McGill University Math 371 B: Algebra IV Midterm exam: Wednesday March 18, 1998

Attempt all Questions.
 All rings are commutative.

1. (a) Let p be a prime of \mathbb{Z} and let A be the subring of \mathbb{Q} consisting of those fractions a / b with b not divisible by p. Show that A is a principal ideal domain having exactly one non-zero prime ideal. (Hint: If I is an ideal of A, show that I is generated by $I \cap \mathbb{Z}$.) Can you give an example of a PID having exactly n non-zero prime ideals?
(b) Let A be a PID. Given that the non-zero prime ideals of the polynomial ring $B=A[X]$ are of the form $f B, p B+g B, p B$ with p a prime of A and $f, g \in B$ irreducible of degree ≥ 1 with g irreducible $\bmod p$, show that
i. the only inclusion relations between the above prime ideals are $p B \subseteq p B+g B$ and $f B \subseteq p B+g B$ with g dividing $f \bmod p$;
ii. the ideal $Q=p B+g B$ is maximal;
iii. the ideal fB is maximal $\Longleftrightarrow A$ has finitely many primes and $f=a_{0}+a_{1} X+\cdots+$ $a_{n} X^{n}$, where a_{0} is a unit of A and a_{1}, \ldots, a_{n} are divisible by all the primes of A.
2. (a) Show that $F=\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$ is a field. If ω is the residue class of X, show that every element of F be be uniquely written in the form $a+b \omega+c \omega^{2}$ with $a, b, c \in \mathbb{F}_{2}$.
(b) Find a generator for the multiplicative group of non-zero elements of F.
(c) Show that $X^{3}+X^{2}+1$ is the only other irreducible polynomial of degree 3 and that the homomorphism of $\mathbb{F}_{2}[X]$ into $\mathbb{F}_{2}[X]$ sending X to X^{3} induces an isomorphism of F with $\mathbb{F}_{2}[X] /\left(X^{3}+X^{2}+1\right)$.
3. A ring A is called Noetherian if every ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{i} \subseteq I_{i+1} \subseteq \cdots$ becomes stationary, i.e., $(\exists n \geq 1)(\forall i \geq n) I_{i}=I_{n}$.
(a) Show that A is Noetherian iff every ideal of A is finitely generated.
(b) Let A be a Noetherian ring and let $B=A[X]$, the polynomial ring in one variable X over A. We want to show that B is also Noetherian. For any ideal I of B and any $i \geq 0$, let $L_{i}(I)=\left\{a \in A \mid \exists f \in I, f=a X^{i}+\right.$ lower terms $\}$. Let $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{i} \subseteq I_{i+1} \subseteq \cdots$ be an ascending chain of ideals of B.
i. Show that $L_{i}(I)$ is an ideal of A, that $L_{i}(I) \subseteq L_{i+1}$ and that $L_{i}(I) \subseteq L_{i}\left(I^{\prime}\right)$ if I, I^{\prime} are ideals of B with $I \subseteq I^{\prime}$.
ii. Show that $(\exists p, q \geq 1)(\forall i \geq p, j \geq q) L_{i}\left(I_{j}\right)=L_{p}\left(I_{q}\right)$.
iii. Show that q above can be chosen so that $(\forall i \geq 0, j \geq q) L_{i}\left(I_{j}\right)=L_{i}\left(I_{q}\right)$.
iv. Deduce that $I_{j}=I_{q}$ for $j \geq q$. Hint: If $f \in I_{j}$ is of degree i and $f=a_{i} X_{i}+$ lower terms, there is a $g_{i}=a_{i} X^{i}+$ lower terms in I_{q}. Then $f-g_{i}=a_{i-1} X^{i-1}+$ lower terms.
(c) If K is a field, deduce that the polynomial ring $K\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian (Hilbert Basis Theorem).
4. Le K be an algebraically closed field. For any $a \in K^{n}$ the ideal

$$
M_{a}=\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-a_{n}\right)
$$

is a maximal ideal of $A=K\left[X_{1}, \ldots, X_{n}\right]$ and every maximal ideal of A is of this form. If I is an ideal of A, let $\mathcal{V}(I)=\left\{x \in K^{n} \mid f(x)=0\right.$ for all $\left.f \in I\right\}$. If $I=\left(f_{1}, \ldots, f_{m}\right)$ then $\mathcal{V}(I)=\left\{x \in K^{n} \mid f_{1}(x)=\cdots=f_{m}(x)=0\right\}$. Such a set is called an algebraic variety in K^{n}. If V is an algebraic variety in K^{n} let $\mathcal{I}(V)=\{f \in B \mid f(x)=0$ for all $x \in V\}$. This is an ideal called the ideal of the variety. The set of functions obtained by restricting a polynomial function on K^{n} to V is a K-algebra $K[V]$ called the algebra of functions on V.
(a) Show that $K[V] \cong K\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(V)$.
(b) Show that $\sqrt{\mathcal{I}(V)}=\mathcal{I}(V), \mathcal{V}(\sqrt{I})=\mathcal{V}(I)$ where, for any ideal I of a ring A,

$$
\sqrt{I}=\left\{f \in A \mid(\exists n \geq 1) f^{n} \in I\right\}
$$

is the radical of I.
(c) Show that $\mathcal{I}(\mathcal{V}(I))=\sqrt{I}$ for any ideal of I by showing that it is equivalent to the Hilbert Nullstellensatz. Deduce that \sqrt{I} is the intersection of the maximal ideals which contain I.
(d) Deduce that $\mathcal{V}(\mathcal{I}(V))=V$ for any algebraic variety in K^{n}.
(e) Deduce that the mapping \mathcal{I} which sends V to $\mathcal{I}(V)$ is an inclusion reversing bijection of the set of algebraic varieties in K^{n} to the set of ideals of $K\left[X_{1}, \ldots, X_{n}\right]$ which are equal to their radicals.

