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Introduction to Systems of Differential Equations

In this lecture we will give an introduction to solving systems of differential equations. For
simplicity, we will limit ourselves to systems of two equations with two unknowns. The techniques
introduced can be used to solve systems with more equations and unknowns. As a motivational
example, consider the the following problem.

Two large tanks, each holding 24 liters of brine, are interconnected by two pipes. Fresh water
flows into tank A a the rate of 6 L/min, and fluid is drained out tank B at the same rate. Also,
8 L/min of fluid are pumped from tank A to tank B and 2 L/min from tank B to tank A. The
solutions in each tank are well stirred so that they are homogeneous. If, initially, tank A contains 5
in solution and Tank B contains 2 kg, find the mass of salt in the tanks at any time t.

To solve this problem, let x(t) and y(t) be the mass of salt in tanks A and B respectively. The
variables x, y satisfy the system

dx
dt

=
−1
3

x +
1
12

y,

dy
dt

=
1
3
x− 1

3
y.

The first equation gives y = 12dx
dt + 4x. Substituting this in the second equation and simplifying,

we get
d2x
dt2

+
2
3

dx
dt

+
1
12

x = 0.

The general solution of this DE is
x = c1e−t/2 + c2e−t/6.

This gives y = 12dx
dt + 4x = −2c1e−t/2 + 2c2e−t/6. Thus the general solution of the system is

x = c1e−t/2 + c2e−t/6,

y = −2c1e−t/2 + 2c2e−t/6.

These equations can be written in matrix form as

X =
[

x
y

]

= c1e−t/2
[

1
−2

]

+ c2e−t/6
[

1
2

]

.

Using the initial condition x(0) = 5, y(0) = 2, we find c1 = 2, c2 = 3. Geometrically, these equations
are the parametric equations of a curve(trajectory of the system)in the xy-plane (phase plane of the
system). As t →∞ we have (x(t), y(t)) → (0, 0). The constant solution x(t) = y(t) = 0 is called an
equilibrium solution of our system. A system is said to be asymptotically stable if the general
solution converges as t →∞. A system is called stable if the trajectories are all bounded as t →∞
and unstable otherwise.

Our system can be written in matrix form as dX
dt = AX where

A =
[

−1/3 1/12
1/3 −1/3

]

X.



The 2× 2 matrix A is called the matrix of the system. The polynomial

r2 − tr(A)r + det(A) = r2 +
2
3
r +

1
12

where tr(A) is the trace of A (sum of diagonal entries) and det(A) is the determinant of A is called
the characteristic polynomial of A. Notice that this polynomial is the characteristic polynomial
of the differential equation for x. The equations

A
[

1
−2

]

=
−1
2

[

1
−2

]

, A
[

1
2

]

=
−1
6

[

1
2

]

identify
[

1
−2

]

and
[

1
2

]

as eigenvectors of A with eigenvalues −1/2 and −1/6 respectively. More

generally, a non-zero column vector X is an eigenvector of a square matrix A with eigenvalue r if
AX = rX or , equivalently, (rI −A)X = 0. The latter is a homogeneous system of linear equations
with coefficient matrix rI−A. Such a system has a non-zero solution if and only if det(rI−A) = 0.
Notice that

det(rI −A) = r2 − (a + d)r + ad− bc

is the characteristic polynomial of A.

If, in the above mixing problem, brine at a concentration of 1/2 kg/L was pumped into tank A
instead of pure water the system would be

dx
dt

=
−1
3

x +
1
12

y + 3,

dy
dt

=
1
3
x− 1

3
y,

a non-homogeneous system. Here an equilibrium solution would be x(t) = a, y(t) = b where (a, b)
was a solution of

−1
3

x +
1
12

y = −3,

1
3
x− 1

3
y = 0.

In this case a = b = 12. The variables x∗ = x−12, y∗ = y−12 then satisfy the homogeneous system

dx∗

dt
=
−1
3

x∗ +
1
12

y∗,

dy∗

dt
=

1
3
x∗ − 1

3
y∗.

Solving this system as above for x∗, y∗ we get x = x∗+12, y = y∗+12 as the general solution for x, y.
Notice that (x(t), y(t)) has the limit (12, 12) as t → ∞ so that the system is again asymptotically
stable.

For an example of a stable but not asymptotically stable system consider the system associated
to the DE f ′′(t) + f(t) = 0 is

dx
dt

= y,

dy
dt

= −x,



where x = f(t), y = f ′(t). The general solution of this system is
[

x
y

]

= a cos(t)
[

1
−1

]

+ b sin(t)
[

1
1

]

which give, for fixed a, b, the parametric equations of an ellipse in R2, the phase plane of the system
(also called the phase plane of the DE). The system is stable but not asymptotically stable.

We now describe the solution of the system dX
dt = AX for an arbitrary 2× 2 matrix

A =
[

a b
c d

]

.

In practice, one can use the elimination method or the eigenvector method but we shall use the
eigenvector method as it gives an explicit description of the solution. There are three main cases
depending on whether the discriminant

∆ = tr(A)2 − 4 det(A)

of the characteristic polynomial of A is > 0, < 0, = 0.
Case 1: ∆ > 0. In this case the roots r1, r2 of the characteristic polynomial are real and unequal,
say r1 < r2. Let Pi be an eigenvector with eigenvalue ri. Then P1 is not a scalar multiple of P2

and so the matrix P with columns P1, P2 is invertible. After possibly replacing P2 by −P2, we can
assume that det(P ) > 0. The equation

AP = P
[

r1 0
0 r2

]

shows that

P−1AP =
[

r1 0
0 r2

]

.

If we make the change of variable X = PU with U =
[

u
v

]

, our system becomes

P
dU
dt

= APU or
dU
dt

= P−1APU.

Hence, our system reduces to the uncoupled system

du
dt

= r1u,
dv
dt

= r2v

which has the general solution u = c1er1t, v = c2er2t. Thus the general solution of the given system
is

X = PU = uP1 + vP2 = c1er1tP1 + c2er2tP2.

Since tr(A) = r1 + r2, det(A) = r1r2, we see that (x(t), y(t)) = (0, 0) is an asymptotically stable
equilibrium solution if and only if tr(A) < 0 and det(A) > 0. The system is unstable if det(A) < 0
or det(A) ≥ 0 and tr(A) ≥ 0.
Case 2: ∆ < 0. In this case the roots of the characteristic polynomial are complex numbers

r = α± iω = tr(A)/2± i
√

∆/4.



The corresponding eigenvectors of A are (complex) scalar multiples of
[

1
σ ± iτ

]

where σ = (α− a)/b, τ = ω/b. If X is a real solution we must have X = V + V with

V =
1
2
(c1 + ic2)eαt(cos(ωt) + i sin(ωt))

[

1
σ + iτ

]

.

Then, since X is twice the real part of V , it follows that

X = eαt(c1 cos(ωt)− c2 sin(ωt))
[

1
σ

]

+ eαt(c1 sin(ωt) + c2 cos(ωt))
[

0
τ

]

.

The trajectories are spirals if tr(A) 6= 0 and ellipses if tr(A) = 0. The system is asymptotically
stable if tr(A) < 0 and unstable if tr(A) > 0.
Case 3: ∆ = 0. Here the characteristic polynomial has only one root r. If A = rI the system is

dx
dt

= rx,
dy
dt

= ry.

which has the general solution x = c1ert, y = c2ert. Thus the system is asymptotically stable if
tr(A) < 0, stable if tr(A) = 0 and unstable if tr(A) > 0.

Now suppose A 6= rI. If P1 is an eigenvector with eigenvalue r and P2 is chosen with (A−rI)P1 6=
0, the matrix P with columns P1, P2 is invertible and

P−1AP =
[

r 1
0 r

]

.

Setting as before X = PU we get the system

du
dt

= ru + v,
dv
dt

= rv

which has the general solution u = c1ert + c2tert, v = c2ert. Hence the given system has the general
solution

X = uP1 + vP2 = (c1ert + c2tert)P1 + c2ertP2.

The system is asymptotically stable if tr(A) < 0 and unstable if tr(A) ≥ 0.

A non-homogeneous system dX
dt = AX + B having an equilibrium solution x(t) = x1, y(t) = y1

can be solved by introducing new variables x∗ = x− x1, y∗ = y − y1. Since AX∗ + B = 0 we have

dX∗

dt
= AX∗,

a homogeneous system which can be solved as above. The system dX
dt = AX + B can also be solved

using the exponential of the matrix A, namely,

eA = I + A +
A2

2!
+

A3

3!
+ · · ·+ An

n!
+ · · · .



We have eA+B = eAeB if A and B commute and

d
dt

eAt = AeAt.

Using this one can easily show that

X = eAtX(0) + eAt
∫ t

0
e−AtB dt.

We will not make use of this formula in this course.

Let us now apply the eigenvector method to the solution of a second order system of the type
arising in the solution of a mass-spring system with two masses. The system we will consider consists
of two masses with mass m1, m2 connected by a spring with spring constant k2. The first mass
is attached to the ceiling of a room by a spring with spring constant k1 and the second mass is
attached to the floor by a spring with spring constant k3 at a point immediately below the point
of attachment to the ceiling. Assume that the system is under tension and in equilibrium. If x1(t),
x1(t) are the displacements of the two masses from their equilibrium position at time t, the positive
direction being upward, then the motion of the system is determined by the system

m1
d2x1

dt2
= −k1x1 − k2(x1 − x2) = −(k1 + k2)x1 + k2x2,

m2
d2x2

dt2
= k2(x1 − x2)− k3x2 = k2x1 − (k2 + k3)x2.

The system can be written in matrix form d2X
dt2 = AX where

X =
[

x1

x2

]

, A =
[

−(k1 + k2)/m1 k2/m2

k2/m1 −(k2 + k3)/m2

]

.

The characteristic polynomial of A is

r2 +
m2(k1 + k2) + m1(k2 + k3)

m1m2
r + (

(k1 + k2)(k2 + k3)
m1m2

− k2
2

m1m2
).

The discriminant of this polynomial is

∆ =
(m2(k1 + k2) + m1(k2 + k3))2 − 4(k1 + k2)(k2 + k3)m1m2 + 4k2

2m1m2

m2
1m

2
2

=
(m2(k1 + k2)−m1(k2 + k3))2 + 4m1m2k2

2

m2
1m

2
2

> 0.

Hence the eigenvalues of A are real, distinct and negative since the trace of A is negative while the
determinant is positive. Let r1 > r2 be the eigenvalues of A and let

P1 =
[

1
s1

]

, P2 =
[

1
s2

]

be (normalized) eigenvectors with eigenvalues r1, r2 respectively. We have

s1 =
m1r1 + k1 + k2

k2
, s2 =

m1r2 + k1 + k2

k2



and, if P is the matrix with columns P1, P2, we have

P−1AP =
[

r1 0
0 r2

]

.

If we make a change of variables X = PY with Y =
[

y1
y2

]

, we have

d2Y
dt2

=
[

r1 0
0 r2

]

so that our system in the new variables y1, y2 is

d2y1

dt2
= r1y1

d2y2

dT 2 = r2y2.

Setting ri = −ω2
i with ωi > 0, this uncoupled system has the general solution

y1 = A1 sin(ω1t) + B1 cos(ω1t), y2 = A2 sin(ω2t) + B2 cos(ω2t).

Since X = PY = y1P1 + y2P2, we obtain the general solution

X = (A1 sin(ω1t) + B1 cos(ω1t))P1 + (A2 sin(ω2t) + B2 cos(ω2t))P2.

The two solutions with Y (0) = Pi are of the form

X = (A sin(ωit) + B cos(ωit))Pi =
√

A2 + B2 sin(ωit + θi)Pi.

These motions are simple harmonic with frequencies ωi/2π and are called the fundamental mo-
tions of the system. Since any motion of the system is the sum (superposition) of two such motions
any periodic motion of the system must have a period which is an integer multiple of both the
fundamental periods 2π/ω1, 2π/ω2. This happens if and only if ω1/ω2 is a rational number. If
X ′(0) = 0, the fundamental motions are of the form

X = Bi cos(ωit)Pi

and if X(0) = 0 they are of the form

X = Ai sin(ωit)Pi.

These four motions are a basis for the solution space of the given system. The motion is completely
determined once X(0) and X ′(0) are known since

X(0) = PY (0) = P
[

B1

B2

]

, X ′(0) = PY ′(0) = P
[

ω1A1

ω2A2

]

.

As a particular example, consider the case where m1 = m2 = m and k1 = k2 = k3 = k. The
system is symmetric and

A =
k
m

[

−2 1
1 −2

]

,



a symmetric matrix. The characteristic polynomial is

r2 + 4
k
m

r + 3
k2

m2 = (r +
k
m

)(r + 3
k
m

).

The eigenvalues are r1 = −k/m, r2 = −3k/m. The fundamental frequencies are ω1 =
√

k/m,
ω2 =

√

3k/m. The normalized eigenvectors are

P1 =
[

1
1

]

, P2 =
[

1
−1

]

.

The fundamental motions with X ′(0) = 0 are

X = A cos(
√

k/m t)
[

1
1

]

, X = A cos(
√

3k/m t)
[

1
−1

]

.

Since the ratio of the fundamental frequencies is
√

3, an irrational number, theses are the only two
periodic motions of the mass-spring system where the masses are displaced and then let go.


