1 Partitions generated by random sampling

Given random variables X_1, \ldots, X_n, let F_n be the empirical distribution function of X_1, \ldots, X_n:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{[X_i \leq x]}.$$

Proposition 1 (de Finetti extension). Given an infinite exchangeable sequence (X_n) With $\mathbb{E}\{X_1\} < \infty$, let F be the random probability distribution from de Finetti’s theorem. Then with probability one,

$$\sup_x (F(x) - F_n(x)) \to 0 \text{ as } n \to \infty.$$

Remark: the rate of convergence implied by “uniformly in x” may depend on F.

Lemma 1 (Glivenko-Cantelli theorem). Let G be a distribution function. If $(X_n)_{n \in \mathbb{N}}$ are iid with distribution G and $\mathbb{E}\{X_1\} < \infty$ then with probability one,

$$\lim_{n \to \infty} \sup_x (G(x) - G_n(x)) = 0.$$

Proof of Proposition assuming lemma. We have

$$\mathbb{P}\{ \lim_{n \to \infty} \sup_x (F(x) - F_n(x)) = 0 \} = \mathbb{E}\{ \mathbb{P}\{ \lim_{n \to \infty} \sup_x (F(x) - F_n(x)) = 0 \} | F \}.$$

But given F, the (X_n) are iid with distribution F, so the Glivenko-Cantelli theorem implies that the right-hand side above is just $\mathbb{E}\{1 | F\} = 1$.

Proof of Glivenko-Cantelli theorem. By the strong law of large numbers, $F_n(x) \to F(x)$ with probability one. The idea is to apply this convergence at increasingly closely spaced, finite subsets of the range $[0, 1]$ of F.

Due to lack of continuity, we also need to consider $F_n(x^-) = n^{-1} \sum_{i=1}^{n} \mathbb{1}_{[X_i < x]}$. Of course, we can also apply the SLLN to see that $F_n(x^-) \to F(x^-)$ with probability one.

Now fix $k \in \mathbb{N}$, and for $j \in [k - 1]$ let $x_{j,k} = \inf\{x : F(x) > j/k\}$. (Note that some of the $x_{j,k}$ could be equal.) Also, let $x_{0,k} = -\infty$, $x_{k,k} = \infty$. Then apply the SLLN at each of $x_{j,k}$,
We obtain that there is some (random) time \(N_k \) such that for all \(n \geq N_k \), and for all \(j \in \{0, 1, \ldots, k\} \),

\[
|F_n(x_{j,k}) - F(x_{j,k})| < \frac{1}{k} \quad \text{and} \quad |F_n(x_{j,k}^{-}) - F(x_{j,k}^{-})| < \frac{1}{k}.
\]

This shows that the value of \(F_n \) is close to that of \(F \) at the points \(x_{j,k} \). For the remaining points, fix any \(x \in \mathbb{R} \) with \(x \in (x_{j-1,k}, x_{j,k}) \), for some \(j \in [k] \). If \(n \geq N_k \) we then have

\[
F_n(x) \leq F_n(x_{j,k}^{-}) \leq F(x_{j,k}^{-}) + \frac{1}{k} \quad \text{since } n \geq N_k.
\]

Since \(F \) is monotone nondecreasing, \(F(x_{j,k}^{-}) \leq F(x_{j-1,k}) + k^{-1} \), so

\[
F_n(x) \leq F(x_{j-1,k}) + \frac{2}{k} \leq F(x) + \frac{2}{k} \quad \text{since } x_{j-1,k} < x.
\]

Similarly,

\[
F_n(x) \geq F_n(x_{j,k-1}^{-}) \geq F(x_{j,k-1}^{-}) - \frac{1}{k} \quad \text{since } n \geq N_k
\]

\[
\geq F(x_{j,k}^{-}) - \frac{2}{k} \quad \text{by monotonicity}
\]

\[
\geq F(x) - \frac{2}{k} \quad \text{since } x_{j,k} > x.
\]

Thus, for all \(n \geq N_k \), \(\sup_x (F_n(x) - F(x)) \leq 2/k \). Since \(k \) was arbitrary, the conclusion follows.

Given a probability distribution \(F \) on \(\mathbb{R} \) and \(x \in \mathbb{R} \), \(c \in (0, 1) \), say that \(F \) has an atom of magnitude \(c \) at \(x \) if \(F(x^{-}) = F(x) - c \). We write \((P_i^1, i \geq 1) = (P_i^1(F), i \geq 1) \) for the sequence of ranked atoms of \(F \), i.e. the atoms of \(F \) listed in decreasing order of magnitude.

Given \(\Pi_{\infty} \), an e.r.p. of \(\mathbb{N} \), by a diagonalization argument (special case of Skorohod’s theorem), we can assume that for all \(m \leq n \), we actually have \(\Pi_{m,n} \overset{a.s.}{=} \Pi_m \). Write \((A_{n,i}^1) \) for the parts of \(\Pi_n \) in decreasing order of size (ties broken lexicographically), and write \((N_{n,i}^1, i \geq 1) \) for the corresponding sizes (with \(N_{n,i}^1 = 0 \) if \(\Pi_n \) has less than \(i \) parts). This is all setup for the below theorem.
Theorem 1 (Kingman’s paintbox representation). Let Π_{∞} be an e.r.p. of \mathbb{N}. Then there is a random vector $P_i = (P_i, i \geq 1)$ such that for each $i \in \mathbb{N}^{>0}$,

$$\lim_{n \to \infty} \frac{N_{n,i}^{\downarrow}}{n} \overset{a.s.}{=} P_i^{\downarrow}.$$

Then given P_i, Π_{∞} is distributed as $\Pi_{\infty}((X_n)_{n \in \mathbb{N}})$, where the X_n are iid with distribution function $F = F(P_i^{\downarrow})$.

Proof. Since we are working in a space where $\Pi_{m,n} \overset{a.s.}{=} \Pi_m$ for all $m \leq n$, with probability one Π_{∞} defines a partition of $\mathbb{N} = \{A_{\infty,1}, A_{\infty,2}, \ldots\}$, listed in order of appearance. (Put n into whatever part it appears in in Π_n.)

Now let $(U_n)_{n \geq 1}$ be a sequence of independent Uniform$[0,1]$ random variables. Define a sequence $(X_m)_{m \geq 1}$ by setting $X_m = U_j$ if $m \in A_{j,\infty}$. Then $(X_m)_{m \geq 1}$ is exchangeable since for each m, Π_m is exchangeable.

Also, for $n \geq 1$ and $i \geq 1$, write $\hat{U}_{n,i} = U_j$ if $A_{n,i} = A_j$. Then the number of $m \in [n]$ for which $X_m = \hat{U}_{n,i}$ is precisely $N_{n,i}^{\downarrow}$.

Write F for the distribution function from Proposition 1, and $(P_i^{\downarrow})_{i \geq 1}$ for its ranked atoms. (We assume the atoms are all distinct for simplicity.) By Proposition 1, with probability one,

$$\sup_x (F(x) - F_n(x)) \to 0 \text{ as } n \to \infty.$$ (1)

Here F has $F(0^-) = 0$, $F(1) = 1$, and for $0 \leq u \leq 1$,

$$F_n(u) = \frac{1}{n} \sum_{m=1}^{n} 1_{[X_m \leq u]} = \sum_{i=1}^{\infty} \frac{N_{n,i}^{\downarrow}}{n} 1_{[\hat{U}_{n,i} \leq u]}.$$

Given F, the X_n are independent with distribution F. Since all the X_j take values from among $(U_i)_{i \geq 1}$, there must be some permutation $\sigma : \mathbb{N} \to \mathbb{N}$ (which is a function of F) such that for all $i \geq 1$

$$\mathbb{P}\{X_1 = U_{\sigma(i)}\} = P_i^{\downarrow}.$$

Now fix $i \geq 1$ and let $\delta = \min(P_i^{\downarrow} - P_{i-1}^{\downarrow}, P_{i+1}^{\downarrow} - P_i^{\downarrow})$. By (1), with probability one there is n_0 such that for all $n \geq n_0$, we have $\sup_x (F(x) - F_n(x)) < \delta/4$. Then in particular, for all

3
\[j < i, \]

\[|\{ k \leq n : X_k = U_{\sigma(j)} \}| = F_n(U_{\sigma(j)}) - F_n(U_{\sigma(j)}^-) \]
\[> F(U_{\sigma(j)}) - F(U_{\sigma(j)}^-) - \frac{\delta}{2} \]
\[= P_j^1 - \frac{\delta}{2} \]
\[\geq P_{i-1}^1 - \frac{\delta}{2} \]
\[> P_i^1 + \frac{\delta}{2} \]
\[= F(U_{\sigma(i)}) - F(U_{\sigma(i)}^-) + \frac{\delta}{2} \]
\[> F_n(U_{\sigma(i)}) - F_n(U_{\sigma(i)}^-) \]
\[= |\{ k \leq n : X_k = U_{\sigma(i)} \}|. \]

A similar argument shows that for all \(n \geq n_0 \) and \(j > i \),

\[|\{ k \leq n : X_k = U_{\sigma(j)} \}| < |\{ k \leq n : X_k = U_{\sigma(i)} \}|. \]

It follows that for all \(n \geq n_0 \), we have \(|\{ k \leq n : X_k = U_{\sigma(i)} \}| = N_{n,i}^1 \), and so

\[\lim_{n \to \infty} \frac{N_{n,i}^1}{n} \overset{a.s.}{=} \lim_{n \to \infty} \frac{|\{ k \leq n : X_k = U_{\sigma(i)} \}|}{n} \overset{a.s.}{=} P_i^1, \]

the last holding, conditional on \(F \), by the law of large numbers, and then unconditionally by taking the expectation over \(F \).