
McGill University
Math 371 B: Algebra IV

Midterm exam: Wednesday March 18, 1998

Attempt all Questions.
All rings are commutative.

1. (a) Let p be a prime of Z and let A be the subring of Q consisting of those fractions a/b with
b not divisible by p. Show that A is a principal ideal domain having exactly one non-zero
prime ideal. (Hint: If I is an ideal of A, show that I is generated by I ∩ Z.) Can you
give an example of a PID having exactly n non-zero prime ideals?

(b) Let A be a PID. Given that the non-zero prime ideals of the polynomial ring B = A[X]
are of the form fB, pB + gB, pB with p a prime of A and f, g ∈ B irreducible of degree
≥ 1 with g irreducible mod p, show that

i. the only inclusion relations between the above prime ideals are pB ⊆ pB + gB and
fB ⊆ pB + gB with g dividing f mod p;

ii. the ideal Q = pB + gB is maximal;
iii. the ideal fB is maximal ⇐⇒ A has finitely many primes and f = a0 + a1X + · · ·+

anXn, where a0 is a unit of A and a1, . . . , an are divisible by all the primes of A.

2. (a) Show that F = F2[X]/(X3 + X + 1) is a field. If ω is the residue class of X, show that
every element of F be be uniquely written in the form a + bω + cω2 with a, b, c ∈ F2.

(b) Find a generator for the multiplicative group of non-zero elements of F .

(c) Show that X3 + X2 + 1 is the only other irreducible polynomial of degree 3 and that the
homomorphism of F2[X] into F2[X] sending X to X3 induces an isomorphism of F with
F2[X]/(X3 + X2 + 1).

3. A ring A is called Noetherian if every ascending chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · ·
becomes stationary, i.e., (∃n ≥ 1)(∀i ≥ n)Ii = In.

(a) Show that A is Noetherian iff every ideal of A is finitely generated.

(b) Let A be a Noetherian ring and let B = A[X], the polynomial ring in one variable X over
A. We want to show that B is also Noetherian. For any ideal I of B and any i ≥ 0, let
Li(I) = {a ∈ A | ∃f ∈ I, f = aXi+lower terms}. Let I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · · be
an ascending chain of ideals of B.

i. Show that Li(I) is an ideal of A, that Li(I) ⊆ Li+1 and that Li(I) ⊆ Li(I ′) if I, I ′

are ideals of B with I ⊆ I ′.
ii. Show that (∃p, q ≥ 1)(∀i ≥ p, j ≥ q)Li(Ij) = Lp(Iq).
iii. Show that q above can be chosen so that (∀i ≥ 0, j ≥ q)Li(Ij) = Li(Iq).
iv. Deduce that Ij = Iq for j ≥ q. Hint: If f ∈ Ij is of degree i and f = aiXi+ lower

terms, there is a gi = aiX
i+ lower terms in Iq. Then f − gi = ai−1X

i−1+ lower
terms.

(c) If K is a field, deduce that the polynomial ring K[X1, . . . , Xn] is Noetherian (Hilbert
Basis Theorem).



4. Le K be an algebraically closed field. For any a ∈ Kn the ideal

Ma = (X1 − a1, X2 − a2, . . . , Xn − an)

is a maximal ideal of A = K[X1, . . . , Xn] and every maximal ideal of A is of this form. If
I is an ideal of A, let V(I) = {x ∈ Kn | f(x) = 0 for all f ∈ I}. If I = (f1, . . . , fm) then
V(I) = {x ∈ Kn | f1(x) = · · · = fm(x) = 0}. Such a set is called an algebraic variety in Kn.
If V is an algebraic variety in Kn let I(V ) = {f ∈ B | f(x) = 0 for all x ∈ V }. This is an
ideal called the ideal of the variety. The set of functions obtained by restricting a polynomial
function on Kn to V is a K-algebra K[V ] called the algebra of functions on V .

(a) Show that K[V ] ∼= K[X1, . . . , Xn]/I(V ).

(b) Show that
√
I(V ) = I(V ), V(

√
I) = V(I) where, for any ideal I of a ring A,

√
I = {f ∈ A | (∃n ≥ 1)fn ∈ I}

is the radical of I.

(c) Show that I(V(I)) =
√

I for any ideal of I by showing that it is equivalent to the Hilbert
Nullstellensatz. Deduce that

√
I is the intersection of the maximal ideals which contain

I.

(d) Deduce that V(I(V )) = V for any algebraic variety in Kn.

(e) Deduce that the mapping I which sends V to I(V ) is an inclusion reversing bijection of
the set of algebraic varieties in Kn to the set of ideals of K[X1, . . . , Xn] which are equal
to their radicals.


