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Abstract. Let p be an odd prime, let S be a finite set of primes q ≡ 1 mod p
but q ̸≡ 1 mod p2 and let GS be the Galois group of the maximal p-extension of Q
unramified outside of S. If ρ is a continuous homomorphism of GS into GL2(Zp)
then under certain conditions on the linking numbers of S we show that ρ = 1 if
ρ = 1. We also show that ρ = 1 if ρ can be put in triangular form mod p3.

To Helmut Koch on his 80th birthday

1. Statement of Results

Let p be a rational prime. Let K be a number field, let S be a finite set of
primes of K with residual characteristics ̸= p and let ΓS,K be the Galois group of the
maximal (algebraic) extension of K unramified outside of S. The Tame Fontaine-
Mazur Conjecture (cf. [1], Conj. 5a) states that every continuous homomorphism

ρ : ΓS,K → GLn(Zp)

has a finite image. If ρ is the reduction of ρ mod p then ρ is trivial if and only if the
image of ρ is contained in the standard subgroup

GL(1)
n (Zp) = {X ∈ GLn(Zp) | X ≡ 1 mod p}

which is a pro-p-group. Hence, if ρ = 1, the homomorphism ρ factors through GS,K ,

the maximal pro-p-quotient of ΓS,K . Since GL(1)
n (Zp) is torsion free, this shows that

when ρ = 1 the Tame Fontaine-Mazur Conjecture is equivalent to the following
conjecture.

Conjecture 1.1. If ρ : GS,K → GL(1)
n (Zp) is a continuous homomorphism then

ρ = 1.

Conversely, the truth of Conjecture 1.1 for any number fieldK implies the Fontaine-
Mazur Conjecture. In this paper we will prove Conjecture 1.1 whenK = Q for certain
sets S.

We now let K = Q and GS = GS,Q. To prove Conjecture 1.1 we can assume that
the primes in S are congruent to 1 mod p since these are the only primes different
from p that can ramify in a p-extension of Q. We will also assume that the primes in S
are not congruent to 1 mod p2, which is equivalent to GS/[GS, GS] being elementary.
In this case we will show that Conjecture 1.1 follows from a Lie theoretic analogue of
it when p is odd. We therefore assume that p ̸= 2 for the rest of the paper.
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To formulate this analogue let S = {q1, . . . , qd} and let lS be the finitely presented
Lie algebra over Fp generated by ξ1, . . . , ξd with relators σ1, . . . , σd where

σi = ciξi +
∑
j ̸=i

ℓij[ξi, ξj]

with ci = (qi − 1)/p mod p and the linking number ℓij of (qi, qj) defined by qi ≡ g
−ℓij
j

mod qj with gj a primitive root mod qj. We call lS the linking algebra of S. Up to
isomorphism, it is independent of the choice of primitive roots.

Theorem 1.2. There exists a mapping

ℓ : Homcont(GS,GL(1)
n (Zp)) → Hom(lS, gln(Fp))

such that ρ = 1 ⇐⇒ ℓ(ρ) = 0.

Corollary 1.3. If the cup-product H1(GS,Fp)×H1(GS,Fp) → H2(GS,Fp) is trivial
then Conjecture 1.1 is true for GS.

Definition 1.4 (Property FM(n)). A Lie algebra g over a field F is said to have
Property FM(n) if every n-dimensional representation of g is trivial.

Theorem 1.5. If lS has Property FM(k) then Conjecture 1.1 is true for n = k.

If |S| ≤ 2 then lS has Property FM(n) for all n since lS = 0 in this case. However
lS may not have Property FM(2) if |S| ≥ 3; for example, if p = 3, S = {7, 31, 229}
or if p = 5 and S = {11, 31, 1021}. However, the number of such S is relatively
small; for example, if p = 7 and the primes in S are at most 10, 000, the set S fails to
have Property FM(2) approximately .2% of the time. The following theorem gives
necessary and sufficient conditions for Property FM(n) to hold when |S| = 3.

Theorem 1.6. Let mij = −ℓij/ci. If |S| = 3 and n < p then Property FM(n) holds
if and only if one of the following conditions holds:

(a) mij = 0 for some i, j;
(b) mij ̸= 0 for all i, j and mik = mjk for some i, j, k with i ̸= j;
(c) mij ̸= 0 for all i, j and (mik −mjk)(mkimij −mkjmji) ̸= 0 for some i, j, k.

These conditions are independent of the choice of primitive roots.

Theorem 1.7. If |S| = 3 and n < p then lS fails to have Property FM(n) if and
only if ℓij ̸= 0 for all i, j and ℓ13/c1 = −ℓ23/c2, ℓ21/c2 = −ℓ31/c3, ℓ12/c1 = −ℓ32/c3.

Theorem 1.8. Let ρ : GS → GL2(Zp) be a continuous homomorphism. Then ρ = 1
if ρ can be brought to triangular form mod p3.

The pro-p-groups GS are very mysterious. They are all fab groups, i.e., subgroups
of finite index have finite abelianizations, and for |S| ≥ 4 they are not p-adic analytic.
So far no one has given a purely algebraic construction of such a pro-p-group. We
call a pro-p-group G a Fontaine-Mazur group if every continuous homomorphism of
G into GLn(Zp) is finite. Again, no purely algebraic construction of such a group
exists. In this direction we have the following result.
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Theorem 1.9. Let G be the pro-p-group with generators x1, . . . , x2m and relations

xpc1
1 [x1, x2] = 1, xpc2

2 [x2, x3] = 1, . . . , x
pc2m−1

2m−1 [x2m−1,2m] = 1, xpc2m
2m [x2m, x1] = 1

with ci ̸≡ 0 mod p and p > 2, m ≥ 2. Then every continuous homomorphism of G
into GL(1)

n (Zp) is trivial if n < p.

2. Mild pro-p-groups

Let G be a pro-p-group. The descending central series of G is the sequence of
subgroups Gn defined for n ≥ 1 by

G1 = G, Gn+1 = Gp
n[G,Gn]

where Gp
n[G,Gn] is the closed subgroup of G generated by p-th powers of elements

of Gn and commutators of the form [h, k] = h−1k−1hk with h ∈ G and k ∈ Gn. The
graded abelian group

gr(G) = ⊕n≥1grn(G) = ⊕n≥1Gn/Gn+1

is a graded vector space over Fp where grn(G) is denoted additively. We let

ιn : Gn → grn(G)

be the quotient map. Since p ̸= 2, the graded vector space gr(G) has the structure of
a graded Lie algebra over Fp[π] where

π ιn(x) = ιn+1(x
p), [ιn(x), ιm(y)] = ιn+m([x, y]).

Let G = F/R where F is the free pro-p-group on x1, . . . , xd and R = (r1, . . . , rm)
is the closed normal subgroup of F generated by r1, . . . , rm with ri ∈ F2. If

rk ≡
∏
i≥1

x
paj
i

∏
i<j

[xi, xj]
aijk mod F3

and we let ξi = ι1(x1), ρk = ι2(rk) in L = gr(F ) then L is the free Lie algebra over
Fp[π] on ξ1, . . . , ξd and

ρk =
∑
i≥1

aiπξi +
∑
i<j

aijk[ξi, ξj].

Let r be the ideal of L generated by ρ1, . . . ρm, let g = L/r and let U be the enveloping
algebra of g. Then r/[r, r] is a U -module via the adjoint representation. The sequence
ρ1, . . . , ρm is said to be strongly free if (a) g is a torsion-free Fp[π]-module and (b)
r/[r, r] is a free U -module on the images of ρ1, . . . , ρm in which case we say that the
presentation is strongly free.

Theorem 2.1 ([3], Theorem 1.1). If G = F/R is strongly free then r is the kernel of
the canonical surjection gr(F ) → gr(G) so that gr(G) = L/r.

A finitely presented pro-p-group G is said to be mild if it has a strongly free
presentation.

Let A = Zp[[G]] be the completed algebra of G and let I = Ker(A → Fp) be the
augmentation ideal of Zp[[G]]. Then

gr(A) = ⊕n≥1I
n/In+1

is a graded algebra over Fp[π] where π can be identified with the image of p in
I/I2. The canonical injection of G into A sends Gn into 1 + In and gives rise to
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a canonical Lie algebra homomorphism of gr(G) into gr(A) which is injective if and
only if Gn = G ∩ (1 + In).

Theorem 2.2 ([3], Theorem 1.1). If G is mild the canonical map gr(G) → gr(A) is
injective and gr(A) is the enveloping algebra of gr(G). Moreover, R/[R,R] is a free
A-module which implies that cd(G) ≤ 2.

We now give a criterion for the mildness of G = GS when p ̸= 2 and p /∈ S.
The group GS has a presentation F (x1, . . . , xd)/(r1, . . . , rd) where xi is a lifting of a
generator of an inertia group at qi and

ri = xpci
i

∏
j ̸=i

[xi, xj]
ℓij mod F3

which is due to Helmut Koch ([2], Example 11.11). Using the transpose of the inverse
of the transgression isomorphism

tg : H1(R,Fp)
F = (R/Rp[R,F ])∗ −→ H2(G,Fp),

the relator ri defines a linear form ϕi on H2(G,Fp)) such that, if χ1, . . . , χd is the
basis of H1(F,Fp) = (F/F p[F, F ])∗ with χi(xj) = δij, we have ϕi(χi ∪ χj) = −ℓij if
i < j; cf.[2], Theorem 7.23.

The set S is said to be a circular set of primes if there is an ordering q1, . . . , qd of
the set S such that

(a) ℓi,i+1 ̸= 0 for 1 ≤ i < d and ℓd1 ̸= 0,
(b) ℓij = 0 if i, j are odd,
(c) ℓ12ℓ23 · · · ℓd−1,dℓd1 ̸= ℓ1mℓm,m−1 · · · ℓ32ℓ21.

Theorem 2.3. If S is a circular set of primes then GS is mild.

Theorem 2.4. The set S can be extended to a set S ∪ q where q ≡ 1 mod p, q ̸≡ 1
mod p2 in such a way that the pairs (q, qi), (qi, q) with non-zero linking numbers can
be arbitrarily prescribed.

Corollary 2.5. The set S can always extended to a set S ′ with GS′ mild.

See Labute ([3], Theorem 1.1) for the proof of Theorem 2.3 and ([3], Proposition
6.1) for the proof of Theorem 2.4. The proof of Proposition 6.1 in [3] yields the
sharper form stated here.

Theorem 2.6. There exists a finite set S ′ k S consisting of primes q ≡ 1 mod p, q ̸≡
1 mod p2 such that GS′ is mild and, if n < p, the Lie algebra lS′ has Property(FM(n))
if lS does.

3. Proof of Theorem 1.2

Let G be a pro-p-group with G/[G,G] ∼= (Z/pZ)d and let ρ : G → GL(1)
n (Zp) be a

continuous homomorphism. Let

GL(k)
n (Zp) = {X ∈ GLn(Zp) | X ≡ 1 mod pk}.

Lemma 3.1. Let X = 1 + piA ∈ GL(i)
n (Zp), Y = 1 + pjB ∈ GL(j)

n (Zp) then

[X, Y ] = 1+pi+j[A,B] mod pi+j+1, Xp = 1+pi+1A mod pi+2, where [A,B] = AB−BA.
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Lemma 3.2. If ρ(G) ̸= 1 then ρ(G) ̸⊆ GL(2)
n (Zp).

Proof. Let H = ρ(G) and let k ≥ 1 be largest with H ⊆ GL(k)
n (Zp). Let h1, . . . hd

be a generating set for H and let hi = I + pkNi. Then [hi, hj] ∈ GL(2k)
n (Zp) which

implies that [H,H] ⊆ GL(2k)
n (Zp). By assumption, there exists i such that Ni ̸≡ 0

mod p. But
hp
i = (1 + pkNi)

p ≡ 1 + pk+1Ni mod pk+2.

Since Ni ̸≡ 0 modulo p we have hp
i ∈ [H,H] only if k + 1 ≥ 2k which implies that

k = 1. �
Let G = GS. Then GS has the presentation F (x1, . . . , xd)/(r1, . . . , rd) where

ri = xpci
i

∏
j ̸=i

[xi, xj]
ℓij mod F3.

Let ρ(xi) = 1 + pAi. Then modulo p3 we have

1 = ρ(ri) = 1 + p2(ciAi +
∑
j ̸=i

ℓij[Ai, Aj]).

Hence, if Ai is the image of Ai in gln(Fp), we have

ciAi +
∑
j ̸=i

ℓij[Ai, Aj] = 0.

Thus ℓ(ρ)(ξi) = Ai defines a Lie algebra homomorphism ℓ(ρ) : lS → sln(Fp). If ρ = 1
then Ai = 0 for all i which implies ℓ(ρ) = 0. Conversely, if ρ ̸= 1 then by Lemma 3.2
we have Ai ̸= 0 for some i which implies ℓ(ρ) ̸= 0.

4. Proof of Theorem 1.8

Without loss of generality, we can assume that GS is mild. Let H = ρ(GS) and
assume that H = ρ(GS) ̸= 1. Note thatH is a subgroup of SL2(Zp) since GS/[GS, GS]

is finite. After a change of basis, we can assume that the matrices

[
a b
c d

]
∈ H satisfy

p3|c and that H is generated by the image of

C =

[
1 1
0 1

]
.

Let h1, . . . , hd be a generating set for H with h1, . . . , hd−1 ∈ SL(1)
n (Zp) and hd ≡ C

mod p. We have

hi − 1 = pAi = p

[
ai bi
ci di

]
for i < d and hd − 1 =

[
p ad 1 + p e
p cd p f

]
.

We also have d > 1 since otherwise H is infinite cyclic which is impossible since
H/[H,H] is finite.

Lemma 4.1. Let X, Y ∈ GL2(Zp) with X = 1 + pA = 1 + p

[
a b
c d

]
and with Y ≡ C

mod p. Then

[X,Y ] ≡ 1 + p

[
−c a− d− c
0 c

]
mod p2.
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Proof. Let N = Y − 1. Then, working mod p2, we have

[X,Y ] ≡ (1 + pA)−1(1 +N)−1(1 + pA)(1 +N)

≡ (1− pA)(1−N +N2 −N3)(1 + pA)(1 +N)

≡ (1− pA−N + pAN +N2 −N3)(1 + pA+N + pAN)

≡ 1 + p[A,N ]− pNAN

≡ 1 + p[A,N ]− pN [A,N ]

= 1 + p

[
−c a− d− c
0 c

]
�

Lemma 4.2. We have hp
d ≡ 1 + p

[
0 1
0 0

]
mod p2.

Proof. We have hd = 1 +N with N =

[
p ad 1 + p e
p cd p f

]
so that mod p2

pN ≡ p

[
0 1
0 0

]
, N2 ≡ p

[
0 ad + f
0 0

]
, N3 ≡ 0.

Hence we have hp
d = (1 +N)p ≡ 1 + pN mod p2. �

Let M = Zpe1 + Zpe2 and let B be the image of A = Zp[[GS]] in End(M). Let
J = (p, h1−1, . . . , hd−1) be the augmentation ideal of B. Then JM = Zpe1+Zpp e2
and by induction we have

JkM = Zp p
k−1e1 + Zp p

ke2

for k ≥ 1. It follows that gr(M) =
∑

k≥0 J
kM/Jk+1M is a free Fp[π]-module with

basis e1 ∈ gr1(M), e2 ∈ gr0(M). Using the fact that

(hi − 1)e1 = p aie1 + p cie2

with p2|ci we see that gr(hi − 1)e1 = aiπe1. Since the elements gr(hi − 1), (i ≤ d)
generate gr(B) =

∑
k≥0 J

k/Jk+1 the submodule W = Fp[π]e1 is invariant under gr(B)
and we obtain a homomorphism

ϕ1 : gr(B) → End(W ) = gl1(Fp[π])

with ϕ1(gr(hi − 1)) = πai. We want to show that ai is non-trivial mod p for some
i < d.

Lemma 4.3. If X = 1 + pA ∈ SL(1)
n (Zp) then tr(A) ≡ 0 mod p.

Proof. If X = 1 + pN ∈ SL(1)
n (Zp), we have 1 = det(1 + pN) ≡ 1 + p tr(N) mod p2

which implies that tr(N) ≡ 0 mod p. �

Lemma 4.4. If 1 ≤ i < d and πai = ϕ1(gr(hi − 1)) = 0 then [hi, hd] ∈ SL
(2)
2 (Zp).

Proof. Since ai ≡ 0 mod p, Lemma 4.3 implies that di ≡ 0 mod p. The result then
follows from Lemma 4.1. �
Lemma 4.5. If πai = ϕ1(gr(hi − 1)) = 0 for 1 ≤ i < d then [H,H] ⊆ SL

(2)
2 (Zp).



LINKING NUMBERS AND THE TAME FONTAINE-MAZUR CONJECTURE 7

Proof. The pro-p-group [H,H] is generated, as a normal subgroup of H, by the ele-
ments of the form [hi, hj] and [hi, hd] with i, j < d. Since the elements of the form
[hi, hj] with i, j < d are congruent to 1 mod p2 by the proof of Lemma 3.2, the result
follows from Lemma 4.4. �

So if gr(hi − 1) acts trivially on W for 1 ≤ i < d then hp
d is not in [H,H] by

Lemmas 4.5 and 4.2, contradicting the fact that H/[H,H] is elementary. So the ho-
momorphism ϕ1 : gr(B) → gl1(Fp[π]) is non-trivial. Composing ϕ1 with the canonical
surjection gr(Zp[[GS]]) → gr(B), we obtain a non-trivial homomorphism

ϕ : gr(Zp[[GS]]) → gl1(Fp[π]).

Composing the canonical map α : gr(GS) → gr(Zp[[GS]]) with ϕ, we get a Lie algebra
homomorphism

gr′(ρ) : gr(GS) → gl1(Fp[π]).

Since GS is mild α is injective and gr(Zp[[GS]]) is the enveloping algebra of gr(GS)
which implies that gr′(ρ) ̸= 0 since gr(GS) generates gr(Zp[[GS]]).

Now GS has the presentation F (x1, . . . , xd)/(r1, . . . , rd) where

ri = xpci
i

∏
j ̸=i

[xi, xj]
ℓij mod F3.

Since GS is mild, we have gr(GS) =< ξ1, . . . , ξn | ρ1, . . . ρd > where

ρi = ciπξi +
∑
j ̸=i

ℓij[ξi, ξj].

In this case, if gr′(ρ)(ξi) = πui then gr′(ρ)(ρi) = π2ciui = 0 and so ui = 0 for all i
which contradicts the fact that gr′(ρ) ̸= 0.

5. Proof of Theorem 1.6

Here |S| = 3 and the relations for lS can be written in the form

ξ1 = m12[ξ1, ξ2] +m13[ξ1, ξ3],

ξ2 = m21[ξ2, ξ1] +m23[ξ2, ξ3],

ξ3 = m31[ξ3, ξ1] +m32[ξ3, ξ2],

where mij = −ℓij/ci. Let r : lS → gln(Fp) be a Lie algebra homomorphism and let
Ai = r(ξi). Then

A1 = m12[A1, A2] +m13[A1, A3],

A2 = m21[A2, A1] +m23[A2, A3],

A3 = m31[A3, A1] +m32[A3, A2],

Since r = 0 if A1, A2, A3 are linearly dependent we may assume that A1, A2, A3 are
linearly independent. Note that each of the above relations can be written in the
form Ai = [Ai, Bi] for some Bi ∈ gln(Fp). Then, by the following Lemma which was
pointed out to us by Nigel Boston, each matrix Ai is nilpotent if n < p.

Lemma 5.1. Let A,B be n×n matrices over Fp with A = [A,B]. Then A is nilpotent
if n < p.
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Proof. Replacing Fp be a finite extension Fq, we may assume that A is upper trian-
gular. Then the trace of Aq−1 is k · 1 with 0 ≤ k < p. But the trace of An is zero for
any n ≥ 1 since A = [A,B] implies that tr(An) = tr(ABAn−1 −BAn) = 0. It follows
that k = 0 and hence that the characteristic polynomial of A is Xn. �

Remark. This proof of the above Lemma is due to Julien Blondeau.

If condition (a) holds we can, without loss of generality, assume that m12 = 0.
Then A1 = [A1, B1] with B1 = m13A3 nilpotent which implies ad(B1) nilpotent.
Hence A1 = 0 and we are reduced to the case |S| = 2.

If condition (b) holds we can, without loss of generality, assume that m13 = m23.
Taking a linear combination of the first two equations we obtain

aA1 + bA2 = (am12 − bm21)[A1, A2] + [aA1 + b
m23

m13

A2,m13A3].

Choose non-zero a, b ∈ Fp so that am12 − bm21 = 0. Then

aA1 + bA2 = [aA1 + bA2,m13A3]

which implies aA1 + bA2 = 0 since ad(A3) is nilpotent. We can then write the
equations in the form A2 = c[A2, A3], A2 = d[A2, A3], A3 = e[A2, A3] from which we
readily get A1 = A2 = A3 = 0.

If condition (c) holds we may, without loss of generality, assume that m23 ̸= m13

and m32m21 ̸= m31m12. For non-zero a, b ∈ Fp we consider the equation

aA1+bA2+A3 = (am12−bm21)[A1, A2]+(am13−m31)[A1, A3]+(bm23−m32)[A2, A3].

Let b = m12a/m21 and choose λ such that am13 −m31 = λa. Then

bm23 −m32 = λb ⇐⇒ am12m23/m21 −m32 = λam12/m21

⇐⇒ am12m23 −m32m21 = m12(am13 −m31)

⇐⇒ am12(m23 −m13) = m32m21 −m12m31

⇐⇒ a =
m32m21 −m31m12

m12(m23 −m13)
.

With this choice of a we have

aA1 + bA2 + A3 = [λaA1 + λbA2, A3] = [aA1 + bA2 + A3, λA3]

which implies aA1 + bA2 + A3 = 0 since ad(A3) is nilpotent.
If conditions (a), (b), (c) fail then∣∣∣∣m31 m32

m21 m12

∣∣∣∣ = ∣∣∣∣m12 m13

m32 m23

∣∣∣∣ = ∣∣∣∣m21 m23

m31 m13

∣∣∣∣ = 0

which implies

m31 = k1m21, m32 = k1m12, m12 = k2m32, m13 = k2m23, m21 = k3m31, m23 = k3m13

for some k1, k2, k3 ∈ F∗
p. This implies that kikj = 1 for all i ̸= j and hence that k2

i = 1
for all i. Since, by hypothesis, ki ̸= 1 we must have ki = −1 for all i. Then the
relators for lS are of the form
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ξ1 = a[ξ1, ξ2] + b[ξ1, ξ3],

ξ2 = c[ξ2, ξ1]− b[ξ2, ξ3],

ξ3 = −c[ξ3, ξ1]− a[ξ3, ξ2]

with a, b, c ∈ F∗
p. After the transformation ξ1 7→ c−1ξ1, ξ2 7→ a−1ξ2, ξ3 7→ b−1ξ3 the

relations become

ξ1 = [ξ1, ξ2] + [ξ1, ξ3],

ξ2 = [ξ2, ξ1]− [ξ2, ξ3],

ξ3 = −[ξ3, ξ1]− [ξ3, ξ2]

But these relations are satisfied if we replace ξi by Ai ∈ gl2(Fp) with

A1 = −1

2

[
0 1
0 0

]
, A2 = −1

2

[
0 0
1 0

]
, A3 = −1

2

[
1 1
−1 −1

]
which yields an isomorphism of lS with sl2(Fp).

Thus the only case where Property FM(n) would fail would be when ℓij ̸= 0 for
all i, j and

ℓ13/c1 = −ℓ23/c2, ℓ21/c2 = −ℓ31/c3, ℓ12/c1 = −ℓ32/c3.

Note that, since qi ≡ g
−ℓij
j mod qj, this is equivalent to

(qc21 qc12 )c3 ≡ 1 mod q3, (qc32 qc23 )c1 ≡ 1 mod q1, (qc31 qc13 )c2 ≡ 1 mod q2.

6. Proof of Theorem 2.6

By Theorem 2.4, we can find a set of primes S ′ = {q′1, . . . , q′2d} such that q′2i = qi
and ℓ′i,i+1 ̸= 0 if i odd, ℓ′i,i+1 ̸= 0 if i < 2d is even and ℓ′2d,1 ̸= 0 with all other ℓ′i,j = 0
if i or j is odd. If f is a homomorphism of lS′ into gln(Fp) let Ai = f(ξi). Then
aiAi+[Ai, Ai+1] = 0 for some non-zero ai if i is odd and Ai = [Ai, Bi] for some matrix
Bi if i is even. By Lemma 5.1 this implies that Ai is nilpotent if i is even and hence
that ad(Ai) is nilpotent if i is even. But this implies that Ai = 0 if i is odd. That
GS′ is mild follows from the fact that S ′ is a circular set of primes.

7. Proof of Theorem 1.9

Let ρ be a continuous homomorphism of G into GL(1)
n (Zp). If ρ(xi) = 1+pAi then,

modulo p3, we have ρ(ri) = 1 + p2(c1Ai + [Ai, Ai+1]) = 0 if i < 2m and

ρ(r2m) = 1 + p2(c2mA2m + [A2m, A1]) = 0.

Hence, if Ai is the image of Ai in gln(Fp), we have

c1A1 + [A1, A2] = 0, c2A2 + [A2, A3] = 0, · · · , c2mA2m + [A2m, A1] = 0

By Lemma 5.1 we see that ad(Ai) is nilpotent for all i and hence Ai = 0 for all i. But
this implies ρ = 1 since ρ ̸= 1 implies Ai ̸= 0 for some i by Lemma 3.2.
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