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Linear Differential Equations

The general solution of the differential equation

L(y) = a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x)

can be found in two steps. First, if the DE is non-singular on the interval I, i.e., the functions
ai(x) are continuous on I and a0(x) 6= 0 on I, and y1, y2, . . . , yn are solutions of the associated
homogeneous equation L(y) = 0 whose Wronskian is non-zero at some interior point of I the general
solution of L(y) = 0 is

c1y1 + c2y2 + · · ·+ cnyn,

where c1, c2, . . . , cn are arbitrary constants. Secondly, if yp is any particular solution of the given
DE then

L(y) = b(x) = L(yp) ⇐⇒ L(y − yp) = 0 ⇐⇒ y − yp = c1y1 + c2y2 + · · ·+ cnyn

which implies the the general solution of the given DE is

y = yp + c1y1 + c2y2 + · · ·+ cnyn.

Example. The differential equation y′′ + y = sin(2x) has the particular solution sin(2x)/5 so that
its general solution is

y = c1 cos(x) + c2 sin(x) + sin(2x)/5.

The solution satisfying the initial condition y(0) = y′(0) = 1 is

y = cos(x) +
3
5

sin(x) +
1
5

sin(2x).

The following theorem from linear algebra will be very useful in finding fundamental sets of the
linear differential equation L(y) = 0.

Theorem. If y1, y2, . . . , yn ∈ Ker(L) and dim(Ker(L)) = n the following are equivalent.

1. The functions y1, y2, . . . , yn form a basis for Ker(L);

2. The functions y1, y2, . . . , yn span Ker(L), i.e. every y ∈ Ker(L) can be written as a linear
combination of y1, y2, . . . , yn.

The set Span(y1, y2, . . . , yn) = {c1y1 + c2y2 + · · · + cnyn | c1, c2, . . . , cn ∈ R} is called the span of
the functions y1, y2, . . . , yn.

Constant Coefficient Linear Differential Equations. We will now show how to solve the
general n-th order linear constant coefficient differential equation

y(n) + a1y(n−1) + · · ·+ any = b(x).



Here a1, a2, . . . , an are constants (independent of x); hence the name constant coefficient linear DE.
This DE can be written in operator form as P (D)(y) = b(x) with

P (D) = Dn + a1Dn−1 + . . . + a1.

The method of solution will depend on the factorization of the polynomial

P (X) = Xn + a1Xn−1 + · · ·+ an.

Any polynomial P (X) with real coefficients can be factored into distinct factors of the form (X−a)m

or ((X − a)2 + b2)m with b > 0. The following result tells us how to solve the homogeneous DE
P (D)(y) = 0 once we have this factorization.

Theorem.
(a) Ker((D − a)m) = Span(eax, xeax, . . . , xm−1eax)
(b) Ker((D− a)2 + b2)m) = Span(eaxf(x), xeaxf(x), . . . , xm−1eaxf(x)), f(x) = cos(bx) or sin(bx).
(c) If P (X), Q(X) are relatively prime polynomials with constant coefficients then

Ker(P (D)Q(D)) = Ker(P (D)) + Ker(Q(D)) = {y1 + y2 | y1 ∈ Ker(P (D)), y2 ∈ Ker(Q(D))}.

Proof. The proof of (a) follows from the fact that (D− a)m = eaxDme−ax. For the proof of (c) we
first note that since P (D)Q(D) = Q(D)P (D) we have

Ker(P (D)) ⊆ Ker(P (D)Q(D)), Ker(Q(D)) ⊆ Ker(P (D)Q(D))

and hence ker(P (D))+ker(Q(D)) ⊆ ker(P (D)Q(D)). To prove the reverse inclusion we use the fact
that, since P (X), Q(X) have no common factors, there are polynomials A(X), B(X) with

1 = A(X)Q(X) + B(X)P (X).

Then y = A(D)Q(D)(y) + B(D)P (D)(y). If y ∈ Ker(P (D)Q(D)) then

y1 = A(D)Q(D)(y) ∈ Ker(P (D)), y2 = B(D)P (D)(y) ∈ Ker(Q(D))

and y = y1 + y2.
We now give two proofs of (b). The first proof uses the identities

((D − a)2 + b2)(xkeax cos(bx)) = k(k − 1)xk−2eax cos(bx)− bkxk−1eax sin(bx),

((D − a)2 + b2)(xkeax sin(bx)) = k(k − 1)xk−2eax sin(bx) + bkxk−1eax cos(bx).

Let fk = xkeax cos(bx), gk = xkeax sin(bx) and let

Sk = Span(f0, g0, f1, g1, . . . , fk−1, gk−1)

for k ≥ 1, S0 = {0}. Then the above formulas show that

((D − a)2 + b2)(Sk) ⊆ Sk−1 for k ≥ 1.

Hence ((D − a)2 + b2)(Sm) ⊆ S0 which shows that

S = Span(f0, g0, f1, g1, . . . , fm−1, gm−1) ⊆ Sm.



To show linear independence of f0, g0, f1, g1, . . . , fm−1, gm−1 suppose

A0f0 + B0g0 + . . . Am−1fm−1 + Bm−1gm−1 = 0.

Applying ((D − a)2 + b2)m−1 to both sides we get

CmAm−1eax cos(bx) + CmBm−1eax sin(bx) = 0 for m odd

CmBm−1eax cos(bx)− CmAm−1eax sin(bx) = 0 for m even

with Cm = (m− 1)!bm−1 6= 0. It follows that

Am−1 cos(bx) + Bm−1 sin(bx) = 0 or Bm−1 cos(bx)−Am−1 sin(bx) = 0

which implies that Am−1 = Bm−1 = 0 since cos(bx), sin(bx) are linearly independent. We now have

A0f0 + B0g0 + . . . Am−2fm−2 + Bm−2gm−2 = 0.

Proceeding inductively, we find that all the Ai, Bi are zero. It follows that

f0, g0, f1, g1, . . . , fm−1, gm−1

are a fundamental set of solutions of ((D − a)2 + b2)m(y) = 0 which is what we wanted to prove.
Our second proof of (b) uses complex numbers. We first extend D to complex valued functions

f(x) = f1(x) + if2(x) by
D(f) = D(f1) + iD(f2).

It is easy to show that D has all the usual properties:

D(af + bg) = aD(f) + bD(g), D(fg) = D(f)g + fD(g)

for any complex numbers a, b. Moreover, if we define

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

for any complex number z = x + iy we have ez+w = ezew and

ez = exeiy = ex(cos(y) + i sin(y)).

Moreover, one easily proves that D(eαx) = αeαx for any complex number α and that D − α =
eαxDe−αx. Now the proofs of (a) and (b) carry over word for word to the complex case. In
particular, since

(D − a)2 + b2 = (D − α)(D − α)

where α = a + ib, α = a− bi (the complex conjugate of α), we have

Ker(((D − a)2 + b2)m) = Ker((D − α)m(D − α)m) = Ker((D − α)m) + Ker((D − α)m).

Thus the complex solutions of ((D−a)2+b2)m are spanned by the functions xkeax(cos(bx)±sin(bx))
with 0 ≤ k ≤ m− 1 whose real and imaginary parts are the functions

xkeax cos(bx), xkeax sin(bx) (1 ≤ k ≤ m− 1).



If P (X) is a polynomial with real coefficients then f(x) = f1(x) + if2(x) satisfies P (D)(f) = 0 iff
P (D)(f1) = P (D)(f2) = 0. Thus the above 2n functions span the complex solutions and hence the
real solutions also. QED

Example Solve the initial value problem

y′′′ − 3y′′ + 7y′ − 5y = 0, y(0) = 1, y′(0) = y′′(0) = 0.

The DE in operator form is (D3 − 3D2 + 7D − 3)(y) = 0. Since

X3 − 3X2 + 7X − 5 = (X − 1)(X2 − 2X + 5) = (X − 1)((X − 1)2 + 4)

we have Ker(D3− 3D2 +7D− 5) = Ker(D− 1)+Ker((D− 1)2 +4) which gives the general solution

y = c1ex + c2ex cos(2x) + c3ex sin(2x).

If we want y to satisfy y(0) = 1, y′(0) = 0, y′′(0) = 0 we must have c1 + c2 = 1, c1 + c2 + 2c3 = 0,
c1 − 3c2 + 4c3 = 0 and hence c1 = 5/4, c2 = −1/4, c3 = −1/2.
Solve the initial value problem

y′′′ − 3y′′ + 7y′ − 5y = x + ex, y(0) = 1, y′(0) = y′′(0) = 0.

This DE is non-homogeneous. The associated homogeneous equation was solved in the previous
example so we only have to find a particular solution in order to solve it. To find one we use
the so-called annihilator method to find a homogeneous DE satisfied by y. This homogeneous
DE is obtained by applying to both sides of the non-homogeneous DE a linear constant coefficient
differential operator having the function on the right-hand side in its kernel. In this case x + ex is
in the kernel of D2(D − 1). Hence

D2(D − 1)2((D − 1)2 + 4)(y) = 0

which yields y = Ax + B + Cxex + c1ex + c2ex cos(2x) + c3ex sin(2x). This shows that there is a
particular solution of the form yP = Ax + B + Cxex which is obtained by discarding the terms in
the solution space of the associated homogeneous DE. Substituting this in the original DE we get

y′′′ − 3y′′ + 7y′ − 5y = 7A− 5B − 5Ax− Cex

which is equal to x+ex if and only if 7A−5B = 0, −5A = 1, −C = 1 so that A = −1/5, B = −7/25,
C = −1. Hence the general solution is

y = c1ex + c2ex cos(2x) + c3ex sin(2x)− x/5− 7/25− xex.

To satisfy the initial condition y(0) = 0, y′(0) = y′′(0) = 0 we must have

c1 + c2 = 32/25,

c1 + c2 + 2c3 = 6/5,

c1 − 3c2 + 4c3 = 2

which has the solution c1 = 3/2, c2 = −11/50, c3 = −1/25.

In the next lecture we will see how to handle the cases where the annihilator method does not
apply.


