Tate’s Proof of a Theorem of Dedekind

Let f € Z[X] be a monic polynomial with integer coefficients and let E; = Q(z1, 2, ..., z,) be
its splitting field over Q, where f = (X — 21)(X —x2)--- (X — z,,). Let Gy = Gal(E;/Q) be the
Galois group of f. Suppose that p is a prime such that p does not divide the discriminant Ay of
f, in particular, we suppose that the roots of f are simple. Let f be the reduction of f modulo p.
Then the roots of f are also simple. Let Ay =Zx1,--- ,xp] and let P be a prime ideal of Ay such
that P NZ = pZ. Such an ideal exists since the fact that A¢ is integral over Z implies that p is not
invertible in A; moreover, this ideal is maximal since P N Z is maximal in Z.

Theorem 1 (Dedekind). There exists a unique element op € Gy such that op(r) = 2P mod P
for every x € Ay. Moreover, if f = g1g2 - - - gs with g; irreducible over F), of degree n;, then op, when
viewed as a permutation of the roots of f, has a cycle decomposition o109 - - - 05 with o; of length n;.

Proof. (due to John Tate) The field Ef = Ay/P = F,[T1,2,...,%,] is a splitting field for 1,
where Z is the residue class of z modulo P. The group Gy = Gal(Ef/Fp) is cyclic generated
by the automorphism z +— zP. Let Dp = {0 € Gy | o(P) = P}. This is a subgroup of Gy
called the decomposition group at P. Every automorphism o € Dp induces an automorphism
o € Gy = Gal(Ef), where 6(Z) = o(z). The homomorphism ¢ : Dp — G sending o to 7 is
injective. We now show that it is surjective by showing that the fixed field of ¢(Dp) has F, as its
fixed field.

Let a € Ay. Then, by the Chinese Remainder Theorem, there an element x € Ay such that
z =amod P and z = 0 mod 0~ (P) for all 0 € Gf,0 ¢ Dp. Then g = Ho—ecf(X —o(z) € Z[X]
and g = X" [[,cp, (X —a(a)) € Fp[X]. It follows that the conjugates of a are all of the form &(a)
which implies that the fixed field of ¢(Dp) is F).

Let op € Dp be the unique element such that p(Z) = ZP. Then op is the unique element of
Gy such that op(x) = 2P for every x € Ay. Since the homomorphism = — Z maps the roots of
f bijectively onto the roots of f we see that the groups Dp and G 7» When viewed as permutation
groups of the roots of f, f respectively, are also isomorphic as permutation groups. Since the cycle
decompostion of 7 is determined by the orbits of the action of G § on the roots of f and since the group
Gj acts transitively on the roots of each polynomial g;, we obtain the stated cycle decomposition of
op. O

If R; is the ring of integers of Ey, i.e., the elements of £y which are integral over Z and @ is
a prime ideal of Ry such that () N Z = pZ then, as above, one can prove the existence of a unique
automorphism sg € Gy such that sg(x) = 2P (mod Q) for all x € R;. This automorphism is
called the Frobenius automorphism at ). Since the elements of G; are uniquely determined by
their restriction to Ay, we see that sg = op, where P = Q N Ay. If Q' is any ideal of Ry such
that @ NZ = QNZ and x € Q' then Haecf o(xz) € @ NZ C @Q which shows that o(z) € Q for
some 0 € Gy. Hence Q' C erGf o(Q). By the following Lemma, we have Q' C ¢(Q) and hence

Q" = 0(Q) for some o € Gy Since Dygy = oDgo™1, it follows that sg = 0Qo~!. Thus two
Frobenius automorphisms at primes over the same prime p of Z are conjugate. The conjugacy class
of s¢ is called the Frobenius class at p. If G is abelian, this class reduces to a single element called
the Frobenius automorphism at p.

Lemma 2. Let I be an ideal of a ring A which is contained in the union of prime the ideals
P, Py, ..., P, of A. Then I C P; for some i.

Proof. Assume the theorem is false and let n be smallest for which the lemma fails. Then n > 1
and P, ¢ P; for i # j. Moreover, I is not contained in the union of fewer prime ideals P;. Then,



since ] CJP, < I=UINP, weseethat INP, ¢ Pjfori# j. Let wjj € INP;, z;; ¢ P;
for all i # j and let ; = [[,; z;5. Then z; € IN P; for i # j but z; ¢ P; since P; is prime. Let
x =) x;. Then x € I but x ¢ P; for any j since z; = —3_,,,2; € Pjand 3, ,; x; € P;. This
contradicts the fact that I is contained in the union of the prime ideals P;. O

As an application of Dedekind’s Theorem we give a proof of the irreducibility of of the cyclotomic
polynomials over Q.

Theorem 3. The cyclotomic polynomials are irreducible over Q.

Proof. Let E be the splitting field of X™ — 1 over Q and let G be the galois group of E over (). We
have an injective homomorphism 7 : G — (Z/nZ)*, where o(¢) = ¢™(?) for any n-th root of unity ¢.
This homomorphism is surjective if and only if the the n-th cyclotomic polynomial ®,, is irreducible.
This is due to the fact that, for any primitive n-th root ¢,, we have E = Q((,), ®»(¢,) = 0 and
degree(®,) = ¢(n) = [(Z/nZ)*|. If p is any prime not dividing n, the reduction of X™ — 1 mod p
has simple roots. Let o, be the Frobenius autopmorphism at p. Then, for any n-th root of unity ¢,
we have ¢(¢) = ¢ since ¢? is also an n-th root of unity. Hence m(0,) =p mod n. But (Z/nZ)* is
generated by the residue classes of the primes p which do not divide n. Hence 7 is surjective. O

As another application of Dedekind’s Theorem let us find a monic polynomial of degree 5 with
integer coeficients whose Galois group over @ is Ss. Our construction is based on the following
Lemma:

Lemma 4. If p is prime and H 1is a subgroup of S, which contains a p-cycle and a 2-cycle, then
H=25,.

Proof. Let T be a two-cycle in H. After a relabelling of the objects permuted, we may assume
7 = (12). Then a suitable power of a p-cycle in H has the form ¢ = (12---). After relabelling the
objects other than 1,2, we can assume o = (123---p). But then oiro™% = (i+1i+2) € H for
0 <17 <p— 2. But these elements generate S,,. O

Thus, in virtue of Dedekind’s Theorem, it suffices to choose our polynomial so that modulo 2
is is irreducible and modulo 3 is is a product of an ireducible quadratic and three distinct linear
factors. Now X° + X2 + 1 is irreducible modulo 2 and X2 + 1 is irreducible modulo 3. So we want
to choose f = X° 4+ aX* 4+ bX3 + cX? + dX + e so that f is congruent to X°® + X2 + 1 modulo 2
and to (X2 +1)X(X —1)(X +1) = X° — X modulo 3. Applying the Chinese Remainder Theorem
to the coefficients of f yields a solution a =b=0, c=e =3, d = 2 so that X® +3X?2 +2X + 3 has
Galois group S5 over Q.



