
THE LOCAL WEAK LIMIT OF THE MINIMUM SPANNING TREE OF THE
COMPLETE GRAPH

L. ADDARIO-BERRY

Abstract. Assign i.i.d. standard exponential edge weights to the edges of  the complete graph Kn,
and let Mn be the resulting minimum spanning tree. We show that Mn converges in the local weak
sense (also called Aldous-Steele or Benjamini-Schramm convergence), to a random infinite tree M .
The tree M may be viewed as the component containing the root in the wired minimum spanning
forest of  the Poisson-weighted infinite tree (PWIT). We describe a Markov process construction of M
starting from the invasion percolation cluster on the PWIT. We then show that M has cubic volume
growth, up to lower order fluctuations for which we provide explicit bounds. Our volume growth
estimates confirm recent predictions from the physics literature [18], and contrast with the behaviour
of  invasion percolation on the PWIT [2] and on regular trees [6], which exhibit quadratic volume
growth.
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1. Introduction

A very recent preprint, written by the author of  this paper and Broutin, Goldschmidt and Mier-
mont [3], identified the Gromov-Hausdorff-Prokhorov scaling limit of  the minimum spanning

tree of  the complete graph and described some of  its basic properties. The current paper comple-
ments the work of  [3] by identifying the un-rescaled or local weak limit of  the minimum spanning
tree of  the complete graph. Both the work of  [3] and the current work open avenues for further
research, into developing a more detailed understanding of  the properties of  the limiting objects.
We highlight some specific questions of  interest later in the introduction; for the moment, we jump
right to the definitions required for a precise statement of  our results.

Rooted weighted graphs. A rooted weighted graph (RWG) is a triple G = (G, ρ,w), where G =
(V (G), E(G)) is a connected simple graph with countable vertex degrees, ρ ∈ V (G) is the root ver-
tex, and w : E(G) → [0,∞) assigns weights to the edges of G. By convention, we view unweighted
rooted graphs with as RWGs, by letting all edges have weight 1.

If G = (G, ρ,w) is an RWG and G′ is a connected subgraph of G containing ρ (i.e., G′ is a
graph with ρ ∈ V (G′) ⊂ V (G) and E(G′) ⊂ E(G)), then (G′, ρ, w|E(G′)) is another RWG,
and is a sub-RWG of G. We sometimes write (G′, ρ, w) instead of (G′, ρ, w|E(G′)) for succinctness,
when doing so is unlikely to cause confusion. Given S ⊂ V (G) with ρ ∈ S, we write G[S] for the
sub-RWG of G induced by S.

For an RWG G = (G, ρ,w), the graph distance dG : V (G)× V (G) → [0,∞] is given by

dG(u, v) = inf {|E(P )| : P a path from u to v in G} ,

for u, v ∈ V (G). (Elsewhere we let inf ∅ = ∞, but note that here the infimum is non-empty as G
is connected.) We similarly define the weighted graph distance by

d′G(u, v) = inf

 ∑
e∈E(P )

w(e) : P a path from u to v in G

 ,

For v ∈ V (G) and x > 0, we write BG(v, x) = {u ∈ V (G) : dG(u, v) ≤ x} and B′
G(v, x) =

{u ∈ V (G) : d′G(u, v) ≤ x}. We say G is locally finite if |B′
G(r, x)| < ∞ for all x ≥ 0.

Prim's algorithm/invasion percolation. We briefly recall the definition of Prim's algorithm (also
called invasion percolation) on an RWG. Let G = (G, ρ,w) be a locally finite RWG with all edge
weights distinct.

Prim's algorithm on G.
Let E1 = E1(G) = ∅ and let v1 = v1(G) = ρ.
For 1 ≤ i < |V (G)|:

⋆ let ei = ei(G) ∈ E(G) minimize {w(e) : e = uv, u ∈ {v1, . . . , vi}, v ̸∈ {v1, . . . , vi}};
⋆ let vi+1 = vi+1(G) = v and let Ei+1 = Ei+1(G) = Ei ∪ {ei+1}.

If G is finite then, writingn = |V (G)|, the graph (V (G), En) is the unique treeT = (V (T ), E(T ))
with V (T ) = V (G) and E(T ) ⊂ E(G) minimizing

∑
e∈E(T )w(e); in other words, it is the mini-

mum weight spanning tree (MST) of G. If G is infinite, however, {vi, i ≥ 1} may be a strict subset of
V (G), in which case the tree constructed by Prim's algorithm is not a spanning tree; we call it the
invasion percolation cluster of G.

There is a large corpus on minimum spanning trees/invasion percolation clusters of  random
graphs, with contributions from both the combinatorics and probability communities (we refer the
interested reader to [3] for a detailed bibliography). In many settings, minimum spanning trees and
forests turn out to be intimately linked to an associated percolation process. This can serve as both
a motivation and a warning (to justify the latter epithet, we record Newman's observation [24] that,
weighting the edges of Zd by iid Uniform[0, 1] edge weights, the invasion percolation cluster has
asymptotically zero density if  and only if  the percolation probability θpc(Zd) = 0).
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Local weak limits. Our current aim is to study the local structure of  the MST of  the complete
graph. More precisely, for n ≥ 1 we write Kn for the graph with vertices [n] = {1, . . . , n} and an
edge between each pair of  vertices. Let Wn = {Wn(e) : e ∈ E(Kn)} be iid Exponential(n − 1)
edge weights, and write Kn = (Kn, 1,Wn). Then let Mn = ([n], En(Kn)) be the minimum
spanning tree of Kn, and let Mn = (Mn, 1,Wn) be the RWG formed from Mn by rooting at the
vertex 1. The primary contributions of  this paper are to identify the local weak limit of Mn and to
prove volume growth bounds for the limiting RWG.

In order to precisely state our results, we first recall the notion of  local weak convergence. For
unweighted graphs, such convergence was introduced by Benjamini and Schramm [9]. The for-
mulation we use here is essentially that of  Aldous and Steele [5]. For ϵ ≥ 0, we say two RWGs
G = (G, ρ,w) and G′ = (G′, ρ′, w′) are ϵ-isomorphic, and write G ≃ϵ G′, if  there exists a bijection
ϕ : V (G) → V (G′) that induces a graph isomorphism of G and G′, such that ϕ(ρ) = ρ′ and such
that for all edges uv ∈ e(G), |w(uv) − w′(ϕ(u)ϕ(v))| ≤ ϵ. If ϵ = 0 we say that G and G′ are
isomorphic and write G ≃ G′.

We may define a pseudometric d0 on the set of  locally finite RWGs as follows. Given RWGs
G1 = (G1, ρ1, w1) and G2 = (G2, ρ2, w2), we let

d0(G1,G2) =
1

2k
,

where
n = sup

{
k ∈ N : ∃δ ∈ [−k−1, k−1] , G′

1(k) ≃k−1 G′
2(k + δ)

}
.

Note that d0(G1,G2) = 0 precisely if G ≃ G′. Now let dLWC be the push-forward of d0 to the set
G∗ of  isomorphism-equivalence classes of  locally finite RWGs.1 It is straightforward to verify that
(G∗, dLWC) forms a complete, separable metric space, and we refer to convergence in distribution
in this metric space as local weak convergence, or sometimes simply as weak convergence.

1.1. Statement of  results. As is the case for many random combinatorial optimization problems
on the complete graph, the local weak limit of Mn is naturally described in terms of  the Poisson-
weighted infinite tree (PWIT) of  Aldous and Steele [5]. The PWIT is the following random RWG. Let
U be the Ulam-Harris tree; this is the tree with vertex set

∪
n≥0Nn (write N0 = {∅}), and for each

k ≥ 1 and each vertex v = (n1, . . . , nk) ∈ Nk, an edge between v and its parent (n1, . . . , nk−1).
(If k = 1 then the parent of v is the root vertex ∅.) Independently for each v = (n1, . . . , nk) ∈ V ,
let (wi, i ≥ 1) be the atoms of  a homogenous rate one Poisson process on [0,∞), and for each
i ≥ 1 give the edge from v to its child v′ = (n1, . . . , nk, i) the weight W ({v, v′}) = wi. Writing
W = {W (e), e ∈ E}, where E is the edge set of U , the Poisson-weighted infinite tree is (a random
RWG with the distribution of) the triple U = (U, ∅,W ).

For any vertex u ∈ V (U), write T (u) for the invasion percolation cluster of U(u) = (U, u,W ).
The treeT (∅) will play a particularly important role, so we writeT = T (∅) and write T = (T, ∅,W ).
Temporarily let M0 be the union of  all the trees (T (u), u ∈ V (U)); M0 should be thought of  as
the minimum spanning forest of U with wired boundary conditions. Next, let M be the connected
component of M0 containing the root ∅. In this paper we establish that M = (M, ∅,W ) is the local
weak limit of  the minimum spanning tree Mn = (Mn, 1,Wn).

Theorem 1.1. As n → ∞, we have (Mn, 1,Wn)
d→ (M, ∅,W ), in the local weak sense.

Theorem 1.1 in particular extends a result of  Aldous ([4], Theorem 1). There is a.s a unique edge
e ∈ E(M) incident to ∅ whose removal separates ∅ from ∞ (this follows from Corollary 7.2, be-
low, which states that M is one-ended). Write F for the component containing ∅ after e is removed.
Correspondingly, let en be the edge of Mn whose removal minimizes the size of  the resulting com-
ponent containing 1 (with ties broken by choosing the component containing the smallest label,

1When referring to an equivalence class [(G, ρ,w)] ∈ G∗, we will typically instead write (G, ρ,w); this slight abuse of
notation should never cause confusion.
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say), and write Fn for this component. Aldous proved that (Fn, 1,Wn) converges in distribution
in the local weak sense, to an almost surely finite limit, which in our setting has the distribution of
(F, ∅,W ). The convergence of (Fn, 1) to (F, ∅) follows immediately from Theorem 1.1.

The proof  of  Theorem 1.1 will also provide an explicit characterization of  the limit, which is
straightforward enough to yield an exact, though somewhat complicated, description of  the distri-
bution of  the degree of  the root vertex ∅ in M. This description is provided in Section 2.3.

Our second main result is to show that the limit M has roughly cubic volume growth.

Theorem 1.2. There is C > 0 such that almost surely

lim sup
r→∞

|BM(∅, r)|
r3eC log1/2 r

< ∞ ,

and almost surely

lim inf
r→∞

|BM(∅, r)|
r3/ log22 r

> 0 .

This volume growth agrees with recent predictions from the physics literature [18], and, as shown
by Theorem 1.3, stands in contrast to the volume growth of T = (T, ∅,W ), the invasion percola-
tion cluster of (U, ∅,W ).

Theorem 1.3. It is almost surely the case that

lim sup
r→∞

|BT(∅, r)|
r2 log log r < ∞ ,

and that for any ϵ > 0,

lim inf
r→∞

|BT(∅, r)|
r2/ log8+ϵ = ∞ .

In Theorems 1.2 and 1.3, we have stated our bounds in terms of  the unweighted graph distance.
However, using the explicit characterizations of M and T given in Section 2, it is a straightforward
technical exercise to establish the same bounds for the growth of B′

M(∅, r) and B′
T(∅, r).

A similar dichotomy of  dimensionality, paralleling the difference in volume growth between T
and M, appears when studying the Gromov-Hausdoff-Prokhorov scaling limit of  the minimum
spanning tree; see [3] for details. Broadly speaking, the tree T, which is a subtree of M, determines
the global metric structure of M, in the sense that for "typical" nodesu, v of M, the distance dM(u, v)
is of  about the same order as dM(û, v̂), where û and v̂ are the nearest nodes in T to u and v,
respectively. However, the bulk of  the mass in M lies outside of  the subtree T. Theorems 1.2
and 1.3 may be viewed as a step towards formalizing this picture.

We expect that |BM(∅, r)|/r3 forms a tight sequence but that almost surely

lim inf
r→∞

|BM(∅, r)|
r3

= 0, lim sup
r→∞

|BM(∅, r)|
r3

= ∞ .

A proof  of  any of  these predictions would be interesting. It would also be be interesting to pin down
precisely the almost sure fluctuations of |BM(∅, r)|/r3 (assuming this is the right renormalization),
or even of |BT(∅, r)|/r2. The work of  [12] on the exact Hausdorff  measure function for the Brow-
nian CRT heuristically suggests that the almost sure fluctuations of |BT(∅, r)|/r2 may be of  order
log log r, but the connection between the two settings is rather tenuous.

Theorem 1.3 should be compared with [6], Theorem 1.6. The latter shows that, writing Y(d) for
the local weak limit of  invasion percolation on an infinite d-ary tree, |BY(d)(∅, r)|/(dr2) converges
in distribution as r → ∞ (and explicitly describes the Laplace transform of  the limit). Theorem
1.9 of  [6] additionally shows that lim supr→∞ E

[
r2/|BY(d)(∅, r)|

]
< ∞. However, we do not see

how to deduce our Theorem 1.3 from the results of  [6].
We finish the description of  our contributions with a suggestion for future work: it would be quite

interesting to understand the spectral and diffusive properties of M . Results of  Barlow et. al. [8]
and of  Kumagai and Mizumi [20] suggest that for simple random walk (xn, n ≥ 1) on M , started
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from the root ∅, we should have P {xn = ∅} = n−3/4+o(1) and dM(∅, xn) = n1/4+op(1). However,
the volume growth upper bound of  Theorem 1.2 is not sharp enough to allow such results to be
applied "out of  the box", and neither do the requisite resistance bounds follow immediately from
the current work.

1.2. Proofs of  the main results (a brief  sketch). The upper bound in Theorem 1.3 is straight-
forward. An earlier paper [2] showed that T is stochastically dominated by a Poisson(1) Galton-
Watson tree conditioned to be infinite. This fact, together with existing volume growth estimates
for the incipient infinite cluster on trees [7], yields the upper bound. For the lower bound in The-
orem 1.3, we analyze an explicit description of  the distribution of T from [2]. This description,
reviewed in Section 2.1, below, states that T is comprised of  a sequence of  Poisson(1) Galton-
Watson trees, always of  random size but conditioned to be increasingly large as the sequence goes
on, and glued together along a backbone. Roughly speaking (ignoring logarithmic corrections),
this allows us to find a subtree of T distributed as a conditioned Poisson Galton-Watson tree with
around r2 vertices, and containing a backbone node of  distance about r from the root. Such a
(sub)tree also has diameter roughly r, and this yields the lower bound.

To prove Theorems 1.1 and 1.2, we introduce, and then study, a two-step construction of  the
minimum spanning tree Mn. The construction is more elegant in the n → ∞ limit, so we now
outline the construction for M = (M, ∅,W ).

We associate to each vertex v ∈ V (M) an arrival time a(v). Recall that T = (T, ∅,W ) is the
invasion percolation cluster of (U, ∅,W ); its distribution will be explicitly described in Section 2.1.
Given a vertex v ∈ V (M), if v ∈ V (T ) then set a(v) = 1. If v ̸∈ V (T ) then write Pv for the
shortest path in U from v to T (this path lies within M ), and let a(v) = max{W (e), e ∈ E(Pv)}.
Next, for λ ≥ 1, let M(λ) be the subtree of M with vertex set V (M(λ)) = {v ∈ V (M) : a(v) ≤
λ}. It will turn out that, almost surely, 1 < a(v) < ∞ for all v ̸∈ V (T ), so M(1) = T and
M = limλ→∞M(λ). We view M as being built in two steps; first, the tree T is constructed (via
Prim's algorithm, say). Second, the remaining vertices of M are dynamically exposed by letting λ
grow from 0 to ∞.

For λ ≥ 1 let M(λ) = (M(λ), ∅,W ). It turns out that, conditional on T = M(1), the stochastic
process (M(λ), 0 ≤ λ ≤ ∞) is Markovian (this is not a surprise) and its transition kernel has
an explicit and pleasing form. This picture builds upon on the description of T from given in
Section 2.1, so we postpone the details until Section 2.2.

We now sketch the dynamics of (M(λ), λ ≥ 1). In brief, at each time λ > 1, there is some
set of inactive vertices Iλ in M(λ) - these vertices form a subtree of T containing ∅. The process
(Iλ, λ ≥ 1) is decreasing in λ, it satisfies limλ↓1 Iλ = V (T ), and there is some almost surely finite
time λ∗ at which |Iλ∗ | = 0.

Once a vertex v is active, subcritical Poisson Galton-Watson trees begin to attach themselves
to v according to a particular inhomogeneous rate function which decays exponentially quickly in
λ; this process happens independently for each active vertex, and is responsible for the growth of
M(λ) as λ increases. When a tree attaches to v, all its vertices immediately become active. We dub
this a Poisson Galton-Watson aggregation process.

By combining the volume growth upper bound for T from Theorem 1.3 with a direct analysis
of  the Poisson Galton-Watson aggregation process, we are able to prove the volume growth upper
bound from Theorem 1.2. It seems likely that the lower bound should also be provable "in the
limit", but I have been unable to achieve such an argument. For the lower bound, I instead resort
to a somewhat involved second moment calculation, based on an analysis of  modified versions of
Prim's algorithm, started from three distinct vertices (it turns out to be necessary to consider two
vertices aside from the root, which is why three distinct vertices are needed for a second moment
argument).

Finally, the proof  of  Theorem 1.1 proceeds by analyzing a hybrid MST algorithm. Given a
small input parameter ϵ > 0, the we first Prim's algorithm for a random number of  steps, halting
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at a (stopping) time τ that is Θ(ϵn) with high probability2. This is the finite-n analogue of  the
limiting "step one" and builds a random RWG Mn(τ) whose distribution is close to that of T for ϵ
small. Starting from Mn(τ), we then run Kruskal's algorithm to complete the construction of Mn.
This second phase corresponds to the limiting "step two". Its relatively straightforward analysis in
Section 6 will yield Theorem 1.1.

1.3. Outline. Before turning to proofs, we briefly outline the remainder of  the paper. In Section 2,
we describe a Markovian construction of  the invasion percolation cluster T = (T, ∅,W ) that was
established in an earlier work [2] and that will be exploited several times in the current paper. We
additionally we describe a continuous-time process that builds M from T; this process is at the heart
of  the proof  of  Theorem 1.1 and is also used in proving Theorem 1.2. Finally, in Section 2.3 we
note some distributional identities that may be obtained from our results.

In Section 3 we analyze the early stages (the first o(n) steps) of  Prim's algorithm on Kn, and
show that the RWG thereby constructed has T as its local weak limit. This fact allows us to define
a finite-n growth procedure analogous to (M(λ), λ ≥ 1), which is used in proving Theorem 1.1.

In Section 4 we establish some useful properties of  the decay of  weights along the unique infinite
path in T. These properties come into play in Section 5, in which we prove Theorem 1.3, and also
in proving the lower bound of  Theorem 1.2.

In Section 6, we prove Theorem 1.1. As discussed in the proof  sketch above, this proof  is based
on the analysis of  a hybrid MST algorithm.

In Section 7 we prove Theorem 1.2. The upper bound is based on a direct analysis of  the process
M(λ), and ultimately reduces to bounding the value of  a certain iterated integral. The lower bound,
based on a second moment argument which is the most technical element of  this work, occupies
the majority of  Section 7.

Finally, we alert the reader that just before the bibliography, we have provided a list of  some of
the notation used in the paper, with brief  reminders of  the definitions and with page references.

1.4. Acknowledgements. I started this work in July 2012, after Itai Benjamini and Shankar
Bhamidi separately asked me what was known about the subject. I thank both of  them for the
encouragement to pursue this line of  inquiry. Throughout my work on this project I was supported
by an NSERC Discovery Grant and by an FQRNT Nouveau Chercheur grant.

2. The distributions of T and of M
2.1. An explicit construction of T. The following description of  the distribution of T is given
by Theorem 27 of  [2]. Say that an edge e ∈ E(T ) is a forward maximal edge if  the removal of e
separates ∅ from infinity and if, for any other edge e′ ∈ E(T ), if  the path from e′ to ∅ contains e
then W (e′) < W (e). Write S1 = ∅, and list the forward maximal edges of T in increasing order
of  distance from ∅ as ({Ri, Si+1}, i ≥ 1). The removal of  all forward maximal edges separates T
into an infinite sequence of  random trees (Pi, i ≥ 1), where for each i ≥ 1, Ri and Si are vertices
of Pi.

For each i ≥ 1, let Zi = |V (Pi)| and let Xi = W ({Ri, Si+1}). The sequence ((Xi, Zi), i ≥ 1)
turns out to be a Markov process, whose distribution we now explain.

Forλ ≥ 0, write PGW(λ) to denote a Galton-Watson tree with offspring distribution Poisson(λ).
We recall that for 0 < λ ≤ 1, the random variable |PGW(λ)| has the Borel-Tanner(λ) distribution,
given by

P {|PGW(λ)| = m} =
1

m
P {Poisson(λm) = m− 1} =

1

m

e−λm(λm)m−1

(m− 1)!
. (2.1)

For λ ≥ 1, write θ(λ) = P {|PGW(λ)| = ∞}; the function θ is strictly increasing, and for λ > 1
is infinitely differentiable and concave.3 For λ > 1 we also write Bλ for a random variable whose

2In fact, τ is of  order (2 + oϵ↓0(1))ϵn, but this information is unimportant to the informal description.
3The concavity of θ can be verified using the implicit formula θ(λ) = eλ(θ(λ)−1).
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distribution is a "truncated, size-biased" analogue of  the Borel-Tanner distribution: the distribution
of Bλ is given by

P {Bλ = m} =
θ(λ)

θ′(λ)

e−λm(λm)m−1

(m− 1)!
. (2.2)

The fact that
∑

m≥1
θ(λ)
θ′(λ)

e−λm(λm)m−1

(m−1)! = 1, so that the preceding equation indeed defines a
probability distribution, is proved in [2, Corollary 29]. Also, equation (4.3), below, explains our use
of  the epithets 'truncated' and 'size-biased' for the random variable Bλ.

By the results of  [2], ((Xi, Zi), i ≥ 1) is a Markov process taking values in (1,∞) × N, with
infinitesimal generator κ given by

κ((x, ℓ), (y,m)) =
θ(y)

θ(x)

e−ym(ym)m−1

(m− 1)!
1[y<x] .

In other words, for 1 < y < x ≤ ∞ and 1 ≤ ℓ,m < ∞ we have

P {Xn+1 ∈ dy, Zn+1 = m | (Xn, Zn) = (x, ℓ)} =
θ(y)dy

θ(x)

e−ym(ym)m−1

(m− 1)!
.

Equivalently (see [2], Lemma 28 and Corollary 29), we have

P {Xn+1 ∈ dy | Xn = x} =
θ′(y)dy

θ(x)
, (2.3)

and, conditional on Xn+1, the random variable Zn+1 is distributed as BXn+1 and is (condition-

ally) independent of ((Xi, Zi), i ≤ n). Furthermore, X1
d
= θ−1(U), where U is Uniform[0, 1],

and, conditional on X1, the random variable Z1 is distributed as BX1 . Together with the above
generator, this initial distribution specifies the distribution of  the whole process ((Xi, Zi), i ≥ 1).
We remark that for each i ≥ 1, the distribution of Xi+1 given that Xi = x is the same as the
distribution of X1 given that X1 ≤ x.

Conditional on the sequence (Zi, i ≥ 1), independently for each i ≥ 1, Pi is distributed as
a uniformly random labelled tree with Zi vertices. (Equivalently, Pi is distributed as PGW(λ)
conditioned to have Zi vertices - this conditional distribution does not depend on λ > 0; see,
e.g., [29], Exercise 5.15.) Finally, for each i ≥ 1, conditional on Pi, the vertices Ri and Si are
independent, uniformly random elements of V (Pi), and the weights {W (e) : e ∈ E(Pi)} are
independent and uniform on [0, Xi] (recall that W ({Ri, Si+1}) = Xi).

The process (Xi, i ≥ 1) is sometimes dubbed the forward maximal process (for invasion percolation
on the PWIT in [2] and for invasion percolation on regular trees in [6]). In this paper, we instead
use this term for the process ((Xi, Zi), i ≥ 1) as a matter of  convenience.

2.2. The Poisson Galton-Watson aggregation process. Recall the description of  the ran-
dom RWGs (M(λ), λ ≥ 1) from Section 1.2. The aim of  this section is to explicitly describe the
dynamics of  the process (M(λ), λ ≥ 1).

The "percolation probability" θ(x) was defined in Section 2.1. Given c > 1, we also define the
Poisson Galton-Watson "dual parameter c∗, which is the unique value c′ < 1 for which ce−c =

c′e−c′ . (Another identity for c∗ which we will use later is that c∗ = c(1−θ(c)).) It is straightforward
to verify that for c > 1, if T has distribution PGW(c) then the conditional distribution of T , given
that T is finite, is PGW(c∗). We use that c∗ decreases as c increases, which is also straightforward
to check.

For any node v ∈ V (U), v ̸= ∅, write p(v) for the parent of v. Then temporarily write Uv for
the subtree of U rooted at v and containing only edges of  weight less than W ({p(v), v}). Note
that for c > 1, conditional on W ({p(v), v}) = c, the tree Uv has PGW(c) distribution. If  we
additionally condition Uv to be finite, then it has distribution PGW(c∗).

For each vertex v ∈ V (M), there is a unique infinite path P within M leaving v. Write x(v) =
sup{W (e) : e ∈ P}. (If v ∈ V (U) \ V (M) then set x(v) = ∞.) If v ∈ V (T ) then, in the
terminology of  the preceding section, we have x(v) = Xi for some i ≥ 1. If v ̸∈ V (T ) then
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consider the unique edge e = {u, u′} of P with u ∈ V (T ), u′ ̸∈ V (T ). Since T is built by invasion
percolation (and is locally finite), there is an infinite path within T leaving u and with all edges of
weight less than x(v). In this case the (finite) portion of P connecting v and u′ contains a unique
edge e′ with a(v) = W (e′), and we must then have x(v) = W (e′) = a(v). Note that the collection
of  values (x(u), u ∈ V (M(λ))) is measurable with respect to M(λ).

Now fix λ > 1 and a vertex u ∈ V (U). If u ∈ V (M(λ)) then let eu = {u, u′} be the smallest
weight edge of U incident to u that is not contained in M(λ). Necessarily, u′ is a child of u in U . If
u ∈ V (T ) then it is possible that x(u) > λ. In this case all edges from u leaving T have weight at
least x(u) > λ. However, if u ̸∈ V (T ) then x(u) = a(u) ≤ λ. Whether or not u ∈ V (T ), given
that u ∈ V (M(λ)) and x(u) ≤ λ, we have that W (eu) has distribution λ + Exponential(1).
Furthermore, given that u ∈ V (M(λ)) and x(u) ≤ λ, the edge e is an edge of M precisely if
|Uv| < ∞.

By the above, we have that for small δ > 0,

P {W (e) ∈ (λ, λ+ δ], e ∈ E(M(λ+ δ]), u ∈ V (M(λ)), x(u) ≤ λ) | M(λ)}

= (1 + oδ↓0(1))(1− e−δ)P {|PGW(λ)| < ∞} · 1[u∈V (M(λ)),x(u)≤λ]

= (1 + oδ↓0(1))δ(1− θ(λ)) · 1[u∈V (M(λ)),x(u)≤λ] ,

and

P {W (e) ∈ (λ, λ+ δ], e ∈ E(M(λ+ δ]), u ∈ V (M(λ)), x(u) > λ | M(λ)}
= oδ↓0(1)1[u∈V (M(λ)),x(u)>λ] .

Furthermore, given that W (e) ∈ (λ, λ+ δ] and that e ∈ E(M(λ+ δ]), the tree Uv stochastically
dominates PGW((λ+ δ)∗) and is stochastically dominated by PGW(λ∗), and a(w) ∈ (λ, λ+ δ]
for all vertices w ∈ V (Uv) (in particular for w = v). Finally, as the edge weights on vertex-disjoint
subtrees of U are independent, the events

({W (eu) ∈ (λ, λ+ δ]} ∩ {eu ∈ E(M(λ+ δ))}, u ∈ V (M(λ)))

are conditionally independent given M(λ), and the subtrees (Uu′ , u ∈ V (M(λ))) are likewise
conditionally independent.

The preceding information yields the following description of  the process (M(λ), λ ≥ 1). At
each time λ ≥ 1, there is a set of active vertices (those vertices v ∈ V (U) with x(v) ≤ λ). Once a
vertex v is active, Poisson Galton-Watson trees begin to attach themselves at v; at time λ, attach-
ments occur at rate (1 − θ(λ)). This process happens independently for each active vertex. A
tree attaching to v at time s is distributed as PGW(s∗). When a tree attaches to v, all its vertices
immediately become active.

We now add the edge weights to the above picture. The edge weights for M(1) = T are already
defined. For v ∈ V (U), v ̸= ∅, the weights of  edges in the subtree of U rooted at v are independent
Exponential(1) random variables, independent of  all edge weights ouside this subtree. It follows
that given that given that x(v) = λ (i.e. that v ∈ V (M(λ)) and v ̸∈ M(λ−)), and given Uv, the
weights of  edges in Uv are independent, with density fλ(x) = (1− e−λ) · e−x1[0≤x≤λ], and these
edge weights are conditionally independent of  all other weights of  edges in M(λ). In other words,
if  a tree T attaches to vertex u at time λ then the edge e from the root of T to u has weight exactly
λ, and edges of T have independent weights, each with density fλ(x).

Based on the above description, we call the RWG-valued process (M(λ), 1 ≤ λ < ∞) a Poisson
Galton-Watson aggregation process. Note that we may recover M as M(∞) = limλ→∞ M(λ).

For a vertex v ∈ V (M), if v ̸∈ V (M(1)) = V (T ) then the value x(v) is the time at which
v was added during the Poisson Galton-Watson aggregation process, so v ∈ V (M(x(v))) but
v ̸∈ V (M(x(v)−)). Furthermore, if v ̸∈ V (T ) then since a random tree attached at time x(v) has
distribution PGW(x(v)∗), the degree degM(x(v))(v) has distribution Poisson(x(v)∗) + 1, where
the 1 accounts for the parent of v. It follows that for any v ∈ V (U), given that v ∈ V (M),
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conditional on T and on x(v), the degree degM (v) of v in M has distribution

degM (v)
d
=

{
degT (v) + Poisson(

∫∞
x(v)(1− θ(t))dt) if v ∈ V (T )

1 + Poisson(x(v) +
∫∞
x(v)(1− θ(t))dt) if v ̸∈ V (T ).

Since
∫∞
1 (1− θ(t)) < ∞, it follows that for all v ∈ V (T ), the conditional expectation

E [degM (v) | v ∈ V (M), x(v),T]

is almost surely finite; from this it is easily seen that M is almost surely locally finite. Also, it will
follow from our arguments for the upper bound in Theorem 1.2 that M is almost surely one-ended
(see Corollary 7.2, below; there should be a simple direct proof  of  this fact, however).

We will eventually prove Theorem 1.1 by showing that a hybrid construction process for Mn,
defined in Section 6, converges in distribution to the Poisson Galton-Watson aggregation process.

2.3. A few consequences of  Theorem 1.1. We now briefly remark on some consequences of
our weak convergence result and of  the above descriptions of T and M. The characterization
given by Theorem 1.1 is straightforward enough to yield an explicit, though somewhat complicated,
description of  the distribution of  the degree of  the root vertex ∅. First, as in Section 2.1, let U be
Uniform[0, 1], let X1 = θ−1(U), and given the value of X1, let Z1 be distributed as BX1 , whose
distribution is given in (2.2).

For integer m ≥ 1, let νm be the distribution of  the degree of  node 1 in a uniformly random
labelled tree with nodes {1, . . . ,m}; this distribution is explicitly given by

νm(k) = k · (m− k)m−k−1

mm−1
·
(
m− 2

k − 1

)
.

Let D1 have distribution νZ1(k); in other words, given that Z1 = m, D1 has distribution νm. Also,
letD2 have distribution Bernoulli(1/Z1), with D2 conditionally independent ofD1 given (X1, Z1).
The description of T given in Section 2.1 implies that degT (∅) has distribution D1 +D2.

Finally, the description of  the Poisson Galton-Watson aggregation process implies that given
(X1, Z1), degM (∅) − degT (∅) is independent of detT (∅) and is Poisson(

∫∞
X1

(1 − θ(t))dt) dis-
tributed. Letting D3 be Poisson

∫∞
X1

(1 − θ(t))dt and be conditionally independent of D1 and of
D2 given (X1, Z1), we then have the following corollary.

Corollary 2.1. The random variable degM (∅) is distributed as D1 +D2 +D3.

It is interesting to contrast this result with Proposition 2 from [4], which expresses degM (∅) as a
mixture of  Poisson random variables:

P {degM (∅) = i+ 1} =

∫ 1

0
P {Poisson(Φ(u)) = i} du ,

where for 0 ≤ u < 1 we set ϕ(u) =
∫ u
0 log(1/x)/(1− x)dx.

We close this section with a final observation. By a classic result of  Frieze [16] we have that

E

 ∑
e∈E(M):∅∈e

W (e)

 = 2ζ(3) .

Combining this fact with Theorem 1.1 and with Theorem 3 of  [23], it follows that for U
d
=

Uniform[0, 1], we have

E
[∫ ∞

θ−1(U)
t(1− θ(t))dt

]
= 2ζ(3)− ζ(2) ,

which is perhaps not obvious.
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3. Future maxima in Kn, and a strengthening of  Proposition 3.1

The paper [2] shows that the local weak limit of  the early stages of  Prim's algorithm on Kn is
given by T = (T, ∅,W ).4 More precisely, for 1 ≤ k ≤ n let Mn,k be the subtree of Mn built
by the first k steps of  invasion percolation on Kn, so Mn,k has vertices 1 = v1(Kn), . . . , vk(Kn)
and edges e1(Kn), . . . , ek−1(Kn). Then write Mn,k = (Mn,k, 1,Wn). Similarly, for k ≥ 1, write
Tk for the tree built by the first k steps of  Prim's algorithm on U = (U, ∅,W ), so Tk has vertices
∅ = v1(U), . . . , vk(U) and edges e1(U), . . . , ek−1(U), and let Tk = (Tk, ∅,W ).

Proposition 3.1 ([2]). Fix any function k(n) : N → N such that k(n) → ∞ and k(n) = o(n1/2).
Then for each n we may couple Mn,k(n) and T so that

P
{

Mn,k(n) ̸= Tk(n)

}
→ 0

as n → ∞. In particular, Mn,k(n)
d→ T in the local weak sense.

The RWG T is almost surely locally finite (this is proved in [2] but is also easy to see directly), and
so necessarily Tk

a.s.→ T in the local weak sense, as k → ∞. Using this fact, the first assertion of  the
proposition immediately yields the distributional convergence claimed in the proposition. We will
in fact require an analogue of  Proposition 3.1 that holds as long as k(n) = o(n), and now prove
such a result.

Proposition 3.2. Fix f : N → N with f(n) → ∞ and f(n) = o(n). Then we may couple Mn,f(n)

and T so that

lim
n→∞

sup
{
r : Mn,f(n)[BMn,f(n)

(r)] = Tf(n)[BTf(n)
(r)]
}

a.s.
= ∞.

In particular, Mn(f(n))
d→ T as n → ∞.

The proof  of  Proposition 3.2 will introduce, in simplified form, some of  the important structures
and techniques that will be developed later in the paper.

We begin by considering Prim's algorithm on the PWIT. Given v ∈ V (U) and z > 0, write
Uv(z) for the subtree of U consisting of v and all descendents of v whose path to v contains only
edge of  weight less than z. (In the notation of  Section 2.2, for v ̸= ∅, we in particular have
Uv(W ({p(v), v})) = Uv.) This tree is is distributed as PGW(λ) and is therefore infinite with
probability θ(z).

Given z > 1, let
g(z) = max{i : W (ei(U)) ≥ z} ,

or g(z) = 0 if W (ei(U)) < z for all i ≥ 1. Next, list the indices i for which ei(U) ≥ z as
(i1, . . . , iJ), where J = J(z,U) ≥ 0 is random. Note that for each j ≥ 1, if J ≥ j then
Uvij+1(U)(z) is distributed as PGW(z), and so

P {J = j|J ≥ j} = θ(z) .

It follows that for all j ≥ 0, P {J = j} = (1 − θ(z))jθ(z), and EJ = 1/θ(z). Also note that for
j > 0, if J > j then Uvij+1(z) is distributed as PGW(z) conditioned to be finite, or in other words
is distributed as PGW(z∗), and so

E [ij+1 − ij |J > j] = E [|PGW(z∗)|] = 1

1− z∗

(the latter equality, easily proved, is re-stated in (4.1) below). Since g(z) = iJ whenever g(z) > 0,
it follows that

E [g(z)] =
1

θ(z)
· 1

1− z∗
. (3.1)

4See the remark just after Theorem 27 of  [2], together with the remark in Section 1.1 of  the same paper.



THE LOCAL WEAK LIMIT OF THE MST OF Kn 11

We next turn to Prim's algorithm on Kn. Using the same definition of g(z) does not turn out
to be suitable in this case: with high probability the largest weight edge is the last edge added by
Prim's algorithm, in which case we would have g(z) = n − 1 for all z for which there are edges
of  weight greater than z in the minimum spanning tree. We instead look at the largest edge added
before some 'threshold time' k; this is formalized in the following definition.

For z ≥ 0 let Kz
n be the subgraph of Kn with edges E(Kz

n) = {e ∈ E(Kn) : Wn(e) ≤ z}.
Given 1 ≤ j ≤ n− 1 and z > 0, let

gn(j, z) = sup{ℓ : 1 ≤ ℓ ≤ j,Wn(eℓ(Kn)) ≥ z} , (3.2)

In words, gn(j, z) is the last time up to step j that Prim's algorithm on Kn adds an edge of  weight
at least z. We wish to bound the upper tail of gn(m, z), for suitable values of m and z. To do
so, list the connected components of Kz

n as Cz
n = (Cz

n,1, . . . , C
z
n,m), in decreasing order of  size

(with ties broken lexicographically, say). Consider the behaviour of  Prim's algorithm conditional
on the sequence Cz

n. Each time Prim's algorithm adds an edge connecting to some component
Cz
n,i, it fully connects Cz

n,i before adding any edge leaving Cz
n,i. Furthermore, once Cz

n,i is fully
connected, the edge leaving Cz

n,i connects Cz
n,i with a uniformly random vertex among all those

not yet uncovered. Writing σn = σn(z) for the number of  components uncovered before an edge
to Cz

n,1 is added, for each j ≥ 0 we therefore have

P {σn = j | σn ≥ j, Cz
n} ≥

|Cz
n,1|
n

.

We next use two bounds for the sizes of  the components of Kz
n; the first is due to Stepanov [25]

(pages 64-65), and the second can be found in [27], Proposition 4.12.5 For any ϵ > 0 there is δ > 0
such that for all n sufficiently large,

P
{
|Cz

n,1 − nθ(z)| > ϵn
}
< e−δn, P

{
|Cz

n,2| ≥ log3 n
}
≤ n−100 . (3.3)

It follows from the first bound that there is δ > 0 such that for all j ≥ 1,

P {σn > j} ≤ (1− θ(z)/2)j + e−δn.

However, for m ≥ σn · |Cz
n,2|, if |Cz

n,1| ≥ m then necessarily gn(m, z) ≤ σn · |Cz
n,2|. It then follows

from the above bounds that if log5 n ≤ m ≤ n(θ(z)− ϵ), we have

P
{
gn(m, z) ≥ log5 n

}
≤ P

{
|Cz

n,2| ≥ log3 n
}
+ P

{
σn ≥ log2 n

}
+ P {|Cn,1| ≤ m}

≤ n−100 + (1− θ(z)/2)log2 n + 2e−δn

≤ n−99 , (3.4)

for n sufficiently large. With these bounds under our belt, we are prepared to prove Proposition 3.2.

Proof  of  Proposition 3.2. The definitions of  the current paragraph are for the most part illustrated
in Figure 1. For integer k ≥ 1, let g∗(k, z) = g(k, z,Tk), so g∗(k, z) is the last time Prim's
algorithm on U, started from ∅, uncovers an edge of  weight at least z before time k. We always
have g∗(k, z) ≤ g(z) and so Tg∗(k,z) is a subtree of Tg(z). Furthermore, if Tg∗(k,z) ̸= Tg(z) then
g(z) > k and so Tk is a subtree of Tg(z). In the latter case, the vertices of Tk not in Tg∗(k,z) form
a subtree of Tk whose path to the root passes through e(g∗(k, z)). On the other hand, vertices of
Tg(z) not in Tk may in principle attach to any point of Tg(z).

Since Tg∗(k,z) ̸= Tg(z) implies that g(z) > k, by (3.1) and Markov's inequality we have

P
{

Tg∗(k,z) ̸= Tg(z)

}
≤ 1

kθ(z)(1− z∗)
. (3.5)

Our next aim is to prove an analogous result in the finite setting. Recall the definition of gn(z, k)
from (3.2). Fix functions f(n) and k(n) with log5 n ≤ k(n) < f(n), with k(n) = o(

√
n), and

5There is probably an earlier reference for this rather straightforward result, but I have not managed to track one down.
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T

∅ eg∗(k,z)

T(k)
eg(z)

T(g(z))

∞

T(g∗(k, z))

Figure 1. The trees Tg(z), Tk, and Tg∗(k,z) are circled with solid, dashed, and
dotted lines, respectively. Vertices of Tg(z) not in Tk are drawn as solid black dots,
and vertices of T(k) not in T(g∗(k, z)) are drawn as solid grey dots. Note that the
latter form a subtree of Tk rooted at the far endpoint of eg∗(k,z).

with f(n) = o(n). The quantities gn(k(n), z) and gn(f(n), z) will play the roles of g∗(k, z) and
g(z), respectively.

For fixed z > 1, if Mn,gn(k(n),z) ̸= Mn,gn(f(n),z), then Prim's algorithm adds an edge of  weight
at least z at some step i with k(n) < i ≤ f(n). The latter implies that gn(f(n), z) > k(n), and
since k(n) ≥ log5 n, by (3.4) we then have

P
{

Mn,gn(k(n),z) ̸= Mn,gn(f(n),z)

}
≤ P {gn(f(n), z) > k(n)} ≤ n−99 , (3.6)

for n large enough.
By Proposition 3.1, we may couple Mn,k(n) and Tk(n) so that

P
{

Mn,k(n) ̸= Tk(n)

}
→ 0 .

Also, whenever Mn,k(n) = Tk(n), we have g∗(k(n), z) = gn(k(n), z) and so T(g∗(k(n), z)) =
Mn,gn(k(n),z), and it follows that

P
{

Tg∗(k(n),z) ̸= Mn,gn(k(n),z)

}
→ 0 . (3.7)

Combining (3.5), (3.6), and (3.7), we obtain that

P
{

Tg(z) ̸= Mn,gn(f(n),z)

}
≤ 1

k(n)θ(z)(1− z∗)
+

1

n99
+ o(1),

which tends to zero as n → ∞, for any fixed z > 1. Finally, fix an integer r > 1. If sup{i : Xi >
z} ≥ r then B′

T(∅, r) ⊂ V (Tg(z)), and it follows that

P
{
B′

T(∅, r) ⊆ V (Tg(z))
}
≥ 1− P {sup{i : Xi > z} < r} .

By the expression (2.3) for the conditional densities of  the Xi and the fact that θ′(1+ ϵ) = 2+ o(ϵ)
as ϵ ↓ 0, it easily follows that

P
{

sup{i : Xi > 1 + 3−r} < r
}
→ 0

as r → ∞. It follows that for any ϵ > 0, for all r sufficiently large, writing z = 1 + 1/3r we have
P {sup{i : Xi > z} < r} < ϵ, and for such r we obtain that

P
{

Mn,f(n)(r) ̸= Tf(n)(r)
}
≤ P

{
B′

T(∅, r) ̸⊆ V (Tg(z))
}
+ P

{
Tg(z) ̸= Mn,gn(f(n),z)

}
= ϵ+ on→∞(1) .

As ϵ > 0 was arbitrary, this completes the proof. □
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4. Properties of  the forward maximal process ((Xn, Zn), n ≥ 1)

4.1. The tails of  the random variables {By, y > 1}.

For 0 < λ < 1, the first two moments of |PGW(λ)| are given by the following simple formulas
[11]:

E [|PGW(λ)|] = 1

1− λ
, E

[
|PGW(λ)|2

]
=

1

(1− λ)3
. (4.1)

Also, from (2.1) and Stirling's formula, it follows that

P {|PGW(λ)| = m} ∼ e1−λ

(2π)1/2
· 1

m3/2
· (λe(1−λ))m−1 ,

as m → ∞, uniformly in 0 ≤ λ ≤ 1. Using explicit error bounds for Stirling's approximation, it is
not hard to see that in fact, for all m ≥ 1 and 0 ≤ λ ≤ 1,

1

3m3/2
· (λe(1−λ))m−1 ≤ P {|PGW(λ)| = m} ≤ 3

m3/2
· (λe(1−λ))m−1 .

We leave the detailed verification of  these inequalities to the reader. Using that λe1−λ ≤ e−(1−λ)2

for all 0 ≤ λ ≤ 1, and that λe1−λ ≥ e−2(1−λ)2 for λ sufficiently close to 1, it follows for all m ≥ 1
and for all 0 ≤ λ ≤ 1,

P {|PGW(λ)| = m} ≤ 3

m3/2
· e−m(1−λ)2 . (4.2)

Next recall (from Section 2.2) the definition of  the dual parameter u∗: for u > 1, u∗ is the unique
value λ ∈ (0, 1) with ue−u = λe−λ. It is straightforward to check that PGW(u), conditional on
the event that |PGW(u)| < ∞, has the same distribution as PGW(u∗). It is also easily checked
that (1 + ϵ)∗ = 1− ϵ+ o(ϵ) as ϵ ↓ 0.

Fix y > 1 and let By be as in (2.2). We next state probability bounds for the upper and lower
tails of By when y is near 1.

Lemma 4.1. There is y0 > 1 such that for all 1 < y < y0 and any constants 0 < c < 1 < C , we have

P
{
By ≤ c

(y − 1)2

}
≤ 8c1/2, P

{
By ≥ C

(y − 1)2

}
≤ 20e−C/8.

Proof. Writing cy = θ(y)y∗/yθ′(y), straightforward calculation shows that we may rewrite the
probability P {By = k} as

P {By = k} =
θ(y)y∗

yθ′(y)
· k · e

−y∗k(y∗k)k − 1

k!

= cy · k · P {|PGW(y∗)| = k} . (4.3)

Since PGW(y∗) is distributed as PGW(y) conditioned to be finite, (4.3) may explain why we re-
ferred to the law of By as a truncated, size-biased version of  the law of PGW(y).

The above asymptotics for θ(y), θ′(y) and y∗ near y = 1 yield that cy ∼ y − 1 as y ↓ 1. The
above upper bound for the tails of  the random variables |PGW(λ)| then implies that for all y ≥ 1
and k ≥ 1,

P {By = k} ≤ 3cy

k1/2
e−k(1−y∗)2

Using (4.3) and the y ↓ 1 asymptotic for cy, we obtain that for y sufficiently close to 1 and any
0 < c < 1,

P
{
By ≤ c

(y − 1)2

}
≤ 3cy

∑
i≤c/(y−1)2

1

i1/2

< 7cy(⌊c/(y − 1)2⌋)1/2

< 8c1/2 . (4.4)
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Similarly, assuming y0 is chosen small enough that (1 − y∗0)/(y0 − 1) ≥ 1/2, we have that for all
1 < y < y0 and for all C > 1,

P
{
By ≥ C

(y − 1)2

}
≤ 3cy

∑
i≥C/(y−1)2

1

i1/2
exp

(
− i

2(y − 1)2

)

< 7cy(⌊C/(y − 1)2⌋)1/2 e−C/2

(1− e−C/2)2

< 20C1/2e−C/2 < 20e−C/8 . (4.5)

□

4.2. The growth and decay of (Xn, n ≥ 1) and of (Zn, n ≥ 1). In this section we state
three lemmas that will be used in Recall from Section 2.1 that for n ≥ 1, the conditional den-
sity of Xn+1 given that Xn = x is given by f(y) = θ′(y)/θ(x) for y ∈ (1, x), where θ(λ) =
P {|PGW(λ)| = ∞}. In other words, under this conditioning, Xn+1 is distributed as X1 condi-
tioned to satisfy X1 ≤ x. The function θ satisfies

θ′(1 + ϵ) = 2 + o(ϵ),

as ϵ ↓ 0, and so θ(1 + ϵ) = 2ϵ+ o(ϵ). It follows that for large n, the ratios (Xn+1 − 1)/(Xn − 1)
are approximately distributed as Uniform[0, 1] random variables, and so typically the difference
(Xn − 1) should decrease by a factor two after increasing n by a constant amount. The next
lemma bounds the probability of  seeing "halving times" that are substantially longer.

For z > 1, let I(z) = min{i : Xi ≤ z}. Let x1 > 1 be such that θ′(x1) = 1; since the function
θ is concave, such x1 is unique. For ϵ > 0, write

Hϵ = I(x1) ∨ max{k : ∃n, 1 + ϵ ≤ Xn+k < x1, Xn+k − 1 ≥ (Xn+1 − 1)/2} .
In words, Hϵ is the greatest number of  steps required for the difference (Xn−1) to fall below x1, or
to reduce by a factor of  two once below x1, before Xn drops below 1+ ϵ. The next lemma provides
probability bounds on the upper tail of Hϵ.

Lemma 4.2. There is an absoute constant c1 > 0 such that for all ϵ > 0 and k > 1, we have

P {Hϵ > k} < log2(2/ϵ) · e−c1k.

Proof. First, for each i ≥ 1, we have

P {I(x1) > i} ≤
i∏

j=1

sup
x>x1

P {Xi+1 > 2|Xi = x} ≤
i∏

j=1

P {X1 > x1} ≤ (1− θ(x1))
i.

Now fix ϵ > 0 and k > 1. By our choice of c1 we may assume that ϵ is small, and in particular that
ϵ < x1 − 1. Note that since θ is concave, θ(x1) ≥ (x1 − 1)θ′(x1) = x1 − 1 and so necessarily
x1 ≤ 1. It follows that if Hϵ > k then either I(x1) > k/2 or else for some 1 ≤ i ≤ log2(1/ϵ) we
have

#{j : θ(x1)/2i+1 < Xj ≤ θ(x1)/2
i} > k/2 . (4.6)

Temporarily write j0 for the first j for which Xj − 1 ≤ θ(x1)/2
i. If  (4.6) is to hold then we must

in particular have Xj0+ℓ+1 − 1 > (Xj0+ℓ − 1)/2 for each 1 ≤ ℓ ≤ k/2. By the Markov property
the probability of  the event in (4.6) is therefore at most(

sup
0<x≤x1−1

P {Xj+1 − 1 ≥ x/2 | Xj − 1 = x}
)k/2

.

Since x ≤ x1 and θ′(x1) = 1, by convexity, for all 1 < x′ ≤ x we have 1 ≤ θ′(x) < 2. Since
the conditional density of Xi+1 at x′ given that Xi = x is proportional to θ′(x′), it follows that
P {Xi+1 − 1 ≥ x/2 | Xi − 1 = x} ≤ 2/3, and so

P
{

#{j : θ(x1)/2i+1 < Xj ≤ θ(x1)/2
i} > k/2

}
≤ (2/3)k/2 .
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By a union bound it follows that

P {Hϵ > k} ≤ (1− θ(x1))
k/2 + log2(1/ϵ)(2/3)k/2,

and takng δ small enough that e−δ/2 > max(1− θ(x1), 2/3) completes the proof. □

Later, we will also need the following tail bound on the total number of  vertices in trees whose
forward maximal weight is above a given threshold.

Lemma 4.3. There exist constants c2, C1 > 0 such that for all r > 1 and x > 1,

P

 ∑
i:Xi>1+1/r

Zi > xr2

 ≤ C1 log r · e−c2x1/2
.

Proof. By adjusting the value of C1 we may assume that x is at least j > 12 log2(θ(x1) · r). In the
proof  of  Lemma 4.2 we showed that P {I(x1) ≥ i} ≤ (1− θ(x1))

i and that

inf
0<x≤x1−1

P {Xj+1 ≤ 1 + x/2 |Xj = 1 + x} ≥ 1/3 .

Writing i0 = I(1 + 1/r), it follows from the above results that for j ≥ 1,

P {i0 ≥ j} ≤ P {I(x1) ≥ j/2}+P {Bin(⌈j/2⌉, 1/3) < log2(θ(x1) · r)} < (1−θ(x1))
j/2+e−j/48 ,

the last inequality holding for j > 12 log2(θ(x1) · r). It follows that for such j,

P

 ∑
1≤i<i0

Zi > xjr2

 ≤ P {i0 > j}+ jP
{
B1+1/r > xr2

}
≤ (1− θ(y))j/2 + e−j/48 + 20je−x/8 ,

the last inequality holding by the upper bound in Lemma 4.1. Taking j = x then proves the
lemma. □

Finally, the following lemma, which establishes bounds on the lower tail of dT(∅, Ri0) and ofXi0 ,
will be used in proving the upper bound from Theorem 1.2. In its proof, we will use the following
explicit formula. Let T (n) be a uniformly random tree with vertices {1, . . . , n}, and let v1, v2 be
independent, uniformly random elements of {1, . . . , n}. Then for each 1 ≤ k ≤ n− 1 we have

P {dT (n)(v1, v2) ≥ k} =

k∏
j=1

n− j

n
. (4.7)

Lemma 4.4. There exists C2 > 0 such that for all r > 1 with 1 + 1/r < x1, and all x > 0, writing
i0 = I(1 + 1/r), we have

P {dT(∅, Ri0) < xr or Xi0 < x/r} < C2x
2/3 .

Proof. First, given i0, the density of Xi0 at u ∈ (1, 1+1/r) is θ′(u)/θ(1+1/r). Since θ′(u) ∈ [1, 2]
for all u ∈ (1, 1 + 1/r), it follows that for all 0 < ϵ < 1 we have P {Xi0 < 1 + ϵ/r} < 2ϵ.

Next, by the lower bound in Lemma 4.1 we immediately have

P
{
Zi0 ≤ x2r2

}
≤ 8x.
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On the other hand, (Pi0 , Ri0 , Si0) is distributed as a uniformly random tree, together with two
independent, uniformly random vertices, conditional on its size Zi0 . By (4.7) we thus have

P
{
Zi0 > x2r2, dPi0

(Ri0 , Si0) ≤ cxr
}
≤ 1−

⌊cxr⌋∏
j=1

x2r2 − j

x2r2

≤ 1− exp

−2

⌊cxr⌋∑
j=1

j/(x2r2)


≤ 1− e−c2

≤ c2 ,

the second inequality holding as long as c < 1/4, say. For c > 0 sufficiently small, by taking x = c2,
it follows from these bounds that

P
{
dPi0

(Ri0 , Si0) ≤ c3r
}
≤ 9c2 .

Since dT(∅, Ri0) ≥ dPi0
(Ri0 , Si0), the result follows. □

5. Volume growth in T: a proof  of  Theorem 1.3

In the preceding section, Lemma 4.3 proved upper tail bounds for the total size of  the ''forward
maximal clusters'' added by invasion percolation before a given forward maximal edge. In order to
prove Theorem 1.3, we need a similar bound for the total diameter of  such clusters. We first prove
the requisite bound, then turn to the proof  of  Theorem 1.3.

5.1. The diameters of  the trees (Pi, i ≥ 1). The subtrees (Pi, i ≥ 1) of T were defined in
Section 2.1. For i ≥ 1, the tree Pi is distributed as a uniformly random labelled tree with Zi

vertices. A variety of  authors [1, 15, 22, 26] have studied the tail behavior of  the diameter of
uniformly random trees; we will use the following uniform sub-Gaussian estimate from [1]. Given
a finite graph G, write diam(G) for the diameter of G.

Theorem 5.1. There exist absolute constants c3, C4 > 0 such that for all n ≥ 1, if T (n) is a uniformly
random tree on labelled vertices {1, . . . , n} then for all x > 0,

P
{

diam(T (n)) ≥ x
√
n
}
≤ C4e

−c3x2
.

The random variable Zi is distributed as BZi , so typically has size of  order (Zi − 1)−2, and the
tree Pi should therefore have diameter of  order (Zi − 1)−1. The next proposition essentially states
that the sum of  the diameters of  the trees P1, . . . , Pi is unlikely to be much larger than the diameter
of  the final tree Pi.

Proposition 5.2. There exist constants c4, C5 > 0 such that for all x > 1 and all r > 1,

P

 ∑
i:Xi>1+1/r

diam(Pi) ≥ xr

 ≤ C5 log r · e−c4x1/2
.

Proof. Let ϵ = 1/r, and recall the definition of  the random variable Hϵ from Section 4.2. By
Lemma 4.2, for j > 1 we have

P {Hϵ > j} < log2(2/ϵ)e−c1j = log2(2r)e−c1j .

Set k̂ = ⌈log2(θ(x1)/ϵ)⌉, where x1 is as in Lemma 4.2. For 0 ≤ k < k̂⌊log2(θ(x1)/ϵ)⌋ let
ℓj = I(1 + θ(x1)/2

j), and let ℓk̂ = I(1 + ϵ).
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Note that for for k ≤ k̂, if Hϵ ≤ j then ℓk − ℓk−1 ≤ j. Since Zi is distributed as BXi , it follows
from this observation, a union bound, and the upper bound in Lemma 4.1 that for 1 ≤ k ≤ k̂, for
all c > 1 and j > 1,

P
{

max{Zi : ℓk−1 ≤ i < ℓk} ≥ c · 22k/θ(x1)2,Hϵ ≤ j
}

≤j sup
θ(x1)/2k<x≤θ(x1)/2k−1

P
{
Bx > c · 22k/θ(x1)2

}
≤j sup

θ(x1)/2k<x≤θ(x1)/2k−1

P
{
Bx > c/(x− 1)2

}
≤20je−c/8 .

Writing c = c′ · 2k̂−k, we have c · 22k/θ(x1)2 ≤ 4c′ · 2−(k̂−k)r2, and so

P
{

max{Zi : ℓk−1 ≤ i < ℓk} ≥ 4c′ · 2−(k̂−k)r2,Hϵ ≤ j
}
≤ 20je−c′/8e−2(k̂−k)/8 .

Write Ek for the event whose probability is bounded in the preceding inequality. On Ek, each of
the trees Pi, for ℓk−1 ≤ i < ℓk has size at most s := ⌊4c′ · 2−(k̂−k)r2⌋. Letting T (s) be a uniformly
random labeled tree with s vertices, by Theorem 5.1 it follows that

P
{

max{diam(Pi) : ℓk−1 ≤ i < ℓk} ≥ 2c′ · 2−(k̂−k)/2r, Ek

}
≤j · P

{
diam(T (s)) >

√
c′
√
s
}
≤ C4je

−c3·c′ .

On the other hand, if Hϵ ≤ j and max{diam(Pi) : ℓk−1 ≤ i < ℓk} < 2c′ · 2−(k̂−k)/2r for each
k ≤ k̂ then ∑

i:Xi>1+1/r

diam(Pi) =
∑

1≤i<ℓ
k̂

diam(Pi) <
2jc′

1− 2−1/2
r < 8jc′r .

It follows that

P

 ∑
i:Xi>1+1/r

diam(Pi) ≥ 8c′jr


≤ P {Hϵ > j}+

∑
1≤k<k̂

P
{

max{Zi : ℓk−1 ≤ i < ℓk} ≥ 4c′ · 2−(k̂−k)r2,Hϵ ≤ j
}

+
∑

1≤k<k̂

P
{

max{diam(Pi) : ℓk−1 ≤ i < ℓk} ≥ 2c′ · 2−(k̂−k)/2r, Ek

}
≤ log2(2r)e−c1j + 20je−c′/8

∑
i≥1

e−2i/8 + C4je
−c3·c′

< log2(2r)e−c1j + 40je−c′/8 + C4je
−c3·c′ .

Taking j = βc′ for some small β > 0 completes the proof. □

5.2. The lower bound from Theorem 1.3. For the remainder of  Section 5, for r > 1 we write
i0 = i0(r) = I(1 + 1/r). The key to the lower bound is the following proposition, which gives
stretched exponential bounds for the lower tail of |BT(∅, r)|.

Proposition 5.3. There exist constants c5, C6 > 0 such that for all r > 1 and all x > 1,

P
{
|BT(∅, r)| < r2/x

}
< C6 log r · e−c5x1/8

.
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Proof. Fix k > 1 and let i1 ≥ i0 = I(1 + 1/r) be minimal so that Zi0 ≥ r2/k. By the lower tail
bound in Lemma 4.1 we have

P {i1 ≥ i0 + j} ≤ (8/k1/2)j ,

for all j ≥ 0. Furthermore, by Theorem 5.1 and a union bound, for x > 1 we have

P

i1 < i0 + j,
∑

i0≤i<i1

diam(Pi) > xjr/k1/2

 ≤ j · C4e
−c3x2

.

A result of  Luczak and Winkler [21] implies that uniformly random rooted labelled trees are stochas-
tically increasing. In other words, given 1 ≤ m ≤ n, it is possible to construct a pair (tm, tn) such
that tm and tn are uniformly random labelled trees on {1, . . . ,m} and on {1, . . . , n}, respectively,
and such that tm is a subtree of tn. This fact implies that, writing s = ⌈r2/k⌉, we may find a subtree
T (s) of Pi1 so that (T (s), Si1) is distributed as a uniformly random rooted tree with s vertices. It
follows that for all x > 1,

P
{
|BPi1

(Si1 , xr/k
1/2)| < r2/k

}
≤ P

{
|BT (Si1 , xr/k

1/2)| < r2/k
}

= P
{

diam(T (s)) > xr/k1/2
}

≤ C4e
−c3x2

Finally, if BT(∅, 3xr) < r2/k, then either
∑

i:Xi>1+1/r diam(Pi) > xr, or
∑

i0≤i<i1
diam(Pi) >

xr, or |BPi1
(Si1 , xr)| < r2/k. By Proposition 5.2 and the preceding bounds (the first two applied

with j = k1/2), we then have

P
{
BT(∅, 3xr) > r2/k

}
≤ C5 log r · e−c4x1/2

+

(
8

k1/2

)k1/2

+ (k1/2 + 1)C4e
−c3x2

.

Taking k = x2 yields that there exist constants c, C > 0 such that

P
{
BT(∅, 3xr) > r2/x2

}
≤ C log r · e−cx1/2

,

which completes the proof  (take r′ = xr so that r2/x2 = (r′)2/x4). □

We conclude the section by proving the lower bound from Theorem 1.3.

Theorem 5.4. For any ϵ > 0, we have

P
{

lim inf
r→∞

|BT(∅, r)|
r2/ log8+ϵ r

≥ 1

}
= 1 .

Proof. Fix any non-decreasing function x : (1,∞) → (1,∞). If |BT(∅, r)| < r2/x(r) for arbitrar-
ily large r, then we must also have that also have that |BT(∅, 2i)| < 4r2/x(2i) for infinitely many
i. It follows that

P
{
|BT(∅, r)| < r2/x(r) i.o.

}
≤ P

{
|BT(∅, 2i)| < 4 · 22i/x(2i) i.o.

}
.

By Proposition 5.3 we have∑
i≥1

P
{
|BT(∅, 2i)| < 422i/x(2i)

}
≤
∑
i≥1

C6 log(2i) · e−c5x(2i)1/8 .

Taking x(r) = log8+ϵ r, the latter sum converges, and the result follows by Borel-Cantelli. □
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5.3. The upper bound from Theorem 1.3. Let (TIIC, ∅) be the PGW(1) incipient infinite
cluster, with root ∅. In other words, this is a PGW(1) Galton-Watson tree with root ∅, conditioned
to have infinite size (the existence of  such a law was shown by Grimmett [17], and was later extended
to non-Poisson branching distributions by Kesten [19]). We shall use Theorem 3 from [2], which
provides an explicit coupling showing that (T, ∅) is stochastically dominated by (TIIC, ∅). In other
words, we may work in a space in which (TIIC, ∅) is almost surely a rooted subtree of (T, ∅).

Next, for k ≥ 1, let (Tk
IIC, ρ

k) be a Galton-Watson tree with Binomial(k, 1/k) branching dis-
tribution and root ρk, conditioned to be infinite. From the fact that the Binomial(k, 1/k) law
converges in total variation to the Poisson(1) law, it is easily seen that (Tk

IIC, ρ
k) converges in the

local weak sense to (TIIC, ∅) as k → ∞. We may therefore work in a space in which (Tρ
IIC, r

k)
a.s.→

(TIIC, ∅), or in other words, for all r ∈ N there is an almost surely finite kr such that for all k ≥ kr,

TIIC(r) ≃ Tk
IIC(r) .

From this fact, together with the stochastic domination of T by TIIC, it follows that for any r > 0
and m > 0, we have

P {|BT((∅, r), ∅)| ≥ m} ≤ P {|BTIIC(∅, r)| ≥ m}

= lim
k→∞

P
{
|BTk

IIC
(ρk, r)| ≥ m

}
.

We now use a bound of  Barlow and Kumagai [7] (Proposition 2.7), which states that there exist
constants c0, c1 such that for all k ∈ N and all λ > 0,

P
{
|BTk

IIC
(ρk, r)| ≥ λr2

}
≤ c0e

−c1λ .

In fact, in [7] the bound is not asserted to be uniform in k but this is easily verified to be a conse-
quence of  the proof. It follows that for all r > 0 and λ > 0

P
{
|BT(∅, r)| ≥ λr2

}
≤ c0e

−c1λ . (5.1)

We conclude Section 5 by proving the upper bound from Theorem 1.3.

Theorem 5.5. There exists C > 0 such that for any ϵ > 0, we have

P
{

lim sup
r→∞

|BT(∅, r)|
r2 log log r ≤ C

}
= 1 .

Proof. Since for r large and r ≤ s ≤ 2r we have r2 log log r ≤ s2 log log s < 5r2 log log r, it
suffices to prove that there exists C > 0 such that

P
{
|BT(∅, 2i)| > C log i · 22i i.o

}
= 0.

Taking C = 2/c1, by (5.1) we have∑
i≥1

P
{
|BT(∅, 2i)| > C log i · 22i

}
≤ c0 ·

∑
i≥1

e−c1(C log i) < c0
∑
i≥1

i−2 < ∞ ,

and the result follows by Borel-Cantelli. □

6. Proof  of  Theorem 1.1

Recall from Section 3 that for 1 ≤ k ≤ n, Mn,k is the subtree of Mn built by the first k steps of
Prim's algorithm on Kn, started from vertex v1(Kn) = 1.

Let k(n) = ⌈log5 n⌉. In what follows we always assume n is large enough that k(n) < n. By
Proposition 3.2 and Skorohod's representation theorem, we may work in a space in which

lim
n→∞

sup{i ∈ N : Mn,i = Ti}
a.s.
= ∞ , (6.1)

and do so for the remainder of  the proof.
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In this section we will write both vi = vi(Kn) ∈ V (Mn,i) and vi = vi(U) ∈ V (Ti), and likewise
write both ei = ei(Kn) and ei = ei(U), when there is little risk of  ambiguity. By the comments of
the preceding paragraph, at least for fixed i this is not a major abuse of  notation.

Next, recall the definition of gn(j, z) from (3.2) and, for 1 ≤ j ≤ n− 1 and z > 1, let

dn(j, z) = inf{ℓ : j < ℓ ≤ n− 1,Wn(eℓ) ≥ z},
or set dn(j, z) = n if  the preceding infimum is empty. In what follows we write dn(z) =
dn(k(n), z) and gn(z) = gn(k(n), z) for succinctness.

For z ≥ 0 and for 1 ≤ j ≤ n, let Fn(j, z) be the σ-algebra induced by {Mn,i, 1 ≤ i ≤ j}
and by the indicator 1[Wn(ej)>z]. (This leads to a sort of  filtration that is commonly encountered in
probabilistic combinatorics. Informally, Fn(j, z) takes us "part way through" step j + 1 of  Prim's
algorithm: we reveal whether ej has weight greater than z, but leave the discovery of ej 's endpoints
and precise weight for later.) Note that while dn(z) is random, it is a stopping time for the filtration
{Fn(j, z), 1 ≤ j ≤ n} and so Fn(dn(z), z) is a σ-algebra - see [28], A 14.1. Also, Mn,dn(z) is
measurable with respect to Fn(dn(z), z).

We now run Kruskal's algorithm starting from the graph consisting of Mn,dn(z) together with

the MSTs of  the components of Kz
n disjoint from Mn,dn(z). More precisely, for λ ≥ z, let F z,λ

n be
the subgraph of Mn with vertices {1, . . . , n and edges

{e ∈ E(Mn) : e ∈ E(Mn,dn(z)) or Wn(e) ≤ λ}.

We define F z,λ−
n similarly, but with the requirement that Wn(e) < λ. For v ̸∈ V (Mn,dn(z)) we let

xn(v) = inf{λ : v ∈ F z,λ
n }. Write

Gn(λ) = σ(Kt
n, 0 ≤ t ≤ λ) = σ(Wn(e)1[Wn(e)≤λ], e ∈ E(Kn))

for the σ-algebra containing all information about the graph process (Kt
n, 0 ≤ t ≤ λ), and like-

wise define Gn(λ−). We then have that F z,λ
n and F z,λ−

n are measurable with respect to F̂n,z,λ =

σ(Fn(dn(z), z) ∪ Gn(λ)) and F̂n,z,λ− = σ(Fn(dn(z), z) ∪ Gn(λ−)), respectively.
Let M z,λ

n be the subtree of F z,λ
n consisting of  all nodes in the same component of F z,λ

n as 1 = v1
whose path to v1 in F z,λ

n contains no node vj with gn(z) < j ≤ dn(z), and let Mz,λ
n be the

associated random RWG. Next, recall the definition of M(λ) from Section 2.2. For 1 ≤ i ≤ g(z)
let M z,λ be the subtree of M(λ) consisting of  all nodes whose path to the root ∅ = v1 of M(λ)
contains no node vj with j > g(z), and let Mz,λ be the corresponding random RWG. (Likewise
define M z,λ−

n ,M z,λ−,Mz,λ−
n , and Mz,λ− in the obvious ways). In what follows we write Mz

n and
Mz for Mz,∞

n and Mz,∞, respectively.

Lemma 6.1. For any z > 1 we have limλ→∞ lim supn→∞ P
{

Mz,λ
n ̸= Mz

n

}
= 0.

Lemma 6.2. For any fixed λ ≥ z we have Mz,λ
n

d→ Mz,λ as n → ∞.

Assuming the two lemmas, the proof  of  Theorem 1.1 is easily completed. By the definition of
g(z), the edge eg(z) = {p(vg(z)+1), vg(z)+1} is almost surely the last edge of  weight at least z added
by invasion percolation on U. It follows that eg(z) is on the unique infinite path from the root ∅ in
T, and that for all i > g(z) + 1, vi is a descendant of vg(z)+1. Furthermore, T is locally finite and
g(z) → ∞ as z ↓ 1. It follows that for any fixed r ∈ (1,∞). We thus have

lim
z↓1

P
{
d′T(∅, vg(z)) ≥ r

}
= 1.

By (6.1), it follows that

lim
z↓1

lim inf
n→∞

P
{
d′Mn,k(n)

(1, gn(z)) ≥ r
}
= 1 .

From these facts, it follows that

lim
z↓1

P
{
B′

M(∅, r) ⊂ V (T z)
}
= 1 and lim

z↓1
lim inf
n→∞

P
{
B′

Mn
(1, r) ⊂ V (M z

n)
}
= 1 . (6.2)
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Finally, it was observed in Section 2.2 that M = M(∞) is almost surely locally finite, and by
Corollary 7.2, below, we have that M is almost surely one-ended. It follows that Mz is almost surely
finite, and so for any fixed z > 1 we have

lim
λ→∞

P
{

Mz,λ ̸= Mz
}
= 0,

which combined with Lemmas 6.1 and 6.2 yields that Mz
n

d→ Mz . Together with (6.2), this implies
that

M′
n(r)

d→ M′(r)

(recall from the introduction that for an RWG G, we write G′(r) for the sub-RWG induced by
the set of  nodes at weighted distance at most r from the root). Since r was arbitrary, this proves
Theorem 1.1. We now turn to the proofs of  Lemmas 6.1 and 6.2. In proving both lemmas, we will
use the following definition. For z > 1 and v ∈ V (Kn) write

xn(v, z) =

{
max{Wn(ej), i ≤ j < dn(z)} if v = vi, i < dn(z)

max{Wn(ej), dn(z) ≤ j < i} if v = vi, i ≥ dn(z) .

We also recall from Section 2.2 that for v ∈ V (M), x(v) is the largest weight of  any edge in the
unique infinite path in M starting from v, and that x(v) = a(v) for v ̸∈ V (T ).

Note that for any λ ≥ z and any v ∈ V (Kn), the random variable xn(v, z)1[xn(v,z)≤λ] is
F̂n,z,λ-measurable. Note also that for j ≤ gn(z) we have max{Wn(ej), i ≤ j < dn(z)} =
max{Wn(ej), i ≤ j ≤ gn(z)} by the definitions of gn(z) and of dn(z). Also, since g(z) is almost
surely finite, by (6.1) we have gn(z)

a.s.→ g(z) and so almost surely, for all n sufficiently large, we have
gn(z) = g(z) and xn(vi, z) = x(vi) for all 1 ≤ i ≤ gn(z). Furthermore, for gn(z) < i ≤ dn(z),
necessarily xn(vi, z) < z.

Proof  of  Lemma 6.1. For z ≤ λ ≤ ∞, note that the component of F z,λ−
n containing 1 = v1 is

precisely Mn,dn(λ). Indeed, by the definition of dn(λ), the vertices of Mn,dn(λ) are precisely those
vertices of Mn joined to Mn,dn(z) by a path all of  whose edges have weight less than λ. These are
precisely the vertices joined to Mn,dn(z) by Kruskal's algorithm started from F z,z

n and stopped at
weight λ−.

Next, for z < λ < ∞, suppose that C is a component of F z,λ−
n disjoint from Mn,dn(λ) and that

C is joined to Mn,dn(λ) at time λ, by some edge {v, w} with v ∈ V (Mn,dn(λ)) and w ∈ V (C). By
the symmetry of  the model, v is equally likely to be any vertex v ∈ V (Mn,dn(λ)) with xn(v, z) ≤ λ
(and can not be any vertex v with xn(v, z) > λ). But almost surely

{v ∈ V (Mn,dn(λ)) : xn(v, z) > λ} = {vi, 1 ≤ i ≤ gn(λ)} ⊂ {vi, 1 ≤ i ≤ gn(z)} = V (M z,z
n ) .

Since V (M z,z
n ) ⊂ V (M z,λ−

n ), this implies that for any λ > z, the end point in V (Mn,dn(λ)) of  a
new connection at time λ is uniformly distributed over

{vi, gn(λ) < i ≤ dn(t)} ⊃ V (Mn,dn(λ)) \ V (M z,λ−
n ) .

Since also |V (M z,∞
n )| = n, this immediately yields that for all z ≤ λ < ∞,

E
{
|V (M z,∞

n )| | F̂n,z,λ

}
≤ n · |V (M z,λ

n )|
|V (Mn,dn(λ))|

= n · |V (M z,λ
n )|

dn(λ))
. (6.3)

Next, since g(z) is a.s. finite and gn(z)
a.s.→ g(z) in the space where (6.1) holds, it follows that for all

ϵ > 0 there is Nϵ > 0 such that for n large,

P {gn(z) ≥ Nϵ} ≤ ϵ/3 .

Now fix ϵ > 0 and 0 < α < θ(z)/2 small enough that 1/(1− α) < 1 + ϵ3/(3N2
ϵ ). Next, for any

λ > 1writeAn,λ = {|dn(λ)−nθ(λ)| ≤ αn|}. Reprising the argument for (3.4), forn large enough,
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if An,λ fails to occur then either |Cn,2(λ)| ≥ log3 n or Jn(λ) ≥ log2 n or |Cn,1(λ) − nθ(λ)| ≥
αn/3, so for any fixed λ > 1, for n large,

P
{
Ac

n,λ

}
< n−99 .

For any ϵ ≤ α, combining bounds from the last three displayed equations, we obtain that

P
{
|V (M z,∞

n )| ≥ 3Nϵ/ϵ
2
}

≤ P {gn(z) ≥ Nϵ}+ P
{
Ac

n,z

}
+

ϵ2

3Nϵ
E
[
|V (M z,∞

n )|1[An,z ,gn(z)≤Nϵ]

]
<

ϵ

3
+

1

n99
+

ϵ2

3Nϵ
· n · Nϵ

θ(z)− α

< ϵ ,

for n large. The penultimate inequality follows from (6.3) applied with λ = z and the tower law
(sinceM z,z

n = Mn,gn(z) by definition). The final inequality holds since θ(z)−α ≥ θ(z)/2 ≥ α ≥ ϵ.
Finally, by our choice of α, and since θ(λ) → 1 as λ → ∞, we may choose λ > z sufficiently

large that 1/(θ(λ)− α) < 1 + ϵ3/(3N2
ϵ ). By (6.3) we have

E
{
|V (M z,∞

n )| − |V (M z,λ
n )|

∣∣∣ F̂n,z,λ

}
≤ |V (M z,λ

n )| ·
(

n

dn(λ)
− 1

)
.

On An,λ ∩ {|V (M z,∞
n )| < 3Nϵ/ϵ

2} we have

|V (M z,λ
n )| ·

(
n

dn(λ)
− 1

)
≤ 3Nϵ

ϵ2

(
1

θ(λ)− α
− 1

)
< ϵ ,

and so

P
{

Mz,∞
n ̸= Mz,λ

n

}
= P

{
|V (M z,∞

n )| − |V (M z,λ
n )| ≥ 1

}
≤ P

{
Ac

n,λ

}
+ P

{
|V (M z,∞

n )| ≥ 3Nϵ/ϵ
2
}
+ ϵ

< 3ϵ ,

for n large. As ϵ > 0 was arbitrary this completes the proof. □

We now proceed to the proof  of  Lemma 6.2. It would be possible to prove the lemma via an
appeal to general theory (e.g. Theorem 4.2.5 of  Ethier and Kurtz [14]), but verifying the relevant
conditions is no simpler than providing a bare-hands proof, so we prefer the latter.

Proof  of  Lemma 6.2. Fix z > 1. By (6.1) and the comments just before the proof  of  Lemma 6.1,
we may work in a space in which almost surely, for n sufficiently large, we have gn(z) = g(z),
Mn,gn(z)Tg(z), and xn(vi, z) = x(vi) for all i ≤ gn(z). We work in such a space throughout the
proof.

We begin by considering the case λ = z. The forest F z,z−
n is just the tree Mn,dn(z) together

with the components of Kz
n disjoint from Mn,dn(z). Since Wn(egn(z)) ≥ z and Wn(ei) < z for

gn(z) < i < dn(z), none of vgn(z)+2, . . . , vdn(z) are incident to any of v1, . . . , vgn(z). It follows
that almost surely Mz,z

n = Mn,gn(z). Similarly, for i ≤ g(z), the activation time x(vi) is at least z
and so almost surely Mz,z = T(g(z)). It follows that almost surely Mz,z

n = Mz,z for n large.
Now let λ0 = z, and for j ≥ 0 let

λj+1 = inf
{
W (e) : e = {u, y}, u ∈ V (M z,λj ), y ̸∈ V (M z,λj )

}
.

The preceding infimum is almost surely finite and attained by a unique edge, which we denote
fj+1 = {uj+1, yj+1}, labelled so that uj+1 ∈ V (M z,λj ), yi+1 ̸∈ V (M z,λj ). Likewise, for n ∈ N
let λn,0 = z, and for j ≥ 0 let

λn,j+1 = inf
{
W (e) : e = {u, y}, u ∈ V (M

z,λj
n ), y ̸∈ V (M

z,λj
n )

}
,
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and let fn,j+1 attain the infimum and have endpoints un,j+1 ∈ V (M
z,λj
n ), yn,j+1 ̸∈ V (M

z,λj
n ).

We will show that for any fixed non-negative integer j, it is possible to couple Mz,λn,j
n and Mz,λj

so that almost surely, for all n sufficiently large, λn,j = λj , and Mz,λn,j
n and Mz,λj are isomorphic

as RWGs. Since U is almost surely locally finite, λj → ∞ almost surely as j → ∞, so such a
coupling immediately yields the claimed result.

For j = 0, we have already established the claim. Now fix j ≥ 0 for which the claim holds, and
work in a space in which λn,j = λj and Mz,λn,j

n = Mz,λj for n large (we gloss the fact that Mz,λn,j
n

and Mz,λj are isomorphic rather than identical, for ease of  exposition). Note that in such a space,
we also have x(v) = xn(v, z) for all v ∈ V (M z,λj ).

Conditional onλj , on Mz,λj and on (x(v), v ∈ V (M z,λj )), let (Ev, v ∈ V (M z,λj )) be indepen-
dent Exponential(1) random variables, and for each v ∈ V (M z,λj ) let E+

v = max(x(v), λj)+Ev.
By the definition of  the process (M(λ), λ ≥ 1), under this conditioning, λj+1 is distributed as
min{E+

v : v ∈ V (M z,λj )}. Furthermore, additionally conditioning on λj+1, we have the follow-
ing properties:

(i) the endpointui+1 of fi+1 withinM z,λj is uniformly distributed among those v ∈ V (M z,λj )
with x(v) ≤ λj+1;

(ii) the subtree of Mz,λj+1 that attaches at time λj+1 (i.e., containing the vertices V (M z,λj+1)\
V (M z,λj )) is PGW(λj+1)-distributed;

(iii) we have Mz,λj+1 = Mz,λj precisely if  the subtree from (ii) is finite, which occurs with
probability 1− θ(λj+1); and

(iv) the edge weights of  the subtree from (ii) are independent exponentials conditioned to have
value at most λj+1.

We next work conditional on λn,j , on Mz,λn,j
n and on (xn(v, z), v ∈ V (M

z,λn,j
n )). Under

such conditioning, independently for each v ∈ V (M
z,λn,j
n ), the smallest weight edge incident to v

leaving M
z,λn,j
n has weight distributed as

max(xn(v, z), λj) + Exponential
(

n− 1

n− |V (M
z,λn,j
n )|

)
.

Now, almost surely M
z,λn,j
n = M z,λj for n large, and the latter is almost surely finite, since for any

fixed c > 0, Exponential((n−1)/(n− c))
d→Exponential(1), it follows that we may couple so that

almost surely λn,j+1 = λj+1 for n sufficiently large. Furthermore, under the current conditioning,
the end point un,j+1 of fn,j+1 is uniformly distributed among those v ∈ V (M z,λi

n ) with x(v) ≤
λn,j , and it follows from (i) above that for n large we may couple so that un,j+1 = uj+1.

Conditional on un,j+1, the second endpoint yn,j+1 of fn,j+1 is uniformly distributed over the
set

V (Kn) \
(
V (M

z,λn,j
n )} ∪ {yn,i : 0 ≤ i ≤ j, un,i = un,j+1}

)
.

This set has size between n− |V (M
z,λn,j
n )| − j − 1 and n− V (M

z,λn,j
n ). Furthermore, we have

Mz,λn,j+1
n ̸= Mz,λn,j

n precisely if yn,j+1 ̸∈ {vi, i ≤ dn(λn,j+1)}, or in other words, precisely if
yn,j+1 is not joined by Prim's algorithm before time dn(λn,j+1). To bound this probability, fix any
α > 0, and define the event An,λj+1

as in the proof  of  Lemma 6.1. Since λj+1 is almost surely
finite, for n sufficiently large we have P

{
An,λj+1

}
≤ n−99. Furthermore, since almost surely

λj+1 = λn,j+1 for n large, conditional on An,λj+1
, almost surely for all n sufficiently large we have

1− θ(λn,j+1)− 2α <
n− dn(λn,j+1)

n− V (M
z,λn,j
n )

<
n− dn(λn,j+1)

n− V (M
z,λn,j
n )− j − 1

< 1− θ(λn,j+1) + 2α .

Since α > 0 is was arbitrary, it follows by (iii) that we may couple so that almost surely, for n

sufficiently large, Mz,λn,j+1
n = Mz,λn,j

n if  and only if M z,λj+1 = Mz,λj
.
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Finally, given that yn,j+1 ̸∈ {vi, i ≤ dn(λn,j)}, the vertices in V (M
z,λn,j+1
n ) \ V (M

z,λn,j
n ) are

precisely those of  the component of Kλn,j+1
n containing yn,j+1. For α > 0 sufficiently small, con-

ditional on An,λj
, since λn,j+1(1 − λn,j+1) < 1, the restriction of Kλj+1

n to the complement of
{vi, i ≤ dn(λn,j)} forms a subcritical random graph. It is then standard that the component con-
taining yn,j+1 asymptotically dominates a PGW(λn,j+1(1−θ(λn,j+1)−2α)) and is asymptotically
dominated by a PGW(λn,j+1(1 − θ(λn,j+1) + 2α)). Since λ∗

n,j+1 = λn,j+1(1 − θ(λn,j+1)), it

follows from (ii) that we may couple so that almost surely M z,λj+1 = M
z,λn,j+1
n for n large. Finally,

by the definition of Kn and of  the trees Mz,λ
n , the edge weights of  the new subtree in Mz,λn,j+1

n are
independent exponentials conditioned to have value at most λn,j+1, which together with (iv) imme-

diately allows us to extend the coupling to Mz,λj+1 and Mz,λn,j+1
n . This completes the proof. □

7. Volume growth in M: a proof  of  Theorem 1.2

7.1. The upper bound from Theorem 1.2. Recall that by our construction of M from T, each
vertex u ∈ V (M) has a start time x(u), which is the largest weight on the unique infinite path in M
leaving u. The removal of  all edges of T separates M into a forest containing infinitely many trees.
Each such tree is naturally rooted at some vertex v ∈ V (T ): we denote this tree Mv, and write
Nv = |V (Mv)| for its size. Also, for ν > 1 we write Mv(ν) for the subtree of Mv induced by
those nodes w with x(w) ≤ ν, and write Nv(ν) for the size of  this subtree. In particular, we have
Mv(∞) = Mv.

Now, given ν > λ > 1 and an integer k ≥ 1, write

nk(λ, ν) =

∫
λ<x1<...<xk<ν

k∏
i=1

1− θ(xi)

1− x∗i
dx1 . . . dxk ,

and set n0(λ, ν) = 1.

Proposition 7.1. Fix v ∈ V (U) and λ > 1. Then for any ν ∈ [λ,∞] we have

E {Nv(ν) | v ∈ V (T ), x(v) = λ} =
∑
k≥0

nk(λ, ν) .

Before proceeding to the proof, we note the following corollary.

Corollary 7.2. M is almost surely one-ended.

Proof. Applying the proposition with ν = ∞ we have

E {Nv | v ∈ V (T ), x(v) = λ} =
∑
k≥0

nk(λ,∞) ,

which is finite by Proposition 7.3, below. Since T is a subtree of U , and the latter has countably
many nodes, it follows that Nv is almost surely finite for all v ∈ V (T ). Since T is one-ended, the
corollary follows. □

Proof  of  Proposition 7.1. Given u ∈ V (M), for k ≥ 0 we say that u has level k in M if  on the shortest
path from u to T there are k + 1 distinct activation times. In other words, level zero nodes are
nodes of T , level one nodes belong to trees that attach directly to T in the Poisson Galton-Watson
aggregation process, and so on. We write Mk

v(ν) for the nodes in Mv(ν) with level k and write
Nk

v (ν) for the number of  such nodes. We claim that for all u ∈ V (U) and all k ≥ 0 we have

E
{
Nk

v (ν)
∣∣∣ v ∈ V (T ), x(v) = λ

}
= nk(λ, ν) , (7.1)

from which the Proposition immediately follows. The case k = 0 of  (7.1) is trival. By the definition
of M, the arrival times of  connections to v form a Poisson process with rate (1−θ(t)). Furthermore,
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when a tree attaches at time t, it has distribution PGW(t∗) and so its expected size is 1/(1 − t∗).
It follows that given that v ∈ V (T ) and x(v) = λ,

E
{
N1

v (ν)
∣∣ v ∈ V (T ), x(v) = λ

}
=

∫ ν

λ

(1− θ(t))

1− t∗
dt ,

which handles the case k = 1. Next, fix k ≥ 1 and a node w ∈ V (U). Again by the definition of
M, for any xk ∈ (λ, ν), we have

E
{∣∣∣{u ∈ Mk+1

v (ν)| : w an ancestor of u}
∣∣∣ ∣∣∣ w ∈ Mk

v(ν), x(w) = xk

}
=

∫ ν

xk

(1− θ(t))

1− t∗
dt

= n1(xk, ν) .

By induction, the conditional density of  nodes in Mk
v(ν) with x(u) = x, given that v ∈ V (T ) and

x(v) = λ, is d
dxnk(λ, x). We thus have

E
{
Nk+1

v (ν)
∣∣∣ v ∈ V (T ), x(v) = λ

}
=

∫ ν

λ
n1(x, ν) ·

d
dxnk(λ, x)dx = nk+1(λ, ν) ,

where the final equality follows from the definition of nk+1(λ, ν). This proves (7.1) by induction
and so proves the proposition. □

We next bound the growth of nk(λ,∞). Notice that since x∗i = xi(1−θ(xi)) we may re-express
nk(λ, ν) as

nk(λ, ν) =

∫
λ<x1<...<xk<ν

k∏
i=1

x∗i
xi(1− x∗i )

dx1 . . . dxk .

Since xie
−xi = x∗i e

−x∗
i we may again re-express nk(λ, ν), as

nk(λ, ν) =

∫
λ<x1<...<xk<ν

k∏
i=1

e−(xi−x∗
i )

(1− x∗i )
.

Proposition 7.3. There exist constants c, C > 0 such that for all λ > 1 with λ− 1 sufficiently small,

c

(λ− 1) log(1/(λ− 1))
≤
∑
k≥0

nk(λ,∞) ≤ eC(log(1/(λ−1)))1/2

λ− 1
.

Proof. First, for any fixed ν > λ, we may rewrite the sum under consideration as∑
k≥0

nk(λ, ν) ·
∑
ℓ≥0

nℓ(ν,∞),

which will be useful in what follows. We begin by proving an upper bound. Since x∗ decreases as
x increases, for k ≥ 1 we have

nk(ν,∞) ≤ 1

k!

1

(1− ν∗)k

∫
(x1,...,xk)∈(ν,∞)k

k∏
i=1

e−(xi−x∗
i ) dx1 . . . dxk .

≤ 1

k!

1

(1− ν∗)k
e−k(ν−ν∗) .

Since n0(ν,∞) = 1 for all ν, we thus have

1 ≤
∑
k≥0

nk(ν,∞) ≤ exp
(
e−(ν−ν∗)

1− ν∗

)
. (7.2)
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Next, recall that (1 + ϵ)∗ = 1− ϵ+O(ϵ2) as ϵ ↓ 0. It follows that as ν ↓ 1, we have

nk(λ, ν) =

∫
λ<x1<...<xk<ν

k∏
i=1

(
e−2(xi−1)+O((xi−1)2) 1

xi − 1 +O((xi − 1)2)

)
dx1 . . .dxk ,

= (1 +O(ν − 1))k
∫
λ<x1<...<xk<ν

k∏
i=1

(
1

xi − 1

)
dx1 . . . dxk

=
(1 +O(ν − 1))k

k!

(
ln
(
ν − 1

λ− 1

))k

,

where the constant implicit in the notation O(ν− 1) may be chosen uniformly over ν ∈ (1, ν0) for
any fixed ν0 > 1, and uniformly in k and in λ ∈ (1, ν). We thus have∑

k≥0

nk(λ, ν) = exp
(
(1 +O(ν − 1)) ln

(
ν − 1

λ− 1

))
=

(
ν − 1

λ− 1

)1+O(ν−1)

.

Combined with (7.2), we then obtain that for fixed ν0 > 1, for any 1 < λ < ν < ν0,∑
k≥0

nk(λ,∞) ≤ exp
(
e−(ν−ν∗)

1− ν∗

)
·
(
ν − 1

λ− 1

)1+O(ν−1)

∑
k≥0

nk(λ,∞) ≥
(
ν − 1

λ− 1

)1+O(ν−1)

.

For given λ > 1 with λ > 1 small, we may optimize the lower bound (up to constants) by taking
(ν − 1) = (log(1/(λ − 1)))−1. A straightforward calculation then yields that there is c > 0 such
that for all λ > 1 small enough,∑

k≥0

nk(λ,∞) ≥ c

(λ− 1) log(1/(λ− 1))
.

The upper bound is optimized by taking (ν−1) of  order ((log(1/(λ−1)))−1/2), which then yields
that there is C > 0 such that for all λ > 1 small enough,∑

k≥0

nk(λ,∞) ≤ eC(log(1/(λ−1)))1/2 · 1

λ− 1
.

This completes the proof. □

We conclude the section by proving the upper bound from Theorem 1.3. In the proof  we exploit
the description of T from Section 2.1, and invite the reader to recall the relevant definitions. Recall
also that for z > 1 we write I(z) = min{i : Xi ≤ z}.

Given r > 1writeEr for the event that eitherXI(1+1/r) ≤ 1+1/(r log2 r) or dT(∅, RI(1+1/r)) <

r/ log2 r or
∑

i:Xi>1+1/(r log2 r) Zi > r2 log8 r. By Lemmas 4.3 and 4.4, for all r sufficiently large
we have we have

P {Er} ≤ C2

log4/3 r
+ C1 log(r log2 r) · e−c2 log2 r <

2C2

log4/3 r
.

By Borel-Cantelli it follows that, writing writing L = sup{j : E2j occurs}, we have that L is almost
surely finite.

Given a node v ∈ V (T ) if v ∈ V (Pi) then x(v) = Xi. It follows that

E

 ∑
v∈V (Pi)

Nv | Pi, Xi

 =
∑
k≥0

nk(Xi,∞).
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Also, the Xi are decreasing, and nk(λ,∞) is decreasing in λ, from this we obtain

E

 ∑
i:Xi>1+1/(r log2 r)

∑
v∈V (Pi)

Nv

∣∣∣∣∣∣ ((Xj , Pj), j ≥ 1)


=

∑
i:Xi>1+1/(r log2 r)

|V (Pi)| ·
∑
k≥0

nk(Xi,∞)


≤

∑
k≥0

nk(1 + 1/(r log2 r),∞) ·
∑

i:Xi>1/(r log2 r)

Zi , (7.3)

where in the final inequality werecall that Zi = |V (Pi)|.
For fixed j > 1, if j > L then by the definition of  the event E2j we have BM(∅, 2j/j2) ⊂∪
i:Xi>1+1/(j22j) V (Pi), and

∑
i:Xi>1+1/(r log2 r) Zi ≤ j822j . Applying (7.3), it then follows that

E
[
|BM(∅, 2j/j2)| | j > L

]
≤ j822j

∑
k≥0

nk(1 + 1/(j22j)),∞)

≤ j822j · e
C log1/2(j22j)

1/j22j

≤ (2j/j2)3 · eC′ log1/2(2j/j2) , (7.4)

the second-to-last inequality by the upper bound in Proposition 7.3, and the last inequality by a
suitable choice of C ′.

Finally, if lim supr→∞ |BM(∅, r)|/(r3e3C′ log1/2 r) ≥ 1 then for infinitely many j ∈ N, we must
have |BM(∅, 2j/j2)| > (2j/j2)3 · e2C′ log1/2(2j/j2). On the other hand, for any ℓ ∈ N, by (7.4) and
the conditional Markov inequality we have

P
{
|BM(∅, 2j/j2)| > (2j/j2)3 · e2C′ log1/2(2j/j2) for infinitely many j ∈ N

}
≤ P {L > ℓ}+

∑
j>ℓ

P
{
|BM(∅, 2j/j2)| > (2j/j2)3 · e2C′ log1/2(2j/j2)

∣∣∣ j > L
}

≤ P {L > ℓ}+
∑
j>ℓ

e−C′ log1/2(2j/j2) ,

and since L is almost surely finite and the sum is convergent, the latter can be made arbitrarily
small by choosing ℓ large. It follows that

P
{

lim sup
r→∞

|BM(∅, r)|/(r3e3C′ log1/2 r) ≥ 1

}
,

which establishes the upper bound from Theorem 1.2.
It is tempting to try to establish a lower bound in a similar manner, using the lower bound from

Proposition 7.3. However, this proposition only provides information about the expected size of  the
subtrees Mv. For our volume growth upper bound we have used total size of  each subtree, but for
a lower bound information about volume growth within these subtrees would be required.

In the following subsection, we state, without proof, a proposition by which volume growth lower
bounds for T can be used to obtain corresponding lower bounds for M. This proposition, is then
immediately used to prove the lower bound from Theorem 1.2; the proof  of  the proposition then
occupies the remainder of  the paper.

7.2. A key proposition, relating volume growth bounds for M and for T. Recall the def-
initions of Mn(k) and of gn(j, z) from Section 3, and of dn(j, z) and of Fn(j, z) from Section 6.

Fix z > 1, and let k = k(n) satisfy k(n) ≥ log5 n and k(n) = o(n). In what follows, we
will write d = dn(k(n), z) and g = gn(k(n), z) for succinctness. Note that while d = dn(k, z) is
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random, it is a stopping time for the filtration {Fn(j, z), 1 ≤ j ≤ n} and so Fn(d, z) is a σ-algebra
- see [28], A 14.1.

The key to our lower bound is the following estimate. Let Hn = Hn(k(n), z) be the forest
obtained from Mn by removing the edges of Mn(d), so Hn has edges ed, . . . , en−1. Note that
this forest consists of d connected components (trees), which we view as rooted at v1, . . . , vd. For
1 ≤ j ≤ d, we write Un,j = Un,j(k(n), z) for the vertex set of  the component of Hn rooted at vj ,
and for r ≥ 1 write U r

n,j for the set of  vertices of Un,j whose distance to vj (in Hn) is at most r.

Proposition 7.4. There is an absolute constant M > 1 such that the following holds. For all z > 1 with
z − 1 sufficiently small, for any random subset S of {vj , g < j ≤ d} that is Fn(d, z)-measurable, and any
A > 1, we have

P
{∑

i∈S

∣∣∣UM/(z−1)
n,i

∣∣∣ ≥ A

θ(z)3

}
≥
(

P
{
|S| ≥ 3A

θ(z)2

}
− on(1)

)(
1− 3M

A
− 4θ(z)

)
.

Before proving this proposition, we use it to complete the proof  of  the lower bound from Theo-
rem 1.2

7.2.1. The lower bound from Theorem 1.2. Fix r > 1 and let z = z(r) = 1 + (log13 r)/r. With k(n)
as above, continue to write g = gn(k(n), z) and d = dn(k(n), z), and let

S = S(n, r) = BMn(d)(1, r) \ {v1, . . . , vg}.

By definition, S ⊂ {vg+1, . . . , vd} and S is an Fn(d, z)-measurable set. To use Proposition 7.4,
we need probability bounds on the lower tail of |S|.

Fix any function f(n) = o(n) with f(n) ≥ log5 n. By Proposition 3.2 we have

Mn(f(n)
d→ T

in the local weak sense. Furthermore, by (3.3) and (3.4) we have P {f(n) ≤ d} ≥ 1−O(n−99), so
for any x > 1, by Proposition 5.3 we have

P
{
BMn(d)(1, r) < r2/x

}
≤ P

{
BMn(f(n))(1, r) < r2/x

}
+O(n−99)

≤ P
{
BT(∅, r) < r2/x

}
+ on(1)

< C6 log re−c5x1/8
+ on(1) .

Next, recall the definition of  the forward maximal process ((Xi, Zi), i ≥ 1) and of  the subtrees
Pi of T from Section 2.1. Write i = i(T, z) = sup{j : Xj ≥ z − 1}, and let T(z) be the sub-
RWG of T induced by the vertices in P1, . . . , Pi, so T(z) has

∑i
j=1 |Pj | =

∑i
j=1 Zj vertices. By

Proposition 3.2 and and (3.4), we have Mn(g)
d→ T(z), so by Lemma 4.3, for any y > 1,

P
{
g ≥ yr2

log13 r

}
= P

{
g ≥ y

(z − 1)2

}
≤ C1 log((z − 1)−1)e−c2y1/2 + on(1)

≤ C1 log re−c2y1/2 + on(1)

Taking x = log9 r and y = log3 r, for r sufficiently large we have r2/x − yr2/ log13 r ≥
r2/(2 log9 r) and C1

2 log re−c2y1/2 ≤ C6 log re−c5x1/8
, so

P
{
|S| ≤ r2

2 log9 r

}
≤ 2C6 log re−c5x1/8

+ on(1) ≤
1

r2
+ on(1) ,

the last inequality holding for r sufficiently large. Write A = r2θ(z)2/(6 log9 r). For r large we
have θ(z) ∼ 2(log13 r)/r, so A ∼ (log2·13−9 r)/6. It then follows from Proposition 7.4 that for r
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large,

P
{∑

i∈S

∣∣∣UM/(z−1)
n,i

∣∣∣ ≥ A

θ(z)3

}
≥
(
1− 1

r2
− on(1)

)(
1− 3M

A
− 4θ(z)

)
> 1− 19M

log17 r
− on(1) .

For r large we haveA/θ(z)3 ≥ r3/(50 log13+9 r), and also have andM/(z−1) < r so
∪

i∈S U
M/(z−1)
n,i ⊂

BMn(1, 2r). It follows that

P
{
|BMn(1, 2r)| ≥

r3

50 log22 r

}
> 1− 19M

log17 r
− on(1) .

By Theorem 1.1, the latter bound implies that for all r sufficiently large,

P
{
|BM(0, 2r) ≥ r3

50 log22 r

}
> 1− 19M

log17 r
.

Now write ri = ei for i ≥ 1. Then
∑

i≥1 log17 ri =
∑

i≥1 i
17 < ∞ and it follows by Borel-Cantelli

that

P
{
|BM(0, ri)| <

r3i
400 log22 ri

for infinitely many i
}

= 0.

Finally, for r ∈ (ei, ei+1), if |BM(0, ri)| ≥
r3i

400 log22 ri
then |BM(0, r)| ≥ r3

400e3 log22 r , so

P
{

lim inf
r→∞

(
|BM(0, r)| · log22 ri

r3i

)
> 0

}
= 1 ,

proving the lower bound from Theorem 1.2. We now turn to the proof  of  Proposition 7.4, which
is at the heart of  the lower bound.

7.3. A heuristic argument for Proposition 7.4. Fix ϵ > 0 with (1+ ϵ)θ(z) < 1, and let En,z

be the event that

1− ϵ <
d− g

θ(z) · n
≤ d

θ(z) · n
< 1 + ϵ .

By (3.3) and (3.4), this event occurs with probability 1−O(n−99). We write Ê [·] as shorthand for
the conditional expectation

E
[
· 1[En,z ] | Fn(d, z)

]
= E [ · | Fn(d, z)]1[En,z ] ,

and likewise write

P̂ {·} = P {·, En,z | Fn(d, z)} = P {· | Fn(d, z)}1[En,z ] ,

each of  the second equations holding since En,z ∈ Fn(d, z).
We now work conditional on Fn(d, z). Using the notation a ∨ b = max(a, b), for 1 ≤ i ≤ j ≤

n− 1 write

w+
n (i, j) = z1[Wn(ej)≥z] ∨ max{Wn(el), i ≤ l < j} .

Then for 1 ≤ j ≤ d, P̂ {v ∈ Un,j} is a measurable function of  the forward maximal weights
{w+

n (j, d), 1 ≤ j ≤ d}. Note that on En,z we have d < n, so Wn(ed) ≥ z and thus w+(j, d) ≥ z
for all 1 ≤ j ≤ d. Furthermore, w+(j, d) > z for 1 ≤ j ≤ g. Also, w+

n (j, d) is decreasing in
1 ≤ j ≤ d, and for 1 ≤ i < j ≤ d we have

P̂ {v ∈ Un,u} ≤a.s. P̂ {v ∈ Un,j} ,
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with almost sure equality holding on the event that w+
n (i, d) = w+

n (j, d). In particular, since
w+
n (j, d) = z for g < j ≤ d, for such j we have

P̂ {v ∈ Un,j} ≥a.s.
1

d
1[En,z ] ≥

1

(1 + ϵ)θ(z) · n
1[En,z ] , (7.5)

P̂ {v ∈ Un,j} ≤a.s.
1

d− g
1[En,z ] ≤

1

(1− ϵ)θ(z) · n
1[En,z ] .

(7.6)

For z close to 1, say z = 1 + γ for γ > 0 small, θ(z) is near 2γ. Since, for fixed ϵ, the probability
P
{
Ec

n,z

}
decays exponentially in n, it follows straightforwardly that for any fixed vertex w,

E [|Un,j | | w = vj , g < j ≤ d] = (1 + oγ↓0(1))
1− 2γ

2γ
=

1 + oγ↓0(1)

2γ
. (7.7)

Together with the weak convergence result Proposition 3.2, the results of  Proposition 5.3 and of
Lemma 4.3 suggest that g is around γ−2. Similarly, Theorems 5.4 and 5.5 suggest that typically,
a substantial fraction of  the nodes in Mn(g) have distance around 1/γ from the root v1. If  the
trees {Un,w, w ∈ V (Mn(g))} were typically of  size 1/γ (which is plausible in light of  (7.7)), and
additionally were typically of  diameter O(1/γ), we would then obtain around |V (Mn(g))|/γ ≈
1/γ3 nodes within distance 1/γ from the root v1.

There are two problems with this heuristic argument. First, (7.7) does not apply to nodes of
Mn(g). Indeed, if vj ∈ V (Mn(g)) and w+

n (vj , d) = z′ > z then the conditional expected size
of Un,vj is around 1/(z′ − 1), which may be much smaller than γ. We address this problem by
instead considering a suitable collection of  around 1/γ2 nodes of Mn(d) that are not in Mn(g), but
that were added in the early stages of  Prim's algorithm (shortly after Mn(g) was built) and that also
have distance around 1/γ from v1.

Second, and more importantly, the (identically distributed) random variables |Un,vj |, g < j ≤ d
are not concentrated; their distribution is asymptotically that of |PGW(z∗)|, where z∗ is the dual
parameter to z and is near 1− γ for γ = z − 1 small. In particular, (4.1) then says that for such j,

Ê
[
U2
n,vj

]
is around 1/γ3. The correct picture is not that the Un,vj are typically of  size 1/γ. Rather,

the typical size is O(1), but an approximately γ proportion of  the {Un,vj , g < j ≤ d} have size
1/γ2, and the latter typically have height of  order 1/γ. To capture this picture, and thereby prove
a volume growth lower bound, we study the first and second moments of  the sizes of  a carefully
chosen family of  subtrees of  the trees {Un,vj , g < j ≤ d}. We now turn to details.

7.4. The proof  of  Proposition 7.4. We continue to work conditional on Fn(d, z). Fix a vertex
u ̸∈ V (Mn(d)), and consider the following procedure, which we denote z-Prim(u). The short
description of  the procedure is this: start a tree-building exploration procedure from u. Use Prim's
algorithm for edges of  weight greater than z, and breadth-first search for edges of  weight less than
z; stop the first time a vertex of Mn(d) is added. For the sake of  clarity, and to introduce some
needed notation, we now explain the procedure more carefully.

List the components of Kz
n that are disjoint from Mn(d) as C = C(z) = (Ĉi(z), i ≥ 1). (There

are only a finite number of  such components, but we gloss this issue to avoid unnecessary notation.)
Edges within the components of C have weight at most z, whereas edges from these components to
one another and to vertices in Mn(d) have weight greater than z.

The vertex u lies in some component from C. Explore this component via breadth-first search
(exploring the children of  a given node in increasing order of  label), and write D1(u) for the re-
sulting breadth-first search tree. Next, for given i ≥ 1, suppose that breadth-first search spanning
trees D1(u), . . . , Di(u) of  some set of  components of Kz

n have already been constructed. Add the
smallest weight edge e from one of D1(u), . . . , Di(u) to the rest of  the graph (this edge has weight
greater than z). If  the endpoint v of e not in D1(u), . . . , Di(u) is not a vertex of Mn(d), then
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let Di+1(u) be the breadth-first search spanning tree of  the component from C containing v, and
continue exploring. If v does lie within Mn(d), then write α(u) = v and stop.

Write T (u) for the tree built by z-Prim(u), and write m(u) for the number of  components of
Kz

n explored by z-Prim(u)before it stops; so, T (u) is composed of D1(u), . . . , Dm(u)(u), plus the
single vertex α(u), which is the unique vertex belonging to both T (u) and to Mn(d). Note that
if  the components of Kz

n spanned by D1(u), . . . , Dm(u)(u) happen to be trees (we will shortly see
that this occurs whp), then T (u) is precisely the restriction of Mn to V (T (u)). Note also that the
trees (T (u), u ̸∈ V (Mn(d))) need not be disjoint; for example, if v ∈ V (T (u)) then T (u) shares
at least the vertices v and α(v) = α(u) with T (v).

Let τu = 1 +
∑m(u)

i=1 |Di(u)|, and let λu = m(u) +
∑m(u)

i=1 diam(Di(u)), so τu = |T (u)| and
diam(T (u)) ≤ λu. Writing γ = z − 1 as before, we will next show that Ê [τu] and Ê [λu] are of
orders γ−2 and γ−1, respectively.

The argument of  this paragraph is similar to the one appearing just after the statement of  Propo-
sition 3.2. Each time z-Prim(u)adds an edge not lying within a component of C, the vertex that is
added is equally likely to be any vertex from an unexplored component of C or to be any vertex
from {vi, g < i ≤ d}. (It also may be a vertex of Mn(g), but this is less likely since, as noted earlier,
Fn(d, z) provides "stronger lower bounds" on the weights of  edges connecting Mn(g) with the rest
of  the graph.) Now fix ℓ ≥ 1 and condition that m(u) ≥ ℓ, and let v be the first vertex added by
z-Prim(u)after fully exploring D1(u), . . . , Dℓ(u). Then

P̂ {v ∈ V (Mn(d)) | m(u) ≥ ℓ,D1(u), . . . , Dℓ(u)} ≥ d− g

n− d−
∑ℓ

i=1 |Dℓ(u)|
1[En,z ]

≥ (1− ϵ)θ(z)1[En,z ].

Since the right-hand side does not depend on D1(u), . . . , Dℓ(u), by averaging we thus have

P̂ {v ∈ V (Mn(d)) | m(u) ≥ ℓ} ≥ (1− ϵ)θ(z)1[En,z ]. (7.8)

Given that m(u) > ℓ (i.e., that v ̸∈ V (Mn(d))), the graph Kz
n[{1, . . . , n} \ (V (Mn(d)) ∪∪ℓ

i=1Di(u))] is stochastically dominated by Kz
n−(d−g), and v is a uniformly random vertex of  this

graph. Assuming z < 3/2, say, on the event En,z , uniformly in ϵ > 0 sufficiently small we have

(n− (d− g))(1− e−z/n) ≤ n(1− θ(z)(1− ϵ))
(1 + on(1))z

n
≤ (1 + on(1))z(1− θ(z) + ϵ)

< z∗ + 2ϵ , (7.9)

the final inequality holding for n sufficiently large. It follows from standard results about subcritical
random graphs (see, e.g., [10] Corollary 5.24) that for n sufficiently large,

P̂ {Dℓ+1(u) is a tree |m(u) > ℓ} ≥ (1− n−1/2)1[En,z ]. (7.10)

Also, using (7.9), it is straightforward to check that for ϵ > 0 sufficiently small andn sufficiently large,
on En,z we have Bin(n−(d−g), (1−e−z/n)) ⪯st Poisson(z∗+3ϵ), where ⪯st denotes stochastic
domination.6 By considering the breadth-first construction of Dℓ+1(u), it follows that given that
m(u) > ℓ and that Dℓ+1(u) is a tree, Dℓ+1(u) is stochastically dominated by PGW(z∗ + 3ϵ).7

Next, (7.8) implies that P̂ {m(u) > ℓ | m(u) ≥ ℓ} ≤ (1− (1− ϵ)θ(z))1[En,z ], and so on En,z ,
m(u) is stochastically dominated by a Geometric((1−ϵ)θ(z)) random variable. It follows that (still
conditional on Fn(d, z)), on the event En,z we have

τu ⪯st

G∑
i=1

|Pi|,

6For any fixed x > 0 and ϵ > 0, for all n sufficiently large, Bin(n, x/n) ⪯st Poisson(x+ ϵ).
7To carefully verify this, one should use that conditional on the vertex set of Dℓ+1(u), the event that Dℓ+1(u) is a tree
is a decreasing event; as this is rather standard and distracts from the flow of  the argument, we omit the details.
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where G is Geometric((1−ϵ)θ(z)) and, independently of G, the (Pi, i ≥ 1) are iid PGW(z∗+3ϵ).
By Wald's identity and (4.1), we then obtain that

Ê [τu] ≤ 1[En,z ] ·
1

(1− ϵ)θ(z)
· 1

1− z∗ − 3ϵ
≤ 1[En,z ] ·

1

γ2
, (7.11)

for ϵ > 0 small enough. (Here we are still writing γ = z − 1, and use that θ(z) ∼ 2(z − 1) and
that z − 1 ∼ 1− z∗, both as z ↓ 1, in the last inequality.) Also, by (7.10) and the stochastic bound
on m(u), we easily obtain that

P̂
{

The components of Kz
n spanned by D1(u), . . . , Dm(u)(u) are all trees

}
≥
(
1− θ(z) · logn

n1/2

)
· 1[En,z] .

We may bound Ê [λu] in a similar fashion to Ê [τu]; for this we use that for ϵ sufficiently small,
z∗ + 3ϵ < 1. The diameter of  a PGW(1) tree has finite expectation (this is standard, but also
follows easily from (4.2) and Theorem 5.1), and we obtain that on En,z , the random variable λu

is dominated by the sum of  a Geometric((1 − ϵ)θ(z)) number of  iid random variables with some
finite expectation F . It follows that

Ê [λu] ≤ 1[En,z ] ·
F

(1− ϵ)θ(z)
< 1[En,z ] ·

F

γ
, (7.12)

for ϵ > 0 sufficiently small and z sufficiently close to 1.
By reprising the above argument, we can obtain a stochastic lower bound on τu that is of  roughly

the same form. First, given ℓ ≤ τu, by the tree built by the first ℓ steps of z-Prim(u), we mean the subtree of
T (u) consisting of  the first ℓ vertices added by z-Prim(u). The "order of  addition of  vertices" is well-
defined since we explore the subtrees D1, . . . , Dm(u) in order, and within each subtree the vertices
are explored in breadth-first search order. More precisely, we may think of  each step of z-Prim(u)
as consisting of  the breadth-first-search exploration of  a single node, plus possibly the connection of
a new component from C (the latter occurring each time the current BFS exploration concludes).

Let τ−u = min(τj , ⌊ϵn⌋). The tree built by the first τ−u steps of z-Prim(u) is a subtree of T (u),
and is equal to T (u) precisely if τu ≤ ⌊ϵn⌋. For ℓ < τ−u , at step ℓ of z-Prim(u), some tree Di

is partially built. The number of  new nodes added to Di in the BFS exploration at step ℓ has
distribution Bin(n−d−ℓ, 1−e−z/n). For ϵ > 0 small, on En,z we have n−d−ℓ > n(1−2θ(z)).
Since also 1−e−z/n ≥ (1−ϵ)z/n for n large, on En,z the number of  new nodes thus stochastically
dominates

Bin
(
n(1− 2θ(z)),

(1− ϵ)z

n

)
⪰st Poisson(z(1− 3θ(z))) , (7.13)

the last stochastic inequality again holding for n large. Furthermore, for fixed i ≥ 1, on the event
that m(u) ≥ i we have

P̂

m(u) > i

∣∣∣∣∣∣m(u) ≥ i,

i∑
j=1

|Dj | < ⌊ϵn⌋

 > 1[En,z ] ·
n− (1 + ϵ)θ(z)n− ϵn

n

≥ 1[En,z ](1− 2θ(z)) . (7.14)

Together, (7.13) and (7.14) imply that on En,z ,

τ−u ⪰st min(⌊ϵn⌋,
G−∑
i=1

|P−
i |) , (7.15)

where G− is Geometric(1 − 2θ(z)) and, independent of G−, the (P−
i , i ≥ 1) are iid PGW(1 −

2θ(z)).
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For γ = z − 1 sufficiently small, 3γ < 2θ(z) < 4γ, so

P
{
G− >

1

50γ

}
>

9

10
.

Also, by (4.1),

E
[
|P−

1 |
]
≥ 1

4γ
, E

[
|P−

1 |2
]
≤ 1

2γ3
,

so by a routine application of  the Paley-Zygmund inequality,

P


⌈1/50γ⌉∑
i=1

|P−
i | ≥ 1

400γ2

 ≥ 1

100
.

By the independence of G− and the P−
i , it follows that

P


G−∑
i=1

|P−
i | ≥ 1

400γ2

 >
9

1000
.

We also have P
{∑G−

i=1 |P
−
i | ≥ ⌊ϵn⌋

}
→ 0 as n → ∞, and so by the stochastic relation (7.15) we

obtain

P̂
{
τ−u ≥ 1

400γ2

}
≥ 1[En,z ]

(
9

1000
− on(1)

)
≥ 1[En,z ] ·

1

125
,

for n sufficiently large. Since τ−u ≤ τu almost surely, combined with (7.11) and (7.12) this implies
that there is C > 1 such that

P̂
{
τu ∈

[
1

Cγ2
,
C

γ2

]
, λu ≤ C

γ

}
≥ 1[En,z ] ·

1

C
;

this bound holds uniformly over all z with z − 1 sufficiently small, over all ϵ with 0 < ϵ < ϵ0(z),
and for all n greater than some fixed n0 = n0(z, ϵ).

Fix vℓ ∈ V (Mn(d)) with g < ℓ ≤ d, and let

Nℓ = #
{
u ̸∈ V (Mn(d)) : α(u) = vℓ, τu ∈

[
1

Cγ2
,
C

γ2

]
, λu ≤ C

γ

}
.

For any u ̸∈ V (Mn(d)), α(u) ∈ {v1, . . . , vd}. By (7.5) and by symmetry, we have

P̂
{
α(u) = vℓ | τu ∈

[
1

Cγ2
,
C

γ2

]
, λu ≤ C

γ

}
≥ 1[En,z ] ·

1

d
,

and we similarly have P̂ {α(u) = vℓ} ≤ 1[En,z ]/(d − g) ≤ 1[En,z ]/((1 − ϵ)θ(n)). On En,z , for
ϵ > 0 sufficiently small, n− d ≥ n(1− 2θ(z)) and d ≤ (1 + ϵ)θ(z), so

Ê [Nℓ] ≥ 1[En,z ] ·
n− d

d
≥ 1[En,z ] ·

1− 2θ(z)

(1 + ϵ)θ(z)
. (7.16)

Now fix an Fn(d, z)-measurable set S ⊂ {vg+1, . . . , vd}, and write NS :=
∑

i:vi∈S Ni. Note that

Ni counts a subset of  the vertices in U
C/γ
n,i = U

C/(z−1)
n,i , so to prove Proposition 7.4 it suffices to

prove that for any A > 1,

P
{
NS ≥ A

θ(z)3

}
≥
(

P
{
|S| ≥ 3A

θ(z)2

}
− on(1)

)(
1− 3C

A
− 4θ(z)

)
. (7.17)

To prove such a lower bound, we shall use the second moment method; for this we require an upper
bound on expectations of  the form Ê [NjNl], for g < j ≤ l ≤ d, and we now turn to proving such
a bound.



34 L. ADDARIO-BERRY

The principal contribution comes from the case j = l; in this case we seek an upper bound on

Ê
[
N2

ℓ

]
=

∑
u,u′ ̸∈V (Mn(d))

P̂
{
u ∈ Nℓ, u

′ ∈ Nℓ

}
We bound the last probability above by considering whether or not u′ lies within T (u). If u ∈ Nℓ

then |T (u)| ≤ C/γ2; by the symmetry of  the set {w : w ̸∈ V (Mn(d))}, we thus have

P̂
{
u ∈ Nℓ, u

′ ∈ V (T (u))
}
= P̂

{
u′ ∈ V (T (u))|u ∈ Nℓ

}
· P̂ {u ∈ Nℓ}

≤ C/γ2

(1− ϵ)θ(z)n
· P̂ {u ∈ Nℓ}

≤ 1[En,z ]
C

(γ(1− ϵ)θ(z)n)2
. (7.18)

We next bound P̂ {u ∈ Nℓ, u
′ ∈ Nℓ, u

′ ̸∈ V (T (u))}. If u ∈ Nℓ and u′ ̸∈ V (T (u)), then in order
to have u′ ∈ Nℓ, the z-Prim(u′) procedure must at some point add a vertex of T (u). To bound the
latter probability, consider a modification of z-Prim(u′) which stops the first time either a vertex of
Mn(d) or a vertex of T (u) is added. Write β(u′) for the last vertex added by the modified procedure;
then

P̂
{
u ∈ Nℓ, u

′ ∈ Nℓ, u
′ ̸∈ V (T (u))

}
= P̂

{
u ∈ Nℓ, u

′ ̸∈ V (T (u)), β(u′) ∈ V (T (u))
}
.

We have already conditioned on Mn(d) (more precisely, on Fn(d, z)); we now additionally condi-
tion on T (u). All edges from T (u) to the rest of  the graph have weight at least z, and it follows by
arguing as at (7.5) that

P̂
{
u′ ̸∈ V (T (u)), β(u′) ∈ V (T (u)), u ∈ Nℓ

∣∣ T (u)
}

≤ 1[u′ ̸∈V (T (u))]1[u∈Nℓ]1[En,z ] ·
|T (u)|

d− g + |T (u)|
.

When u ∈ Nℓ we have |T (u)| ≤ C/γ2, and on En,z we have d ≥ (1− ϵ)θ(z) · n. It follows that

P̂
{
u′ ̸∈ V (T (u)), β(u′) ∈ V (T (u)), u ∈ Nℓ | T (u)

}
≤ 1[u∈Nℓ] · 1[En,z ] ·

C/γ2

(1− ϵ)θ(z) · n
.

The only term on the right that depends on T (u) is 1[u∈Nℓ]; by averaging over T (u) we thus obtain

P̂
{
u ∈ Nℓ, u

′ ∈ Nℓ, u
′ ̸∈ V (T (u))

}
≤ P̂ {u ∈ Nℓ} ·

C/γ

γ2(1− ϵ)θ(z)n
(7.19)

≤ 1[En,z ]
C

(γ(1− ϵ)θ(z)n)2
. (7.20)

Combined with (7.18) we thus obtain the bound

P̂
{
u ∈ Nℓ, u

′ ∈ Nℓ

}
≤ 1[En,z ] ·

2C

(γ(1− ϵ)θ(z)n)2
,

and summing over pairs u, u′ ̸∈ V (Mn(d)) (there are less than n2 such pairs) yields

Ê
[
N2

ℓ

]
≤ 1[En,z ] ·

2C

(γ(1− ϵ)θ(z))2
(7.21)

In the case j ̸= ℓ, the same style of  argument works with minor modifications, which we only
briefly sketch. In order to have u ∈ Nj and u′ ∈ Nℓ we can not have u′ ∈ V (T (u)), and must
have α(u′) = vℓ. The symmetry of  the nodes {vi, g < i ≤ d} is not broken by the knowledge that
u ∈ Nj , so we have

P̂
{
α(u′) = vℓ | u ∈ Nj

}
≤ 1[En,z ] ·

1

(1− ϵ)θ(z)n)
;



THE LOCAL WEAK LIMIT OF THE MST OF Kn 35

we thus obtain the bound

P̂
{
u ∈ Nj , u

′ ∈ Nℓ

}
≤ 1[En,z ]

1

((1− ϵ)θ(z)n)2
,

and so

Ê [NjNℓ] ≤ 1[En,z ]
1

((1− ϵ)θ(z))2
.

Combining the preceding inequality with (7.21), it follows that for any Fn(d, z)-measurable set
S ⊂ {vi, g < i ≤ d}, writing NS =

∑
{i:vi∈S}Ni, we have

Ê
[
N2

S

]
≤ 1[En,z ]

(|S|2 + 2C|S|/γ2)
(1− ϵ)2θ(z)2

.

By (7.16), we also have

Ê [NS ] ≥ 1[En,z ]
(1− 2θ(z)))|S|
(1 + ϵ)θ(z)

.

By the preceding inequalities and the conditional Chebyshev inequality ([13], p.194), for any t > 0
we have

P̂
{
|NS − Ê [NS ] | > t

}
≤ 1

t2

(
Ê
[
N2

S

]
− Ê [NS ]

2
)

≤ 1

t2
|S|2

θ(z)2

(
1 + 2C/(γ2|S|)

(1− ϵ)2
− (1− 2θ(z))2

(1 + ϵ)2

)
Recall that for all z > 1 we have θ(z) ≤ 2(z − 1) = 2γ. It follows that for z − 1 sufficiently small,
for any D > 1, for n large enough we have

P̂
{
NS ≥ |S|

3θ(z)
, |S| ≥ DC

θ(z)2

}
≥ P̂

{
|NS − Ê [NS ] | ≤

|S|
2θ(z)

, |S| ≥ DC

θ(z)2

}
≥ 1[|S|≥DC/θ(z)2] · 1[En,z ] ·

(
1−

(
1 + 8/D

(1− ϵ)2
− (1− 2θ(z))2

(1− ϵ)2

))
.

By the tower law, we thus obtain

P
{
NS ≥ DC

3θ(z)3

}
≥ P

{
NS ≥ |S|

3θ(z)
, |S| ≥ DC

θ(z)2
, En,z

}
= E

[
P̂
{
NS ≥ |S|

3θ(z)
, |S| ≥ DC

θ(z)2

}]
≥ P

{
|S| ≥ DC/θ(z)2, En,z

}
·
(
1−

(
1 + 8/D

(1− ϵ)2
− (1− 2θ(z))2

(1− ϵ)2

))
.

Since P {En,z} → 1 as n → ∞, and since ϵ > 0 was arbitrary, it follows that for any Fn,d-
measurable S ⊂ {vj , g < j ≤ d},

P
{
NS ≥ DC

3θ(z)3

}
≥
(

P
{
|S| ≥ DM

θ(z)2

}
− on(1)

)
·
(
1− 8

D
− 4θ(z)

)
.

Taking A = D/3 then establishes (7.17) and so completes the proof  of  Proposition 7.4.

List of  Notation

a(v) For v ∈ V (T ), a(v) = 1; for v ̸∈ V (T ), a(v) is the weight of  the largest weight edge
on the path from v to T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B′
G(v, x) Ball in G for the distance d′G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

BG(v, x) Ball in G for the distance dG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Bλ Truncated, size-biased Borel-Tanner random variable. . . . . . . . . . . . . . . . . . . . . . . . . . 7
Cz
n Components of Kz

n, listed in decreasing order of  size as (Cz
n,1, . . . , C

z
n,m). . . . . . . 11

d′G Weighted graph distance in G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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dG Unweighted graph distance in G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
dn(j, z) Equals inf{ℓ : j < ℓ ≤ n− 1,Wn(eℓ) ≥ z}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ei(G) The i'th edge added by Prim's algorithm on G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Fn(j, z) σ-algebra induced by {Mn,i, 1 ≤ i ≤ j} and by the indicator 1[Wn(ej)>z]. . . . . . . 20

F z,λ
n Subgraph of Mn with edges {e ∈ E(Mn) : e ∈ E(Mn,dn(z)) or Wn(e) ≤ λ}. . . .20

gn(j, z) Last time before step j that Prim's algorithm on Kn adds an edge of  weight ≥ z. 11
I(z) Index of  first forward maximal weight Xi with Xi ≤ z. . . . . . . . . . . . . . . . . . . . . . . . 14
Kn The complete graph on [n] with root 1 and with Exponential(n− 1) edge weights.3
Kz

n Subgraph of Kn with edges E(Kz
n) = {e ∈ E(Kn) : Wn(e) ≤ z}. . . . . . . . . . . . . 11

M The component of  the wired MSF on U containing the root ∅; rM = (M, ∅,W ). 3
M(λ) Subtree of M with vertex set {v ∈ V (M) : a(v) ≤ λ}. . . . . . . . . . . . . . . . . . . . . . . . . 5
Mn The minimum spanning tree of Kn; Mn = (Mn, 1,Wn). . . . . . . . . . . . . . . . . . . . . . . . 3
Mn,k Subtree of Mn built by first k steps of  invasion percolation. . . . . . . . . . . . . . . . . . . . . 10
M z,λ

n Subtree of F z,λ
n induced by the set of  vertices whose path to v1 in F z,λ

n does not pass
through {vj , gn(z) < j ≤ dn(z)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

M z,λ Subtree of M(λ) induced by nodes whose path to v1 in M(λ) does not pass through
{vj , j > g(z)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

p(v) The parent of  node v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PGW(λ) Poisson(λ) Galton-Watson tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(Pi, i ≥ 1) The components of T when forward maximal edges are removed. . . . . . . . . . . . . . . 6
RWG Rooted weighted graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
θ(λ) P{PGW(λ) = ∞}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Tk Subtree of T built by first k steps of  invasion percolation. . . . . . . . . . . . . . . . . . . . . . . 10
T (u) The invasion percolation cluster of (U, u,W ); T = T (∅). . . . . . . . . . . . . . . . . . . . . . . . 3
U The Ulam-Harris Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
(U, ∅,W ) The Poisson-weighted infinite tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
vi(G) The i'th vertex added by Prim's algorithm on G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
x(v) Weight of  the largest weight edge in unique infinite path in M leaving v. . . . . . . . . . 7
x1 Unique value for which θ′(x1) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
((Xi, Zi), i ≥ 1) The forward maximal process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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