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Math 325B: Differential Equations

Notes for Lecture 4

Text: Section 2.4,2.5

In this lecture we treat exact equations and integrating factors.

Exact Equations. Let f(x, y) = C be a one parameter family of curves and assume that f(x, y) is
continuously differentiable. If y = y(x) is a differentiable function of x such that

f(x, y(x)) = C

then, by differentiating with respect to x, we get

∂f
∂x

(x, y(x)) +
∂f
∂y

(x, y(x))y′(x) = 0,

a first order differential equation for y = y(x). If ∂f
∂y (x, y(x)) 6= 0, we can solve for y′(x) to get

y′(x) = −
∂f
∂x (x, y(x))
∂f
∂y (x, y(x))

.

Conversely, given the differential equation

M(x, y) + N(x, y)
dy
dx

= 0,

it is said to be exact if there is a continuously differentiable function f(x, y) such that

∂f
∂x

= M,
∂f
∂y

= N.

In this case the left hand side is the derivative of f(x, y), where y is viewed as a function of x. This
yields f(x, y) = C which defines y implicitly as a function of x. The Implicit Function Theorem tells
us when this equation can be solved for y as a function of x.

Implicit Function Theorem. Let f(x, y) be continuously differentiable and let (a, b) be a point
satisfying f(a, b) = 0 and ∂f

∂y (a, b) 6= 0. Then there is a unique differentiable function y = y(x)
defined on some interval |x− a| < h such that y(a) = b and f(x, y(x)) = 0 for |x− a| < h.

The condition ∂f
∂y (a, b) 6= 0 says that the tangent line to the curve f(x, y) = 0 at the point (a, b)

is not vertical.
A necessary condition for exactness of the differential equation M + Ny′ = 0 is

∂M
∂y

=
∂N
∂y

.

The converse holds if M, N are continuously differentiable.

Example The differential equation

y − x + (x + y)y′ = 0



is exact since M = y−x and N = x+y are continuously differentiable and ∂M
∂y = 1 = ∂N

∂x . We want
to find a function f(x, y) such that

∂f
∂x

= y − x,
∂f
∂y

= x + y.

Integrating the first equation with respect to x holding y fixed, we get

f(x, y) = xy − x2/2 + C(y).

Differentiating both sides of this equation with respect to y and using ∂f
∂y = x + y, we get

x + C ′(y) = x + y

from which C ′(y) = y and hence C(y) = y2/2 is a solution for C(y). Hence we find

f(x, y) = y2/2 + xy − x2/2.

The general solution of the given DE in implicit form is therefore

y2/2 + xy − x2/2 = C

or, equivalently, y2 + 2xy − y2 = C.

The given equation N + Ny′ = 0 had the property that it was exact and its normal form
y′ = −M/N was homogeneous. Such equations can be solve quite simply in the case M, N are
homogeneous of degree n 6= −1 by using

Euler’s Formula: If f(x, y) is homogeneous of degree n and differentiable then

x
∂f
∂x

+ y
∂f
∂y

= nf(x, y).

To prove this we differentiate the identity f(t, x, ty) = tnf(x, y) with respect to t to get

x
∂f
∂x

(tx, ty) + y
∂f
∂y

(tx, ty) = ntn−1f(x, y)

and then set t = 1.
If we let f(x, y) = xM + yN then

∂f
∂x

= M + x
∂M
∂x

+ y
∂N
∂x

= M + x
∂M
∂x

+ y
∂M
∂y

= (n + 1)M,

∂f
∂y

= N + x
∂M
∂y

+ y
∂N
∂y

= N + x
∂N
∂x

+ y
∂N
∂y

= (n + 1)N.

It follows that xM + yN = C is the general solution of M + Ny′ = 0.

Integrating Factors. If the differential equation M + Ny′ = 0 is not exact, can it be made exact
by multiplying both sides of the equation by a function µ = µ(x, y)? Such a function µ is called
an integrating factor of the differential equation. Assuming the continuity and differentiability of
the functions involved, a necessary and sufficient condition for this is

∂(µM)
∂y

=
∂(µN)

∂x
.



Simplifying, we get

N
∂µ
∂x

−M
∂µ
∂y

= (
∂M
∂y

− ∂N
∂x

)µ,

a linear first order PDE.
If µ is a function of x only then

µ′

µ
=

∂M
∂y − ∂N

∂x

N

which means that the right-hand side must be a function of x only. Conversely, if the right-hand
side a(x) is a function of x only, then

µ = e
R

a(x) dx

is an integrating factor.

Example. The differential equation

(x− 1)ex + y − xy′ = 0

is not exact but
∂M
∂y − ∂N

∂x

N
=

2
−x

so that µ = 1/x2 is an integrating factor. We want to find a function f(x, y) such that

∂f
∂x

=
(x− 1)ex + y

x2 ,
∂f
∂y

=
−x
x2 =

−1
x

.

We leave it to the reader to show that f(x, y) = (ex − y)/x so that the general solution of the given
DE is

ex − y
x

= C.

Multiplying by x, we get y = ex − Cx which is the general solution of the given DE. Indeed, the
above shows this to be true for x > 0 or x > 0. If y = y(x) is any solution of the DE that is defined
on some interval containing 0, we have y(x) = ex − C1x for x < 0 and y(x) = ex − C2x for x > 0.
By continuity, the same is true for x ≤ 0 and x ≥ 0 respectively. It follows that y(0) = 1 and that
the left and right-hand derivatives of y(x) at x = 0 are 1 − C1 and 1 − C2 respectively. Since y(x)
is differentiable at x = 0 we have C1 = C2. Notice that there is a unique solution with y(a) = b
if a 6= 0 and no solution satisfying y(0) = b 6= 1. The non-existence or non-uniqueness of solutions
passing points of the x-axis is due to the fact that these points are singular points of the differential
equation.


