G
Ay 4B
Xa Xs
T o r
yg } Bg
aff . AHﬁ
XI}; a’, g Xk
XXy

commutes.

Before we carry out the construction, we want to elaborate on the (rather obvious) fact that the
construction proves the proposition. For this purpose, one repeatedly uses the fact that colimits
in a functor category are computed componentwise.

Suppose we have 1) to 3) done.

We have natural transformations U Yﬁ:F y%r‘ﬁ (ySB) for which (u ?’/3) g=2 i : the

Y
X#a

naturality of u VB is 3).

We have a functor T': [a) ={: <0} — 5% for which C(B) =FB , and

ev
T (y<PB)=u,  ; for GeG, the G-component [o) —I‘eAG——LA of T is the functor
(o) ——> A defined as
B— a%, (y<B) ——>a° g -
X, xIxt,

I" is a continuous transfinite system I': [a) aAG: for B a limit ordinal <a,
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(U,a:T.,—>Tp) is a colimit cocone on the diagram I'l [B) , because this holds after
vB Ty T B v<B
evaluation at every GeG:

(A

ATp) ..
x XgYB

is a colimit cocone on the diagram

this fact being a case of "rearrangement” of the colimit A§=col im (AGrX ) according to

"case one" of Fact 3.

In fact, we have an extension of I',alsodenoted I',to I': [&] —9AG (thatis, T' (&) is
defined) as follows.

The system (O'ﬁ :T i -Y¥) B<a of natural transformations O'B is a colimit cocone on the

diagram T, since after evaluation at every Ge G, this is true:

2y
X'T
G G G
<AX[3 ;AT)ﬂ<a
G

is a colimit cocone on the diagram

G ngg

G
<7 Axg>7SB<a’

this fact being a case of "rearrangement" of the colimit AG=col im (AG) according to "case
g g T g

one" of Fact 3 because of ﬂU Xg =Ps, which holds by 1)c).
<0

At the same time, we see that the composite (I') of I' is ¢, since this fact is true after
evaluation at each GeG .

For GeG, the G-components of the links u of the AG-system ", which are the

Y. Y+1
arrows aG are in G[Po[I], <k] by condition 2) and Fact 5, part 2). Therefore,

Y, Y+1’
X a
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they are in C[Po[I],<k], by 2. Prop., part (i) ("in fact,..."). In other words, the links “Y y+1
themselves are in (C[Po[I], <k, G) .

G
We have shown that ¢ belongs to cld) ({(ClPolIl, <K], G)) as desired.

T —

In turn, we carry out the construction 1) to 3).

. 0 G
For fB=0, we let FO=A, po=1dA, X=B] .

Let B<o, and suppose all items for smaller ordinals have been defined. The new items to be
defined are the ones displayed in (9).

If B is a limit ordinal, the new items are uniquely determined by conditions 1)b) (defining the
sets Xg (Ge @) ) and 3). Given g:G—>H, the facts of 1)a) and 3) being true, for all pairs
(8,7) such that 8<y<B in place of (7, B) , ensure that there is a unique arrow I' 89

satisfying 3) with all y<f, because

¢ % g G
(2 y >A B y<p

this fact being a case of "rearrangement” of the colimit Ai:col im (AGPX ) according to

"case one" of Fact 3.
(One is tempted to dismiss the issue by putting
DEF
I“ﬁ = colim v ,
v<B
but this is of course not enough: we are not defining things here merely up to isomorphism).

e

It remains to handle the case when B is a successor ordinal, B=y+1 .

Recall the construction of the "end-segment” diagram A|R and the facts about it from Fact 5.
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We will apply 6. Lemma to the the arrow 0'},: r Y——%‘P in place of @:®— Y, the diagram

Y. Y - .
AG|XG.PG|XG-—>A in place of A,:P,—>A (one for each GeG).

Note that T", (G) -a% -
Y Xg

generates as its composite the arrow

(Ag | Xg) L Note that, by Fact 5 , the x-good diagram AG[Xg

(o,) ¢ 'AG —%Af.

We have xge chPG , picked out by the ordinal f at hand. Let G,eG be the object for
which x ye PG0 . For an application of 6. Lemmma, we put YG0=XY‘L , and YG=® for
G‘¢G0 .
By Fact 5, (PG|Xg) " is identified with PG”Xg = {Ze fDG:Xé_I;Z & # (Z-Xg) <k} , and the @
diagram (AG,|Xg) " with AG restricted to PG”Xg. Thus, 6. Lemma gives us, ( (¢ b 39

waku)
a functor Fﬁ:GeA (as T' of 6.Lemma), f

o}
natural transformations T" ¥ T F[B B ¥ such that O'ﬁor=dy,

and

B in P YrxP
for each G, a set, denoted Xo (as XG) in P, such that XG_I;XG,

4 (xg-xg) < x,and

XGT XG'

_ G _ G . AG G -
FB(G) —AXB , T,.=a B.A ——9Axﬁ, (O'B)G a

This is sufficient.
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§5 The final part of the proof, not using good diagrams
The next proposition is completely independent from the work done so far.

8. Propeosition Assume that

K is a regular cardinal;
A is a locally x-presentable category;
I is a set of arrows in A

(a,)

Then CPo™® (1], <k] = Po[C[Po (1], <k1]

Proof The fact that the right-hand side is contained in the left-hand side is obvious.

Let me use the notation 7 [J, a] for the class of all continuous transfinite systems
A: [a] —>A of length o whose links are in the class J. Thus,
feClJ, o] «=3AcT[J.a]l .f=(A) .

T[a] denotes the class of all continuous transfinite systems A: [a] —A of length o,
without anything being said on links.

Let o be an ordinal <x, and let AcT [Po[I], a] . Forevery B<a, we have, and we fix,
a pushout diagram

a
, Pp+1

Aﬁ AB+1
of - ]
with fBeI.

We are going to construct Be7 [Po[I}, o]l , B: [a] >4, (1) such that the given diagram

A is a pushout of B (see §1), and, in particular, (A) is a pushout of (B) . The
construction will be a recursive one; we will construct the restriction B! [B]: [B] —A " by

recursion on the ordinal B<c¢ . Simultaneously, we have to produce other items, to keep the
recursion going.

More fully stated, we propose to construct an "augmented triangular matrix of objects and
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arrows" in A (mostly in A ):

objects B‘E ( fsa, Pspso) in A

"horizontal" arrows B”;—LB‘B ( y<Bsu<a);

M

"vertical" arrows BE——LB% ( BSvsu<a );

T
"upper augmentation" arrows B%——LAB ( BSus<a);

"lower augmentation" arrows

"~ A

p B 9841 B+1
B .
Dﬁgﬁ—%Bﬂ, Cﬁ—b B"’l ( ﬁ<a)’
all subject to the following 1) to 4):
1) For any u<a, the "horizontal" diagram BH. ful -Aa " is a continuous
transfinite system.
[Explanation: BH is defined by
DEF DEF
H - pgH M e _ .
thus, we require
pho=id bHoebl = bk <y<psu) ;
ﬁBI, vB°08y ™ °5p (O6<ysBsu) ;

and

for B<u a limit ordinal,
(b’;B:B‘;———eB‘é) v<B is a colimit cocone on the diagram Bt (g 1
2.1) Forany B<a, the "vertical" diagram B g (B, a]l >A i 18 a (not necessarily

continuous) transfinite system.

[Explanation: B, al = {u:psu<ajl,
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u
B = <
thus, we require

b‘é“ - id, bEuobﬁv = bfﬁ’“ ( B<psvsy)

Moreover,

2.2) (b’éT : B‘é——eAB)BSIka is a cocone on the diagram BB .
[that is:

bléTobgl‘:bET (Bsv<u<a) ]

3) The following are pushouts:

B"L___Yﬁ__éB‘é’

Y
3.1) b;’/ﬂ 0 }bb’“ ( y<Bv<u<a )
)N ) 4
Y v B
byp
3.2) b‘;ﬁ o [ BT ( y<Bs<<us<a)
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e e 6

B, B+1 B, B+1
b8

3.3) Bg o c}B+1 ( B<ax)

4) For all B<a, we have
A
B T
\bﬁ
° B
PB Bﬂ
e

Dp

The desired entity, denoted B: [o] A K above, is going to be the "horizontal" diagram s%
mentioned in 1) for p=a . 3.3) says that the links of B% arein PolI] ; 3.2) says, for

y=0, B=p=o,that (A) isa pushout of (B) . Thus, the construction, once it is carried out,
will certainly prove the proposition.

Suppose P<o, and the construction of entities marked as sub- or superscripts by ordinals
v<B has been carried out. .

_ 0_ N 0T_
For B=0, we only need to say that By=Dy , po-ld'D0 , and by =p -

Let B>0 be a limit ordinal, B<a.

The construction of the entities marked by B (and, possibly, by smaller ordinals) is carried
out in two stegs. In the first step, we construct entities /ike the required ones except the arrow

ﬁB : Dﬁ%B of which we don't obtain a version. In order to be able to get the last arrow, in
the second step, we modify, by an appeal to ﬁILac_@the system we got in the first step.
The first step of the construction is a straightforward "taking-limits" action.

The entities gotten in the first step are denoted by the letters E (when they are objects) and e

47 S P e



(when they are arrows); their sub- and superscripts will exactly follow their, eventually
desired, B- , respectively b-versions.
We define, for y<f3,
B DEF v
E = colim B = colim (B_![7y, B)),
Y v<f Y Y
with B_ [y, B) the "vertical" diagram B y (see 2)) restricted to the set
[y, B)={v:ysv<B} .

Since y<f<a< Kk, the definition makes Eg K-presentable.
The vertical arrow e;//B : B;%E{; is a colimit coprojection ( v<f3).

The horizontal arrow eh , EgéEl; is defined, through Ef being a colimit, by the
requirement that, for all v<f, the following commute:

B
Eg——:abl—»Eg
evﬁ evB
IR
Bg——?;r——9B¥
oy

One notes that 3.1) for ordinals <f implies that (1) is, in fact, a pushout square as we want to
fulfill 3.1) for the new cases.

For y<f, the vertical arrow e[;,T : Eﬁ——)A y is defined, again by E[; being a colimit, by
VT

the condition that, for all v<f, e?lTo e;/,B =e ¥

Using, for 8<y<f, the (already known) pushouts

a
8y
Aa————eAy

b;an[ a ‘{b};T
b pH
) b’éy Y
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we see that the squares

a
ag——2loa,
BT BT
€5 H €y @
B B
B %y
oY
are pushouts.
DEF
Eg = colim Eﬁ = colimEﬁr[ﬁ) )
<B

b{%:BQ——)Bg : colimit coprojections.

Since B<a,and a<k, Eg is K-presentable.

B

Note that there are no new pushout requirements according to 3.1) involving the object B
However, we need, and do have, the pushout

a 1B
el;T] g

% 2B
=

BT
]eﬁ 3)

B
vB

as a "horizontal" colimit of the pushouts (2).

A is locally x-presentable; since Eﬁ €A, the comma category I:Eg lA is also locally

0
k-presentable, and its x-presentable objects are those in 4 K=Eg lAK . For the object
AO
X= egTT of X, the comma category & KiX is x-filtered, and the forgetful functor
B
Eo
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Y

has X as its colimit, via the cocone (Y, y, x) >x.

by
o™

Let us write 2 for the comma category 3’=Eg 1A, and take the functor "pushout along

B B B
—>F :
0B’ B
G: 4 /i'
y—Y% 5z y %52
y] P )A’T pe
B g
EO Eﬂ
A
) B
By (3) for y=0, the value of G at X is (can be taken to be) X = egTT . G preserves
p
E

colimits; it preserves the colimit of F described above. Combine this fact with the fact that
the forgetful functor Z—A preserves connected colimits, in particular, the colimit of

Geo F: IHX%E’.

It follows that the system ( ?—leAﬁ) (Y, y, x) ° indexed by the commutative triangles

(Y, y, x \ / T, is a colimit cocone on the x-filtered diagram

¥ lx—— >A @

(Y, y, Xx) m—— Y
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here, SA{ and }A(—X—éAB are defined, for a variable triple (Y, y, x)e€Ob (& KlX ) , by the
diagram

4
N
eng o Y 5Y o
AN
B
E ;
0 egﬁ

We now apply the fact that the object D, is a k-presentable. Therefore, the arrow
P ) B

p i : DB —9Al3 factors through an object of the diagram (4); that is, there are, and we fix such,

BT

triple (Y, y, x)eOb(IKiX) , and an arrow u:Dﬁ—MAf such that xo u=eB

We define the objects Bg as Bg =Y, Bg as Bﬁ =1A/ , and the arrows bgT : BgeA B as
bgT=.;(, ﬁﬁ:Dﬁ%Bg as §ﬁ=u.
In between, the transfinite system BI3 : [B] —AaL is defined as the pushout of E[3 along

y: E[3 - Y=Bﬂ (see §1 for this notion); this matches the definition of B[3 iven before.
0 0 B &

For y<f , we have the arrows bgT : B?/—>A ¥ (y<B) and }A/Y: E[;%B?/ , defined by the

diagram

pr A7
x w] b
v
P /
Bg oY Bl; o |ePT

AO
N
Sl b
/ o }%
A

0y

this matches the previous determination of bB T ; also, bﬁT=x and y_.=y.
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vB _

We complete the definition of the remaining arrows for the stage B by putting b y

~

y oe;ﬁ (y<v<p) .

Y

By what we have, the conditions under 3) for  hold true.

This completes the recursive step for B<a a limit ordinal.

Finally, let B<a be a successor ordinal, fB=y+1 . We have the items that are marked by vy
and lesser ordinals.

The outside square of the following diagram:

e o

y \
By O % 9B
D, .
Y
D c
Y Y

is, via 4), the pushout

Y B
p;y}‘ a ]}qﬂ
PyE, >Cy

From this, we obtain (as before), for an arbitrary factorization (Y, y, x) , xo }/:b;-r , of the

arrow bz-r , by pushout, the diagram (5), involving a factorization (.’;f, v, %),

;“}A,:qﬁ (=qy+l) , of the arrow ag -
Since A y is the colimit of the objects YeA ., arranged in the «x-filtered diagram

[ (YﬁéAY) Y] :AKlA——éA , we have that Aﬁ is the colimit of the objects iA/, via the
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diagram [ (v5Ha) b §'] :A K\I,A———>A . [This argument was done more carefully in an

essentially identical case above.]

)eAK, it follows that there is (Y, y, %) , xay:bYT , such that

Since Dﬁ (= ¥

D7+1
pB:Dﬁ eAﬂ (not in the (5)) factors through lAf—X—>Aﬁ : we have an arrow u: DB—u> %

such that xo u=pﬁ .

We define B-indexed items by appropriately (re-)naming things in (5):

A A
SN % B
T Y g B
by | o Bh sl
Y b
418 7B °
Y Y
B A
Y o CIﬁ 9B
p
Y[ f’}l
D C
Y 14
We define f) B:u . Furthermore, we define
DEF DEF DEF
B _ BY Br = oY B "2 uB o .pY
B f[)/) = B s b6 = bs for 6<'Y, bSﬁ = bYﬁ bs,}/
This completes the proof of 8. Lemma; ' - » .- -

f

Although the following 9. Lemma has nothing to do with transfinite composites or good
diagrams, its proof is quite similar to that 6. Lemma. The situation for 9. Lemma is a more

elementary one. Both lemmas lift facts for the category A to the functor category A% . There
may be a common generalization that would spare us the repetitions involved.

9. Lemma  Suppose given:

° K : regular cardinal, KZRl ;

o G : category of size <K

° A :locally x-presentable category;
° functors and natural transformation
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G
@l @, l\y ;
A

0 a family, indexed by objects GeOb (G) , of pushout diagrams

ge;
oc————— Y6

pG[ o [qa (6)

D, ——>C
G fG G

(involving components of the natural transformation ¢:®—Y¥ , already introduced before)
such that fGe Arr (AK)

Assertion: there exist
o functors and natural transformation
G
Al v, {I‘ ;

A

taking values in A e

o a pushout diagram

in a¢ (at each G, we have a pushout diagram of the corresponding components),
"interpolating" (6): there are

o for each G, arrows t . and u, asin:

G G
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G fq G
such that, furthermore
oo pGo tG=pG y ()'Go ug=qG .
Proof Let g:G—>H . The required items should fit into the diagram
/ o / H

oG YG

with the expected arrows, partly generated by the given g ; the dots are to point to what is

missing in the data from the point of view of the goal.

By recursion of n, we construct:

for every nelN and GeOb(G) ,

. bo!

o objects DG’ CG of AK_,
n .n n+l _n

° arrows rG.DGe(DG, tG .DGaD
n

o sG.CG—>‘PG,
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n+l +1
ug Cgecg ,



1
o fG.D eC’n

G b

Qs

and for all neN and G- He Arr(G) ,

n +1
o arrows dg.DGeDfI R cg.

satisfying the requirements displayed as follows:

n Cg_écn+l;

fn+l
Dg 1 G
n+lI
G ]
gl
y £5
Cn+1

G
n+1 H
D
g
bel
DG £ Cg
G
for all G:
0 0
LX) fG=fG, rG=PG,
forall G andall n:
rn+1°tn+l_rn sn+l
G G TG’ G
and, for all GiH—gK, G—%K :
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$5=0g
n+1_un.
G G
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n+l n+1l

t u
G n+1 G +1
Dg Dg cg cg
dn dn+l cn c1'1+1
o k o k
0o g g (8)
+1 +2 +1 +2
— D _
DZ dn+1 K C?I Cn+1 C';
h h

Let g:G—>H.

Using the canonical k-filtered-colimit-of-k-presentables representation of the object ®H, we
find objects Dge A and arrows dg , t r

g’ g’
g tg g
DG——HDg , Dy Dg oH |
such that
(I)gop =1 od r ot _=p
Dg G 9 9 ,oH, DH—g——g—HH(DH i

Taking a fixed HeOb (G) , and looking at all g:G—>H with the fixed H, of which there are
< k-many only, we can make the above items dependent on H only. We have D, t and r,

depending on H alone, and we have, for each (G, g) such that ¢-L>H , the arrow dg , as

follows:
d A
pg—2»p ,  Dy—F—D L —0H,
such that,
D, 09°Pg T % oH DH——————>r°t PH on
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Using (6), we have the pushouts

Py
oy——— SYH

4 a3

A A A

Consider variable triples (X, x, y) such that Xea K DX x Ys0H and

pY°2*=L ,¢H . and apply pushout to get the diagram

OH—— >YH
P Py

y o y

x o X yox=r. 9)

Since the object (®H, r) of the comma category DJA is a canonical K-filtered colimit of
objects (X, x) with Xea ., the object (¥YH, r) of the category DI¥H is the k-filtered

colimit of the objects (}A(, x) , with colimit coprojections the }Af: ()A(, x) = (YH, 7) .
Therefore, since CLEA, , wecan choose (X, x, y) , yex=r so that, for every (G, g) ,

g ; . = 5 Wero
G-Z>H, thereis cg.CG%X such that yocg_‘l’g qg -

It is now worth looking at the diagram

58



&g 0%
TY Yg |y
oy £, i
c A
o g AGA
pg dg Xot dg Xot
D — > C
fG H fH H
e le!

(for £, see (9)). The "top" quadrangle is a naturality square, thus commutative. By also using
fod

the other known commutativities, we get that the two arrows D, X are coequalized

—
c of
g G
by the colimit coprojection y . Therefore, since D€A. we can make the choice of

(X, x, y) , depending on H alone, so that, in addition to what we had before, we also have
fod
that for all g: G— H, those two arrows D, S X are equal.
g G

For a given object H, with the final choice of (X, x, y) and the items derived from
(X, %, y) , we define

DEF DEF DEF
1 0 1
Dy = X, ty = t, ry = r,
DEF DEF DEF
1 iy 0 2 1 A
CH = X, uH = t, SH = I,
1DEF
£y = £ (for £, see (9));
and for g:G—>H,
0 DEF 0 DEF ,
d = tod , C = toc
g g g g

For all GeOb (G) , and all geArr (G) , we have constructed

1 1 1 1 1 1 1 0 0
DG’ CG’ tG’ Up s Tos Sg» fg, dg’ Cg’

and have satisfied all relevant requirements; note that the two squares (7) mentioning n+2
are not relevant yet.

Let n>0 , and suppose we have constructed, for all GeOb (G) and all geArx (G) , the
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items

n+1 +1 n+l n+1l n+l n+1 +1 n
G Cn G s Ug s Lo o fn dg c

and items with lower indices.
We repeat the above, and construct the items

n+2 +2 "n+2 An+l  An+2 An+2 n+2 +1 An+1
Cn , Uy s TG s Sg dn g

that satisfy the requirements stated for the corresponding desired unhatted items, except the

ones in (7).

Let 6-L>H —h% K, G———% and consider the following diagrams, with entities already

constructed:

(Dh/ OK Yh = YK
g on Yo yy—
AN+2 / ~n+2
oG Tk ¥G Sk
rn+l i+l sn+:L An+1
n+1}‘ H d?{ > 15“*2 n+1T H C'n+2
t:G sk K s /
Dn+l/ C,r1+1/
G ‘ &n+l G ‘ én+l
n+l h n+1l h
t:G T Dn+1 uG T C,n+1
g o "
G g G g

//CDH AN+ 2 YH sn+2
e K L ¥G~ K
rn+1 Anel ~ n+l
H a» An+2 f H Ane2
rn+l k__ DK Sn+1 | >, Ck
G Dn+l// f G +1 //énﬁ
. ) e 5//<n+1
g+l a“ |n+1/ dﬁ £ un+lT | +1 “n
G g D G — cg
n - n
DG £ CZ‘ Cg

A part of the last diagram, the rectangle
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dK YK
AN+ 2 a A1+ 2
K Sk
“1+2 N+ 2
Dj;{l f‘n+2 CIIé

is a pushout.
® and ¥ are functors, and thus ®k=0ho®g, Yk=¥Yh-¥g.

For these and other reasons, everything commutes, except the two quadrangles on the left side
and the right side, the ones that correspond to the two squares in (7).

By an argument that, by now, must be familiar, for a fixed object K, we can "raise" D?'z

to Dn+2 , and have corresponding arrows with all hats removed, such that, first, the left side

K
quadrangle becomes commutative, for all situations ¢-Isu -he K, G—]—{=—hﬁ> K, and then

further so that, again for all ¢-LH Bk , g f=heg, ¢ , the right side quadrangle becomes

commutative.
This completes the recursive construction.

To complete the proof of the lemma, we define

AG = colimDIGl, I'G=colim Cg, u/G,= colimfIGl
nelN nelN nelN

n+1

n+l u,=colimu
- G

t.=colimt ,
G G nelN

G peN
more precisely, AG=colim D, where D,:N—>Aa, D (n) =D, D_(n<n+1) _gfrd
’ G’ G’ e G’ 7G G
and similarly for the others.

Since K>RO , AG and I'G are all in A

Conditions (8) ensure that A and I are indeed functors, (7) ensure that y is a natural
transformation.

This completes the proof of 9. Lemma.

10. Proposition Assume

K is a regular cardinal, k=X 1
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G is a category of size <K ;
A is alocally x-presentable category;

JC Arr (AK) .
Then
G) A )
(Po(A) (J1.,6) = po (A [(po X [J1,6)]
Proof This is direct from 9. Lemma. We take an element ¢@:® ¥ of the class on the

left. We have the assumptions of the lemma; in particular, the arrows f,:D,—Cg from J.

The natural transformation y:A —T" constructed in the lemma is in (Po Ko, G) ,and ¢
is a pushout of it.

Theorem Assume:

K is a regular cardinal, KZNl ;
G is a category such that #G<x;

A is a locally x-presentable category;, 5
ICArr(A) . 4
N\
Then X
N
G (A_)
@@ 126 117,68y = ¢® ) 20 @ ((c®) (po K 111, <1, G)11 .

(The conclusion in words: every natural transformation between functors G:A whose

components are transfinite composites of pushouts of I-arrows is a transfinite composite of
pushouts of natural transformations whose components are <x-length transfinite composites of
pushouts in A " of I-arrows.)

(A )
Since the class is (C(A) (po K [1] , <k1, G) is essentially small, Jacob Lurie's lemma is

contained in the theorem.

Proof ) R
(@ 2@ (117,0) = B (@ 2o (11, <k, 6)]
T
7. Prop.
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G (A )
_ C(A )%O(A) [/C[PO K [I],<K'],G>]]
T

8. Prop.

S T

Voo

i
G G,y (a) (a)
_ @ poa )(PO KVC[po K11, <x1, @)11
(a)

1

10. Prop. for J = C[Po K

[I], <xk]

G G (Aa.)

- C(A )[PO(A )[<C[PO K [I],(’C], G>]]

Since ICArr (AK) , and AK_ is closeyd under colimits of diagrams of size less than k, we

(AK)
have J = C[Po

(a,)

[I], <x] C Arr (AK,) as well; thus, 10. Prop. is applicable.

Obviously, Po [J] = J, justifying the last step.
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