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Linear Differential Equations

The general solution of the differential equation
L(y) = aO(fL')y(”) + al(m)y(”_l) 4+t an($>y — b(;zc)

can be found in two steps. First, if the DE is non-singular on the interval I, i.e., the functions
a;(x) are continuous on I and ag(z) # 0 on I, and y1,ys,...,yn are solutions of the associated
homogeneous equation L(y) = 0 whose Wronskian is non-zero at some interior point of I the general
solution of L(y) = 0 is

c1Y1 + c2y2 + -+ -+ CpYn,

where ¢y, c2,...,c, are arbitrary constants. Secondly, if y, is any particular solution of the given
DE then

L(y) =b(x) = L(yp) <= Ly —9p) =0 <= y—yp =c1y1 + C2y2+ -+ + Cn¥n
which implies the the general solution of the given DE is

Yy=1yYpt+ciyr +coy2+ -+ cnln-

Example. The differential equation y” + y = sin(2z) has the particular solution sin(2z)/5 so that
its general solution is
y = ¢1 cos(x) + co sin(z) + sin(2z) /5.

The solution satisfying the initial condition y(0) = ¢'(0) =1 is

3 1
y = cos(x) + ¥ sin(z) + £ sin(2z).

The following theorem from linear algebra will be very useful in finding fundamental sets of the
linear differential equation L(y) = 0.

Theorem. If y1,ys,...,y, € Ker(L) and dim(Ker(L)) = n the following are equivalent.
1. The functions y1,¥s,. .., y, form a basis for Ker(L);

2. The functions y1,y2, ...,y span Ker(L), i.e. every y € Ker(L) can be written as a linear
combination of y1,y2, ..., Yn.

The set Span(y1,ye,..-,Yn) = {c1y1 + coy2 + -+ + cuyn | c1,¢a,...,cn € R} is called the span of
the functions y1,v2, ..., Yn.

Constant Coefficient Linear Differential Equations. We will now show how to solve the
general n-th order linear constant coefficient differential equation

y(’n) + aly(nil) + oo _|_ any = b(x)



Here a1, as,...,a, are constants (independent of x); hence the name constant coefficient linear DE.
This DE can be written in operator form as P(D)(y) = b(x) with

P(D)=D"+4+a, D" ' +... +a;.
The method of solution will depend on the factorization of the polynomial
PX)=X"4+a, X" ' 4+ +a,.

Any polynomial P(X) with real coefficients can be factored into distinct factors of the form (X —a)™
or ((X —a)?+b?)™ with b > 0. The following result tells us how to solve the homogeneous DE
P(D)(y) = 0 once we have this factorization.

Theorem.

(a) Ker((D —a)™) = Span(e®®, xe®®, ... ™ 1)

(b) Ker((D — a)? +b*)™) = Span(e®® f(z), 2e%* f(x), ..., 2™ 1e®® f(x)), f(x) = cos(bx) or sin(bx).
(¢) If P(X),Q(X) are relatively prime polynomials with constant coefficients then

Ker(P(D)Q(D)) = Ker(P(D)) + Ker(Q(D)) = {y1 + y2 | y1 € Ker(P(D)), y2 € Ker(Q(D))}-

Proof. The proof of (a) follows from the fact that (D — a)™ = e**D™e~**. For the proof of (c) we
first note that since P(D)Q(D) = Q(D)P(D) we have

Ker(P(D)) € Ker(P(D)Q(D)), Ker(Q(D)) € Ker(P(D)Q(D))

and hence ker(P (D)) +ker(Q(D)) C ker(P(D)Q(D)). To prove the reverse inclusion we use the fact
that, since P(X), Q(X) have no common factors, there are polynomials A(X), B(X) with

1=A(X)Q(X)+ B(X)P(X).
Then y = A(D)Q(D)(y) + B(D)P(D)(y). If y € Ker(P(D)Q(D)) then
y1 = A(D)Q(D)(y) € Ker(P(D)), y2 = B(D)P(D)(y) € Ker(Q(D))

and y = y1 + yo.
We now give two proofs of (b). The first proof uses the identities

(D — a)? + b?) (2" cos(bx)) = k(k — 1)z %€ cos(bx) — bka*~1e” sin(bx),

(D — a)* + b*) (2% sin(bx)) = k(k — 1)2zF 2 sin(bz) + bka*~1e® cos(bzx).

Let fy = a*e cos(bx), g, = x*e** sin(bzr) and let

Sk = Span(fo, 90, f1, 915+ fe—1,9k—1)
for k > 1, Sp = {0}. Then the above formulas show that

(D —a)?> 4+ b*)(Sk) C Sk for k> 1.
Hence ((D — a)? + b)(Smm) € Sp which shows that

S = Span(fo, 90, f1,91,- - fm—1:9m-1) € Sm.



To show linear independence of fy, g0, f1,91,- -+ fmn—1, gm—1 SuUppose
Aofo+ Bogo+ ... Am—1fm-1+ Bm—1gm—-1 =0.
Applying ((D — a)? + )™~ ! to both sides we get
CnAm—1e" cos(bx) + Cry Byp—1e** sin(bz) = 0 for m odd
CnBm—1€* cos(bx) — CppyApm—1e*®sin(bz) =0 for m even
with C,, = (m — 1)!6™~1 # 0. It follows that
Apy—1c08(bx) + Byy—1 sin(br) = 0 or By,_1 cos(bx) — Ap,—1sin(bzr) =0
which implies that A,,_1 = By;,—1 = 0 since cos(bx), sin(bz) are linearly independent. We now have
Aofo+ Bogo+ ... Am—2fm—2 + Bm—2gm—2 = 0.

Proceeding inductively, we find that all the A;, B; are zero. It follows that

foagoafhgla'"afm—lagm—l

are a fundamental set of solutions of ((D — a)? + b?)™(y) = 0 which is what we wanted to prove.
Our second proof of (b) uses complex numbers. We first extend D to complex valued functions

f(@) = fi(z) +if2(x) by
D(f) = D(f1) +1iD(f2).

It is easy to show that D has all the usual properties:

D(af +bg) = aD(f) +bD(g), D(fg) = D(f)g+ fD(g)

for any complex numbers a, b. Moreover, if we define
2 n

> z z
ef=14z4+—+--4+—+--
2! n!

for any complex number z = x + iy we have e*T% = e¢”e¥ and
e = e%e™ = e”(cos(y) + isin(y)).

Moreover, one easily proves that D(e®*) = ae*® for any complex number « and that D — a =
e**De~**. Now the proofs of (a) and (b) carry over word for word to the complex case. In
particular, since

(D —a)*> +b*=(D—a)(D—a)

where a = a + ib, @ = a — bi (the complex conjugate of «), we have
Ker(((D —a)? +b*)™) = Ker((D — a)™(D —@)™) = Ker((D — &)™) + Ker((D —a@)™).

Thus the complex solutions of ((D —a)?+b?)™ are spanned by the functions z¥e?®(cos(bx) +sin(bx))
with 0 < k < m — 1 whose real and imaginary parts are the functions

2Fe® cos(bx), zFe®sin(br) (1 <k<m—1).



If P(X) is a polynomial with real coefficients then f(z) = fi(z) + if2(x) satisfies P(D)(f) = 0 iff
P(D)(f1) = P(D)(f2) = 0. Thus the above 2n functions span the complex solutions and hence the
real solutions also. QED

Example Solve the initial value problem
y" =3y" + Ty =5y =0, y(0)=1,5(0) =y"(0) =0.
The DE in operator form is (D* — 3D? + 7D — 3)(y) = 0. Since
X3 3X?2 47X -5=(X-1)(X2-2X+5)= (X - 1)((X —1)2 +4)
we have Ker(D3 —3D? +7D —5) = Ker(D — 1) + Ker((D — 1)? +4) which gives the general solution
y = c1e” + co€” cos(2x) + cze” sin(2x7).

If we want y to satisfy y(0) = 1,7'(0) = 0,3”(0) = 0 we must have ¢; + ¢z =1, ¢1 + ¢3 + 2¢3 = 0,
c1 — 3¢y + 4es =0 and hence ¢; =5/4,¢0 = —1/4,¢3 = —1/2.
Solve the initial value problem

y"' =3y + 7y —by=x+e", y(0)=1,9(0)=y"(0)=0.

This DE is non-homogeneous. The associated homogeneous equation was solved in the previous
example so we only have to find a particular solution in order to solve it. To find one we use
the so-called annihilator method to find a homogeneous DE satisfied by y. This homogeneous
DE is obtained by applying to both sides of the non-homogeneous DE a linear constant coefficient
differential operator having the function on the right-hand side in its kernel. In this case = + e” is
in the kernel of D?(D — 1). Hence

D*(D = 1)*((D = 1)* +4)(y) =0

which yields y = Az + B + Cze® + c1e” + c2€” cos(2x) + cze” sin(2x). This shows that there is a
particular solution of the form yp = Az + B 4+ Cxe® which is obtained by discarding the terms in
the solution space of the associated homogeneous DE. Substituting this in the original DE we get

y" —3y" + 7y —5y=7A—-5B —5Ax — Ce”

which is equal to 4 € if and only if TA—5B =0, —=5A =1, —C = 1 so that A= —1/5, B = —7/25,
C = —1. Hence the general solution is

y = c1e” + c9€” cos(2z) + cze” sin(2z) — x/5 — 7/25 — xe”.
To satisfy the initial condition y(0) = 0,%/(0) = y”(0) = 0 we must have

c1+co = 32/25,
C1 +C2+2Cg :6/5,
C1 —3C2+4C3:2
which has the solution ¢; = 3/2,c0 = —11/50, ¢35 = —1/25.

In the next lecture we will see how to handle the cases where the annihilator method does not
apply.



