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Bessel Functions

In this lecture we study an important class of functions which are defined by the differential
equation

x2y′′ + xy′ + (x2 − ν2)y = 0,

where ν ≥ 0 is a fixed parameter. This DE is known Bessel’s equation of order ν; do not confuse
ν with the order of the DE which is 2. This equation has x = 0 as its only singular point. Moreover,
this singular point is a regular singular point since

xp(x) = 1, x2q(x) = x2 − ν2.

Bessel’s equation can also be written

y′′ +
1
x
y′ + (1− ν2

x2
) = 0

which for x large is approximately the DE y′′+y = 0 so that we can expect the solutions to oscillate
for x large. The indicial equation is r(r− 1) + r− ν2 = r− ν2 whose roots are r1 = ν and r2 = −ν.
The recursion equations are

((1 + r)2 − ν2)a1 = 0, ((n+ r)2 − ν2)an = −an−2, for n ≥ 2.

The general solution of these equations is a2n+1 = 0 for n ≥ 0 and

a2n(r) =
(−1)na0

(r + 2− ν)(r + 4− ν) · · · (r + 2n− ν)(r + 2 + ν)(r + 4 + ν) · · · (r + 2n+ ν)
.

If ν is not an integer, we obtain two linearly independent solutions of Bessel’s equation Jν(x), J−ν(x)
by taking r = ±ν, a0 = 1/2νΓ(ν + 1). Since, in this case,

a2n =
(−1)na0

22nn!(r + 1)(r + 2) · · · (r + n)
,

we have for r = ±ν

Jr(x) =
∞∑
n=0

(−1)n

n!Γ(r + n+ 1)
(
x

2
)2n+r.

If r is an integer, we have J−r = (−1)rJr.

Recall that the Gamma function Γ(x) is defined for x ≥ −1 by

Γ(x+ 1) =
∫ ∞

0

e−ttxdt.

For x ≥ 0 we have Γ(x+ 1) = xΓ(x), so that Γ(n+ 1) = n! for n an integer ≥ 0. We have

Γ(
1
2

) =
∫ ∞

0

e−tt−1/2dt = 2
∫ ∞

0

e−x
2
dt =

√
π.



The Gamma function can be extended uniquely for all x except for x = 0,−1,−2, . . . ,−n, . . . to a
function which satisfies the identity Γ(x) = Γ(x)/x. This is true even if x is taken to be complex.
The resulting function is analytic except at zero and the negative integers where it has a simple
pole.

The functions Jν(x) are called Bessel functions of first kind of order ν. For ν = 0 we have

J0(x) =
∞∑
n=0

(−1)n

22n(n!)2
x2n

and for ν = 1

J1(x) =
x

2

∞∑
n=0

(−1)n

22nn!(n+ 1)!
x2n.

As an exercise the reader can show that

J 1
2
(x) =

√
2
πx

cos(x), J− 1
2

=

√
2
πx

sin(x).

For ν = −m with m an integer ≥ 0 one has to proceed differently to get a second solution. For
ν = 0 the indicial equation has a repeated root and one has a second solution of the form

y2 = J0(x) ln(x) +
∞∑
n=1

a′2n(0)x2n

where

a2n(r) =
(−1)n

(r + 2)2(r + 4)2 · · · (r + 2n)2
.

It follows that
a′2n(r)
a2n

= −2(
1

r + 2
+

1
r + 4

+ · · · 1
r + 2n

)

so that
a′2n(0) = (1 +

1
2

+ · · ·+ 1
n

)a2n(0) = hna2n(0).

Hence

y2 = J0(x) ln(x) +
∞∑
n=1

(−1)nhn
22n(n!)2

x2n.

This function, denoted by Y0(x), is known as Neumann’s Bessel Function of the Second Kind
of order 0. It is unbounded near x = 0. Since J0(x), Y0(x) are linearly independent, the general
solution of Bessel’s equation of order 0 is aJ0(x) + bY0(x). The solutions which are bounded near 0
are the functions aJ0(x) with a an arbitrary scalar.

If ν = −m, with m > 0, the the roots of the indicial equation differ by an integer and one has a
second solution of the form

y2 = aJm(x) ln(x) +
∞∑
n=0

b′2n(−m)x2n+m

where b2n(r) = (r +m)a2n(r) and a = 2mΓ(m+ 1)b2m(−m). In the case m = 1 we have

b2n(r) =
(−1)n

(r + 3)(r + 5) · · · (r + 2n− 1)(r + 3)(r + 5) · · · (r + 2n+ 1)
,



b′2n(r) = −(
1

r + 3
+

1
r + 5

+ · · ·+ 1
r + 2n− 1

+
1

r + 3
+

1
r + 5

+ · · ·+ 1
r + 2n+ 1

)b2n(r),

b′2n(−1) =
−1
2

(hn + hn−1)b2n(−1),

=
(−1)n+1(hn + hn−1)

22n(n− 1)!n!

so that

y2 = −J1(x) ln(x) +
1
x

(1 +
∞∑
n=1

(−1)n+1(hn + hn−1)
22n(n− 1)!n!

x2n)

where, by convention, h0 = 0.The function

Y1(x) = J1(x) ln(x)− 1
x

(1 +
∞∑
n=1

(−1)n+1(hn + hn−1)
22n(n− 1)!n!

x2n)

is known as Neumann’s Bessel Function of the Second Kind of order 1. It is unbounded
near x = 0. Since J1(x), Y1(x) are linearly independent, the general solution of Bessel’s equation of
order 0 is aJ1(x) + bY1(x). The solutions which are bounded near 0 are the functions aJ0(x) with a
an arbitrary scalar.

The case m > 1 is slightly more complicated and will not be treated here. In this case Neu-
mann’s Bessel Function of the Second Kind of order m is the function

Ym(x) = Jm(x) log x− 2m−1(m− 1)!x−m
(

1 +
m−1∑
n=1

x2n

2 · 4 · · · 2n · (2m− 2)(2m− 4) · · · (2m− 2n)

)

−
∞∑
n=0

(−1)n(hn + hn+m)
22n+m+1n!(n+m)

x2n+m.

The Bessel functions Jn(x) satisfy the following easily derived recurrence equations:

xJ ′n(x) = nJn(x)− xJn+1(x)
= −nJn(x) + xJn−1(x).

Adding and subtracting these equations, we find

Jn+1(x) = Jn−1(x)− 2J ′n(x),
xJn+1(x) = Jn−1(x) + 2nJn(x).

In particular, for n = 0, we find J ′0(x) = −J1(x). The recurrence relations can also be written in
the form

d

dx
(xnJn(x)) = xnJn−1(x),

d

dx
(x−nnJn(x)) = −x−nJn+1(x).



If n is an integer ≥ 0, the Bessel function Jn(x) has the following representation as an integral,
which shows the connection with the sine and cosine functions:

Jn(x) =
1
π

∫ π

0

cos(nθ − x sin θ) dθ.

It was in this form that the function Jn was first discovered by Bessel. The functions Jn(x) arise in
the study of Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0.

Solutions of u this equation are called harmonic functions. In cylindrical coordinates r, θ, z this
equation has the form

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
+
∂2u

∂z2
= 0.

Looking for solutions of the form RΘZ, where R = R(r), Θ = Θ(θ), Z = Z(z), we find

R′′ΘZ +
1
r
R′ΘZ +

1
r2
RΘ′′Z +RΘZ ′′ = 0.

Dividing both sides by RΘZ, we get

R′′

R
+

1
r

R′

R
+

1
r2

Θ′′

Θ
+
Z ′′

Z
= 0.

We thus have
R′′

R
+

1
r

R′

R
+

1
r2

Θ′′

Θ
= −Z

′′

Z
= −κ2,

where κ is a constant. Hence Z = Aeκz +Beκz and

r2R
′′

R
+ r

R′

R
+ κ2r2 = −Θ′′

Θ
= n2,

where n is an integer ≥ 0 since Θ has to be periodic of period 2π.Hence Θ = C sinnθ+D cosnθ and

r2R′′ + rR+ (κ2r2 − n2)R = 0.

Making the change of variable s = κr, we find

s2 d
2R

ds2
+ s

dR

ds
+ (s2 − n2)R = 0,

which is Bessel’s equation of order n. The functions of the form

u =
{
Jn(κr)
Yn(κr)

}{
cosnθ
sinnθ

}
e±κz

are thus solutions of Laplace’s equation. They are called cylindrical harmonics.
The Bessel functions Jn(x) also arise in the study of vibrating circular membranes. If u =

u(x, y, t) is the displacement of the membrane at time t we have

∂2u

∂t2
= c2(

∂2u

∂x2
+
∂2u

∂y2
),

where c is a positive constant depending on the membrane. The harmonics of this problem are the
functions

u = Jn(zmnr/a)
{

sinnθ
cosnθ

}{
sin czmnt/a
cos zmnt/a

}
,

where a is the radius of the circular membrane and zmn is the m-th positive zero of Jn(x).


