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Math 325B: Differential Equations

Notes for Lecture 6

Text: Sections 3.1,3.2,3.4

We now give a few applications of differential equations.

Falling Bodies with Air Resistance. Let x be the height at time t of a body of mass m falling
under the influence of gravity. If g is the force of gravity and bdx

dt is the force on the body due to
air resistance, Newton’s Second Law of Motion gives the DE

m
dv

dt
= mg − bv

where v = dx
dt . This DE has the general solution

v(t) =
mg

b
+ Be−bt.

The limit of v(t) as t→∞ is mg/b, the terminal velocity of the falling body. Integrating once more,
we get

x(t) = A +
mgt

b
− B

b
e−bt.

Mixing Problems. Suppose that a tank is being filled with brine at the rate of a units of volume
per second and at the same time b units of volume per second are pumped out. If the concentration
of the brine coming in is c units of weight per unit of volume. If at time t = t0 the volume of brine
in the tank is V0 and contains x0 units of weight of salt, what is the quantity of salt in the tank at
any time t, assuming that the tank is well mixed?

If x is the quantity of salt at any time t, we have ac units of weight of salt coming in per second
and

bx

V0 + (a− b)(t− t0)

units of weight of salt going out. Hence

dx

dt
= ac− bx

V0 + (a− b)(t− t0)
,

a linear equation. If a = b it has the solution

x(t) = cV0 + (x0 − cV0)e−a(t−t0)/V0 .

As a numerical example, suppose a = b = 1 liter/min, c = 1 grams/liter, V0 = 1000 liters, x0 = 0
and t0 = 0. Then

x(t) = 1000(1− e−.001t)

is the quantity of salt in the tank at any time t. Suppose that after 100 minutes the tank springs a
leak letting out an additional liter of brine per minute. To find out how much salt is in the tank 12
hours after the leak begins we use the DE

dx

dt
= 1− 2x

1000− (t− 100)
= 1− 2

1100− t
x.



This equation has the general solution

x(t) = (1100− t)−1 + C(1100− t)2.

Using x(100) = 1000(1 − e−.1) = 95.16, we find C = −9.048 × 10−4 and x(820) = 177.1. When
t = 1100 the tank is empty and the differential equation is no a valid description of the physical
process. The concentration at time 100 < t < 1100 is

x(t)
1100− t

= 1 + C(1100− t)

which converges to 1 as t tends to 1100.

Radioactive Decay. A radioactive substance decays at a rate proportional to the amount of
substance present. If x is the amount at time t we have

dx

dt
= −kx,

where k is a constant. The solution of the DE is x = x(0)e−kt. If c is the half-life of the substance
we have by definition

x(0)/2 = x(0)e−kc

which gives k = ln(2)/c.

Population Growth. If the birth rate and death rate of a population are each proportional to the
size of the population then the size p of the population satisfies the differential equation

dp

dt
= k1p− k2p = kp

which is the Malthusian or exponential law of population grown. The solution of this DE is
p = p(0)ekt, where p(0) is the initial population. The constant k can be determined by knowing p
at some time t1 > 0.

If other factors involving interaction between the members of the population is taken into account
a model for the growth of the population could take the form

dp

dt
= k1p− k2p(p− 1)/2 = ap(b− p),

where a = k2/2, b = 2k1/k2. This is the logistic model for population growth. If p(0) = p0, it’s
solution is

p =
bp0

p0 + (b− p0)e−abt
.

Note that p is increasing if 0 < p0 < b and decreasing if p0 > b. In either case, p converges to b as t
tends to infinity.


