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Existence and Uniqueness Theory

The aim of this and the following lecture is to prove the existence and uniqueness of solutions of
the initial value problem

dy
dx

= f(x, y), y(x0) = y0.

If we integrate both sides of the DE with respect to x we get the integral equation

y(x) = y0 +
∫ x

x0

f(x, y(x)) dx.

This equation can be written T (y(x)) = y(x) where T is the integral operator defined by

T (y(x)) = y0 +
∫ x

x0

f(x, y(x)) dx.

Thus y(x) is a fixed point of the operator T . Conversely, a fixed point of T is a solution of our initial
value problem. Such a fixed point can sometimes be found by successive approximations as follows.
Let y0(x) be the constant function y0(x) = y0 and define yn(x) inductively by

yn+1(x) = T (yn(x) = y0 +
∫ x

x0

f(x, yn(x)) dx

for n ≥ 0. The function yn = T (y0) is called the n-th Picard iteration of the function y0. Under
certain conditions, the sequence yn(x) converges to a fixed point y(x).

For example, for the initial value problem

dy
dx

= y, y(0) = 1,

the successive approximations are

y0(x) = 1, y1(x) = 1 + x, y2(x) = 1 + x +
x2

2
, . . . , yn(x) = 1 + x +

x2

2!
+ · · · x

n

n!

which converge to ex as n →∞.
Before we give the formal proof for the operator T we treat the simpler problem of finding fixed

points of a differentiable real valued function g on the real line. If g(a) = a and |g′(a)| < 1 there is
an h > 0 and 0 ≤ K < 1 such that |g′(x)| ≤ K for x in the closed interval I = [a− h, a + h]. By the
mean-value theorem, we have

|g(x)− g(y)| ≤ K|x− y|

for all x, y in I. Taking, y = a, it follows that g(x) ∈ I for all x ∈ I, in other words g maps I to
I. Since g shrinks distances between point of I it is called a contraction mapping. For such a
mapping the iterations Tn(x) converge to a as n →∞ for any x in I.



Theorem. Let g be a continuous function which maps a closed interval I into itself and suppose
that there a K with 0 ≤ K < 1 such that |g(x) − g(y)| ≤ K|x − y| for all x, y ∈ I. Then g has a
unique fixed point a ∈ I; moreover, for all x ∈ I, the sequence of iterations gn(x) converges to a as
n →∞.

Proof. Let xn = gn(x), n ≥ 0 so that xn+1 = g(xn) for n ≥ 0. Then

|x1 − x2| = |g(x0)− g(x1)| ≤ K|x0 − x1|, |x2 − x3| = |g(x1)− g(x2)| ≤ K|x1 − x2| ≤ K2|x0 − x1|

and, by induction, |xn − xn+1| ≤ Kn|x0 − x1|. Using the triangle inequality, we get

|xn − xm| ≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xm−1 − xm| ≤ (Kn + Kn+1 + · · ·+ Km−1|x0 − x1|

for all m > n. It follows that

|xn − xm| ≤ |x0 − x1|
∞
∑

j=n

Kj →∞ as n →∞

and hence that the sequence xn (n ≥ 0) is a Cauchy sequence. Thus the sequence xn converges to
some b ∈ I since I is closed. Since g is continuous and xn+1 = g(xn) it follows that b = g(b). If a is
any fixed point of g in I, we have

|a− b| = |g(a)− g(b)| ≤ K|a− b|

from which it follows that a = b.

The condition |g(x) − g(y)| ≤ K|x − y| for all x, y ∈ I is called a Lipschitz condition for g on
I. If g is continuously differentiable on I it is satisfied with K the maximum of |g′(x)| on I.

The above proof uses the following properties of the distance d(x, y) = |x− y| between the real
numbers x, y:

1. d(x, y) = d(y, x) ≥ 0 with equality ⇐⇒ x = y;

2. d(x, y) ≤ d(x, z) + d(z, y);

3. Cauchy sequences converge.

A set S with a function d : S × S → R satisfying 1 and 2 is called a metric space with distance
function d. If, in addition, property 3 is satisfied the metric space is said to be complete. The set
Rn with the Euclidean distance function is a complete metric space. More generally, the set S of
continuous real-valued functions on a closed interval I = [a, b] with distance function

d(y, z) = maxx∈I |y(x)− z(x)|

is a complete metric space. Using this metric space, we will be able to prove the convergence of the
Picard iterations T (y0) to a continuous function y with T (y) = y under certain conditions. More
generally, we have the following result:

Banach Fixed Point Theorem. A contraction mapping on a complete metric space has a unique
fixed point.


