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The Fundamental Existence and Uniqueness Theorem
For n-th order Differential Equations

In this lecture we will state and sketch the proof of the fundamental existence and uniqueness
theorem for the n-th order DE

y(n) = f(x, y, y′, . . . , y(n−1)).

The starting point is to convert this DE into a system of first order DE’. Let y1 = y, y2 =
y′, . . . y(n−1) = yn. Then the above DE is equivalent to the system

dy1

dx
= y2

dy2

dx
= y3

...
dyn

dx
= f(x, y1, y2, . . . , yn).

More generally let us consider the system

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

...
dyn

dx
= fn(x, y1, y2, . . . , yn).

If we let Y = (y1, y2, . . . , yn), F (x, Y ) = (f1(x, Y ), f2(x, Y ), . . . , fn(x, Y ))
and dY

dx = (dy1
dx , dy2

dx , . . . , dyn
dx ) the system becomes

dY
dx

= F (x, Y ).

Theorem. If fi(x, y1, . . . , yn) and ∂fi
∂yj

are continuous on the n + 1-dimensional box

R : |x− x0| < a, |yi − ci| < bi, (1 ≤ i ≤ n)

for 1 ≤ i, j ≤ n with |fi(x, y)| ≤ M and

| ∂fi

∂y1
|+ | ∂fi

∂y2
|+ . . . | ∂fi

∂yn
| < L

on R for all i, the initial value problem

dY
dx

= F (x, Y ), Y (x0) = (c1, c2, . . . , cn)



has a unique solution on the interval |x− x0| ≤ h = min(a, b/M), where b = min bi.

The proof is exactly the same as for the proof for n = 1 if we use the following Lemma in place
of the mean value theorem.

Lemma. If f(x1, x2, . . . xn) and its partial derivatives are continuous on an n-dimensional box R,
then for any a, b ∈ R we have

|f(a)− f(b)| ≤ (| ∂f
∂x1

(c)|+ · · ·+ | ∂f
∂xb

(c)||a− b|

where c is a point on the line between a and b and |(x1, . . . , xn)| = max(|x1|, . . . , |xn|).

The lemma is proved by applying the mean value theorem to the function G(t) = f(ta+(1− t)b).
This gives

G(1)−G(0) = G′(c)

for some c between 0 and 1. The lemma follows from the fact that

G′(x) =
∂f
∂x1

(a1 − b1) + · · ·+ ∂f
∂x1

(an − bn).

The Picard iterations Yk(x) defined by

Y0(x) = Y0 = (c1, . . . , cn), Yk+1(x) = Y0 +
∫ x

x0

F (t, Yk(t))dt,

converge to the unique solution Y and

|Y (x)− Yk(x)| ≤ (M/L)ehLhk+1/(k + 1)!.

If f1(x, y1, . . . , y),
∂fi
∂yj

are continuous in the strip |x− x0| ≤ a and there is an L such that

|f(x, Y )− f(Z)| ≤ L|Y − Z|

then h can be taken to be a and M = max |f(x, Y0)|. This happens in the important special case

fi(x, y1, . . . , yn) = ai1(x)y1 + · · ·+ ain(x)yn + bi(x).

As a corollary of the above theorem we get the following fundamental theorem for n-th order
DE’s.

Theorem. If f(x, y1, . . . , yn) and ∂f
∂fj

are continuous on the box

R : |x− x0| ≤ a, |yi − ci| ≤ bi (1 ≤ i ≤ n)

and |f(x, y1, . . . , yn)| ≤ M on R, then the initial value problem

y(n) = f(x, y, y′, . . . , y(n−1)), yi−1(x0) = ci (1 ≤ 1 ≤ n)

has a unique solution on the interval |x− x0| ≤ h = max(a, b/M), where b = min bi.

Another important application is to the n-th order linear DE

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x).



In this case f1 = y2, f2 = y3, fn = p1(x)y1 + · · · pn(x)yn + q(x) where pi(x) = −an−i(x)/a0(x),
q(x) = b(x)/a0(x).

Corollary. If a0(x), a1(x), . . . , an(x) are continuous on an interval I and a0(x) 6= 0 on I then, for
any x0 ∈ I in the interior of I and any scalars c1, c2, . . . , cn, the initial value problem

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x), yi−1(x0) = ci (1 ≤ 1 ≤ n)

has a unique solution on the interval I.

Let L be the differential operator defined by

L(y) = a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y,

where a0(x), . . . an(x) are functions on the interval I. The domain of operator L is the vector space
V of functions y whose first n derivatives exist on I. The operator L is linear since

L(ay + bz) = aL(y) + bL(z).

The set of functions y with L(y) = 0 is called the kernel of L and is denoted by Ker(L). The kernel
of L is a subspace of V , in other words, linear combinations of solutions of the homogeneous linear
differential equation

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y

are also solutions. To study W = Ker(L) we introduce the transformation

T : W → Rn

defined by T (y) = (y(x0), y′(x0), . . . , y(n−1)(x0)), where x0 is any interior point of I. The transfor-
mation T is linear. Moreover, the fundamental theorem yields the following result.

Theorem. If a0(x), . . . , an(x) are continuous on I and a0(x) 6= 0 on I then T is an isomorphism of
vector spaces, i.e., T is one-to-one and onto. In particular, the dimension of Ker(L) is n.

That dim(Ker(L)) = n means that there are y1, y2, . . . , yn in Ker(L) such that any other y in
Ker(L) can be uniquely written in the form

y = c1y1 + c2y2 + · · · cnyn.

Such a set y1, y2, . . . , yn is called a basis of Ker(L). It is also called a fundamental set of solutions
of L(y) = 0. Since isomorphisms send bases to bases and since the inverse of an isomorphism is
also an isomorphism, we see that when dim(Ker(L)) = n the functions y1, y2, . . . , yn in Ker(L) are
a basis of Ker(L) if and only if the n vectors T (y1), T (y2), . . . , T (yn) are linearly independent or,
equivalently, if the determinant

W =
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y1(x0) y′1(x0) · · · y(n−1)
1 (x0)

y2(x0) y′2(x0) · · · y(n−1)
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...
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of the matrix (or its transpose) whose rows are the vectors T (y1), T (y2), . . . , T (yn) is non-zero. This
determinant is called the Wronskian of y1, y2, . . . , yn at x0. The function

W = W (y1, y2, . . . , yn) =
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is called the Wronskian of the functions y1, y2, . . . , yn. It is defined for any functions y1, y2, . . . , yn
in V . If it is non-zero at some point x0 then the functions y1, y2, . . . , yn are linearly independent,
i.e.,

c1y1 + c2y2 + · · ·+ cnyn = 0 =⇒ c1 = c2 = · · · = cn = 0.

Corollary. If W is the Wronskian of the solutions y1, y2, . . . , yn of

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0,

where a0(x), a1(x), . . . , an(x) are continuous on the open interval I and a0(x) 6= 0 on I, then W (x) 6=
0 on I if and only if W (x0) 6= 0 for some point x0 in I.

Example 1. The functions ex, e−x are solutions of the DE y′′ = y. Their Wronskian is

W =
∣
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ex e−x

ex −e−x

∣
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∣

∣

= −1 6= 0.

Hence ex, e−x are a fundamental set of solutions of the DE y′′ = y. The functions

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2

are also solutions of this DE and their Wronskian is
∣

∣
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cosh(x) sinh(x)
sinh(x) cosh(x)

∣

∣

∣

∣

= cosh2(x)− sinh2(x) = 1,

so they are also a fundamental set of solutions.

Example 2. The functions cos(x), sin(x) are solutions of y′′ = −y. Their Wronskian is
∣
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cos(x) sin(x)
− sin(x) cos(x)

∣
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= cos2(x) + sin2(x) = 1.

They are therefore a fundamental set of solutions of the DE y′′ + y = 0.

Example 3. The functions sin(x), sin(2x) have Wronskian

W =
∣
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sin(x), sin(2x)
− cos(x),−2 cos(2x)

∣
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= sin(2x) cos(x)− 2 sin(x) cos(2x).

Since W (0) = 0 but W (x) 6= 0 for 0 < x < h for some h > 0 they cannot be a fundamental set of
solutions for a second order homogeneous DE y′′ + p(x)y′ + q(x)y = 0 on any interval containing 0
where p, q are continuous.


