McGill University
Math 325B: Differential Equations
Notes for Lecture 9

Text: pp. 38-40, Ch. 13

Existence and Uniqueness Theory

The aim of this and the following lecture is to prove the existence and uniqueness of solutions of
the initial value problem

% :f(l',y)7 y(l‘o) = Yo-

If we integrate both sides of the DE with respect to z we get the integral equation
y®)=ym+/ fa,y(@)) da.
xo

This equation can be written T'(y(z)) = y(x) where T is the integral operator defined by

T(y(z)) =yo + /w f(z,y(x)) dz.

Thus y(z) is a fixed point of the operator T. Conversely, a fixed point of T is a solution of our initial
value problem. Such a fixed point can sometimes be found by successive approximations as follows.
Let yo(x) be the constant function yo(z) = yo and define y, () inductively by

yn+1(x) = T(yn(w) =Yo + /I f(mvyn(x)) dx

for n > 0. The function y, = T(y) is called the n-th Picard iteration of the function yo. Under
certain conditions, the sequence y,(z) converges to a fixed point y(z).
For example, for the initial value problem

dy
—= = 0)=1
=y vo) =1
the successive approximations are
22 22 "

which converge to e* as n — oo.

Before we give the formal proof for the operator T' we treat the simpler problem of finding fixed
points of a differentiable real valued function g on the real line. If g(a) = a and |¢'(a)| < 1 there is
an h > 0 and 0 < K < 1 such that |¢'(x)| < K for x in the closed interval I = [a — h,a + h]. By the
mean-value theorem, we have

9(z) —g(y)| < K|z —y

for all z,y in I. Taking, y = a, it follows that g(x) € I for all € I, in other words g maps I to
I. Since g shrinks distances between point of I it is called a contraction mapping. For such a
mapping the iterations T"(z) converge to a as n — oo for any «x in I.



Theorem. Let g be a continuous function which maps a closed interval I into itself and suppose
that there a K with 0 < K < 1 such that |g(z) — g(y)| < K|z — y| for all ,y € I. Then g has a
unique fixed point a € I; moreover, for all x € I, the sequence of iterations g™ (z) converges to a as
n — o0o.

Proof. Let z,, = g"(x), n > 0 so that 41 = g(x,) for n > 0. Then

|21 — 23| = |g(w0) — g(w1)| < Klzo — 21, |22 — 23] = |g(21) — g(a2)| < K1 — x2| < K?|zo — 11
and, by induction, |z, — X, +1| < K™|zo — x1|. Using the triangle inequality, we get

|20 — Zm| < |0 — Tna1| + [Tng1 — Tngo| + - 4 [Ty — T < (K" + K" oo K™ g — 2y

for all m > n. It follows that
oo
[T — | < |z07w1|ZKJ—>ooasn—>oo

Jj=n

and hence that the sequence x,, (n > 0) is a Cauchy sequence. Thus the sequence x,, converges to
some b € I since I is closed. Since g is continuous and z,,11 = g(z,) it follows that b = g(b). If a is
any fixed point of g in I, we have

la —b| =[g(a) — g(b)| < Kla —b|
from which it follows that a = b.

The condition |g(z) — g(y)| < K|z — y| for all 2,y € I is called a Lipschitz condition for g on
I. If g is continuously differentiable on I it is satisfied with K the maximum of |¢'(z)| on I.

The above proof uses the following properties of the distance d(z,y) = |x — y| between the real
numbers x, y:

1. d(z,y) = d(y,x) > 0 with equality <= = =y;
2. d(z,y) < d(z,z) +d(2,y);
3. Cauchy sequences converge.

A set S with a function d : S x S — R satisfying 1 and 2 is called a metric space with distance
function d. If, in addition, property 3 is satisfied the metric space is said to be complete. The set
R™ with the Euclidean distance function is a complete metric space. More generally, the set S of
continuous real-valued functions on a closed interval I = [a, b] with distance function

d(y, z) = mazgerly(z) — 2()]

is a complete metric space. Using this metric space, we will be able to prove the convergence of the
Picard iterations T(yo) to a continuous function y with T'(y) = y under certain conditions. More
generally, we have the following result:

Banach Fixed Point Theorem. A contraction mapping on a complete metric space has a unique
fixed point.



