McGill University
Math 325B: Differential Equations
Notes for Lecture 4

Text: Section 2.4,2.5
In this lecture we treat exact equations and integrating factors.

Exact Equations. Let f(x,y) = C be a one parameter family of curves and assume that f(x,y) is
continuously differentiable. If y = y(x) is a differentiable function of z such that

flzy(x) =C
then, by differentiating with respect to x, we get
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a first order differential equation for y = y(z). If g—g(:m y(x)) # 0, we can solve for y'(z) to get
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Conversely, given the differential equation
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it is said to be exact if there is a continuously differentiable function f(z,y) such that
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In this case the left hand side is the derivative of f(z,y), where y is viewed as a function of x. This
yields f(z,y) = C which defines y implicitly as a function of 2. The Implicit Function Theorem tells
us when this equation can be solved for y as a function of x.

Implicit Function Theorem. Let f(z,y) be continuously differentiable and let (a,b) be a point
satisfying f(a,b) = 0 and g—g(a,b) # 0. Then there is a unique differentiable function y = y(z)
defined on some interval |z — a| < h such that y(a) = b and f(x,y(z)) =0 for |z — a| < h.

The condition g—{/(a, b) # 0 says that the tangent line to the curve f(x,y) = 0 at the point (a, b)
is not vertical.
A necessary condition for exactness of the differential equation M + Ny’ = 0 is
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The converse holds if M, N are continuously differentiable.

Example The differential equation

y—z+(x+yy =0



is exact since M = y—x and N = =+ y are continuously differentiable and % =1= %—]l. We want

to find a function f(z,y) such that
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Integrating the first equation with respect to x holding y fixed, we get
fla,y) =y —a*/2+ C(y).

Differentiating both sides of this equation with respect to y and using ng =z +y, we get

r+C'(y)=xz+y
from which C’(y) = y and hence C(y) = y?/2 is a solution for C(y). Hence we find
fla,y) =y /2 +ay —2?/2.
The general solution of the given DE in implicit form is therefore
22+ xy —a2?/2=C

or, equivalently, y? + 2zy — y? = C.

The given equation N + Ny’ = 0 had the property that it was exact and its normal form
y' = —M/N was homogeneous. Such equations can be solve quite simply in the case M, N are
homogeneous of degree n # —1 by using

Euler’s Formula: If f(x,y) is homogeneous of degree n and differentiable then
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To prove this we differentiate the identity f(¢,z,ty) = t" f(x,y) with respect to t to get

S (tn,ty) + g (62, ty) = " (o)
and then set t = 1.
If we let f(x,y) =aM + yN then
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It follows that M + yN = C' is the general solution of M + Ny’ = 0.

Integrating Factors. If the differential equation M + Ny’ = 0 is not exact, can it be made exact
by multiplying both sides of the equation by a function p = p(z,y)? Such a function p is called
an integrating factor of the differential equation. Assuming the continuity and differentiability of
the functions involved, a necessary and sufficient condition for this is
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Simplifying, we get
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a linear first order PDE.
If u is a function of x only then
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which means that the right-hand side must be a function of x only. Conversely, if the right-hand
side a(z) is a function of x only, then
W= ef a(z) dz

is an integrating factor.

Example. The differential equation
(z—1)e"+y—ay =0

is not exact but
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so that = 1/2?% is an integrating factor. We want to find a function f(x,y) such that
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We leave it to the reader to show that f(z,y) = (e* — y)/x so that the general solution of the given
DE is

Multiplying by z, we get y = e* — Cz which is the general solution of the given DE. Indeed, the
above shows this to be true for x > 0 or > 0. If y = y(x) is any solution of the DE that is defined
on some interval containing 0, we have y(z) = e* — Ciz for x < 0 and y(x) = e — Caz for x > 0.
By continuity, the same is true for < 0 and x > 0 respectively. It follows that y(0) = 1 and that
the left and right-hand derivatives of y(x) at * = 0 are 1 — Cy and 1 — C5 respectively. Since y(z)
is differentiable at z = 0 we have C; = Cs. Notice that there is a unique solution with y(a) = b
if @ # 0 and no solution satisfying y(0) = b # 1. The non-existence or non-uniqueness of solutions
passing points of the z-axis is due to the fact that these points are singular points of the differential
equation.



