
MILD PRO-p-GROUPS AND p-EXTENSIONS OF Q

JOHN LABUTE

Let p be a prime 6= 2 and let S = {q1, . . . , qm} be a set of m rational primes ≡ 1 mod p.
Let G = GS(p) be the maximal p-extension of Q unramified outside S. The pro-p-group G
has a minimal presentation with m generators and m relations and so by Golod-Shafarevich
it is infinite if m ≥ 4. That was all we knew about this group in this case, except for the
fact that the quotients of the derived series were finite, until we showed in [5] that G has
cohomological dimension 2 under certain conditions on S. We also showed that under these
conditions the ranks of the lower p-central series quotients grow exponentially.

To describe these conditions we introduce the weighted directed graph ΓS(p) whose vertices
are the primes in S. We join qi to qj if qi is not a p-th power mod qj in which case we attach
a weight `ij to the edge qiqj. To define this weight we chose a primitive root gi for each
prime qi. Then `ij is the unique image in Z/pZ of any integer r satisfying

qi ≡ g−r
j mod qj.

Using the Čebotarev density theorem, one can show that, for any given finite directed graph
Γ, there is a set of primes S as above with ΓS(p) ∼= Γ as directed graphs.

We call ΓS(p) a non-singular circuit if the the following conditions hold:

(a) There is an ordering q1, . . . , qm of the vertices of Γ such that q1q2 · · · qmq1 is a circuit.
(b) We have `ij = 0 if i, j are odd and

∆(q1, q2, . . . , qm) = `12`23 · · · `m−1,m`m1 − `1m`21`32 · · · `m,m−1 6= 0.

In this case we also call q1q2 · · · qm a circular sequence of primes. If S = {7, 19, 61, 163} then
ΓS(3) is a non-singular circuit. If ΓS(p) is not a non-singular circuit we can add m primes
≡ 1 mod p to make it a non-singular circuit.

Note that if (a) holds then ∆(q1, q2, . . . , qm) 6= 0 if there is an edge qiqj of the circuit
q1q2 · · · qmq1 such that qjqi is not an edge of ΓS(p). Also note that (a) and (b) imply that m
is even and ≥ 4. Condition (b) is independent of the choice of primitive roots gj since

∆(q1, q2, . . . , qm) 6= 0 ⇐⇒ `1m

`m−1,m

`21

`m1

`32

`12

· · · `m,m−1

`m−2,m−1

6= 1,

where each ratio in the product is independent of the choice of primitive roots.

Theorem A If ΓS(p) is a non-singular circuit then GS(p) is of cohomological dimension 2.
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Corollary. If S = {7, 19, 61, 163} then then cd(GS(3)) = 2.

To prove this we use the fact that, due to Koch [4], the pro-p-group G = GS(p) has a
presentation G = F/R with F the free pro-p-group on x1, . . . , xm and R the closed normal
subgroup generated by r1, . . . , rm with

ri ≡ xqi−1
i

n∏
j=1

[xi, xj]
`ij mod F3,

where Fn denotes the n-th term of the lower p-central series of F . The Lie algebra L = gr(F )
associated to the lower p-central series of F is a free Lie algebra over Fp[π], where the action
of the indeterminate π is induced by x 7→ xp. Let ρi be the image of ri in gr2(F ) and let r
be the ideal of L generated by ρ1, . . . , ρm. Let g = L/r and let Ug be the enveloping algebra
of g. Then M = r/[r, r] is a Ug-module via the adjoint representation.

Theorem B. If ΓS(p) is a non-singular circuit then

(a) g is a free Fp[π]-module,
(b) M is a free Ug-module on the images of ρ1, . . . , ρm.

We call ρ1, . . . , ρm strongly free if the conditions (a) and (b) of Theorem B hold. In this
case we call G mild.

Theorem C. If the sequence r1, . . . , rm is strongly free then gr(G) = L/r and R/[R,R] is a
free Zp[[G]]-module.

If R/[R, R] is a free Zp[[G]]-module, the canonical exact sequence

0 → R/[R, R] → Zp[[G]]m → Zp[[G]] → Zp → 0

together with a result of Brumer [2] shows that the cohomological dimension of G is 2. That
R/[R, R] is a free Zp[[G]]-module is proven by showing that, under the assumption that the
sequence r1, . . . , rm is strongly free, the above exact exact sequence lifts the exact sequence

0 → r/[r, r] → Um
g → Ug → Fp[π] → 0.

If L = L/πL and ρi is the image of ρ in L then ρ1, . . . , ρm is a strongly free sequence in
L if and only if ρ1, . . . , ρm is a strongly free sequence in L, which can be identified with the
free Lie algebra over Fp on ξ1, . . . , ξm. The sequence ρ1, . . . , ρm is strongly free if and only if
the Poincaré series of the enveloping algebra of g/πg is

P (t) =
1

1−mt + mt2
.

In this case one can show that the dimension of the n-th homogeneous component of L/r is
n∑

k=1

1

k

∑

d|k
µ(k/d)(αd + βd),

where 1−mt + mt2 = (1− αt)(1− βt). Note that α, β > 1 for m ≥ 4.
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The problem of deciding strong freeness is a difficult one. However, in joint work with
Michael Bush [3], we have found an algorithm for strong freeness in the case m = 4. In
fact, we show that ρ1, . . . , ρ4 is a strongly free sequence if and only if the dimensions of
the first four homogeneous components of g/πg are 4, 2, 4, 6. For example, if p = 3 and
S = {7, 13, 19, 31}, the sequence ρ1, . . . , ρ4 is strongly free. The case m > 4 is the subject of
ongoing research. Alexander Schmidt [6] has extended our results to give criteria on ΓS(p)
for the cohomological dimension of GS(p) to be 2. We don’t know whether in these cases
GS(p) is a mild group.

More generally, a finitely presented pro-p-group G is said to be mild if it has a minimal
presentation G = F/R =< x1, . . . , xd | r1, . . . , rm > where the initial forms of the relators ri

with respect to the lower p-central series form a strongly free sequence; if hi is largest with
ri ∈ Fhi

then the initial form ρi of ri is the image of ri in grhi
(F ).

Theorem C is true in this general context even if p = 2 if we assume ri ∈ F 4[F, F ] for all
i. Moreover, the sequence r1, . . . , rm is strongly free if and only if the Poincaré series of the
enveloping algebra of g/πg is

1

1− dt + th1 + · · ·+ thm
.

In this case, if 1− dt + th1 + · · ·+ thm = (1− α1t) · · · (1− αm) then

dim grn(G) =
n∑

k=1

1

k

∑

d|k
µ(k/d)(αd

1 + · · ·+ αd
m).

If hi = h for all i then strong freeness implies m < dh/(h − 1)e. If h = 2 we can find
strongly free sequences r1, . . . , rm with 1 ≤ m ≤ t(d) where t(d) = d2/4 if d is even and
t(d) = (d− 1)2/4 is d is odd; we conjecture that t(d) is largest possible.

We call a pro-p-group G tame if it is mild and has the property FAB: every subgroup
of G finite index has a finite abelianization. In this case, m ≥ d. Infinite tame groups lie
strictly between the class of free pro-p-groups and p-adic analytic groups but have properties
in common with each of these classes. It would be interesting to have a classification of
infinite tame groups in view of their relevance to the Fontaine-Mazur Conjecture, cf [1]. It is
our belief that infinite tame groups appear often as Galois groups of maximal p-extensions of
number fields with restricted tame ramification. See for example the recent work of Vogel [7]
in the case of imaginary quadratic number fields.
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