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Solving Higher Order Differential Equations

In this lecture we give an introduction to several methods for solving higher order differential
equations. Unlike the case of first order equations there are not many non-linear equations where
an explicit solution can be found. There are two important cases however where the DE can be
reduced to one of lower degree. The first is a DE of the form

y(n) = f(x, y′, y′′, . . . , y(n−1))

where on the right-hand side the variable y does not appear. In this case, setting z = y′ leads to the
DE

z(n−1) = f(x, z, z′, . . . , z(n−2))

which is of degree n− 1. If this can be solved then one obtains y by integration with respect to x.
For example, consider the DE y′′ = (y′)2. Then, setting z = y′, we get the DE z′ = z2 which

is a separable first order equation for z. Solving it we get z = −1/(x + C) or z = 0 from which
y = − log |x + C| + D or y = C. The reader will easily verify that there is exactly one of these
solutions which satisfies the initial condition y(x0) = a, y′(x0) = b for any choice of x0, a, b.

The second case is a DE of the form y(n) = f(y, y′, y′′, . . . , y(n−1)) where the independent variable
x does not appear explicitly on the right-hand side of the equation. Here we again set z = y′ but
try for a solution z as a function of y. Then, using the fact that d

dx = z d
dy , we get the DE

(z
d
dy

)n−1(z) = f(y, z, z
dz
dy

, . . . , (z
d
dy

)n−2(z))

which is of degree n− 1. For example, the DE y′′ = (y′)2 is of this type and we get the DE

z
dz
dy

= z2

which has the solution z = Cey. Hence y′ = Cey from which −e−y = Cx + D. This gives
y = − log(−Cx−D) as the general solution which is in agreement with what we found above.

Another example is the DE y′′ = y. Setting z = y′ and viewing z as a function of y, we get

z
dz
dy

= y

from which z2 = y2 + C and z = ±
√

y2 + C. This gives

y′ = ±
√

y2 + C

. Solving for y using separation of variables, we get

y = A sinh(x + B), y = A cosh(x + B), y = Ae±x

depending on whether C > 0, C < 0, C = 0. In any case, we find the general solution to be

y = Aex + Be−x



with A,B arbitrary constants.
A simpler method for solving the equation y′′ = y exploits the fact that it is linear by introducing

the differential operator D defined by
D(y) = y′.

Then D2(y) = D(D(y)) = y′′ and the differential equation can be written

D2(y) = y or (D2 − 1)(y) = 0.

Here 1 denotes the operator ”multiplication by 1” and, if S, T are two operators and a, b scalars
then aS + bT is defined by

(aS + bT )(y) = aS(y) + bT (y).

Now one uses the fact that D2 − 1 = (D − 1)(D + 1). Indeed,

(D − 1)(D + 1)(y) = (D − 1)((D + 1)(y)) = (D − 1)(y′ + y) = D(y′ + y)− (y′ + y) = y′′ − y.

If we set z = (D + 1)(y), we have (D − 1)z = 0. Thus z′ = z and z = Cex. This gives

y′ + y = Cex

from which y = Aex + Be−x with A = C/2. We will see that this method generalizes to the general
n-th order linear constant coefficient DE

P (D) = 0,

where P (D) is a polynomial in D. This method uses the linearity of these operators, namely that

P (D)(ay + bz) = aP (D)(y) + bP (D)(z).

A key fact in the study of a general homogeneous ODE

y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0,

where a1(x), . . . an(x) are continuous on an interval I is that the solutions form an n-dimensional
subspace of the vector space of functions on the interval I. Using this one obtains the fact that the
general solution of y′′ = −y is

y = A sin(x) + B cos(x)

since sin(x) and cos(x) are linearly independent solutions.
The proof of this fact is obtained by writing the n-th order equations as a system of first order

equations and using the fundamental existence and uniqueness theorem for systems. This we will
do in the next lecture. For now let me illustrate how this would work for the DE y′′ = −y.

If we set y1 = y and y2 = y′, the differential equation y′′ = −y is equivalent to the pair of
equations

y′1 = y2, y′2 = −y1

which can be written as a single vector equation

(y′1, y
′
2) = (y2,−y1).

If we set Y = (y1, y2), F (x, Y ) = (y2,−y1) then this equation can be written

Y ′ = F (x, Y ),



where Y ′ = (y′1, y
′
2). This is a first order system written in vector form. Such a system can be solved

using Picard iteration to give existence and uniqueness of solutions as we shall see in the next lecture.
Let’s just write down the first few Picard iterations for the solution Y satisfying Y (0) = (1, 0). From
the above we know that Y (x) = (cos(x), sin(x)). The n-th Picard iterate Yn satisfies

Yn(x) = Y0 +
∫ x

0
F (x, Yn−1) dx,

where Y0 = (1, 0) and n ≥ 1. We have

Y1(x) = (1 +
∫ x

0
0 dx, 0 +

∫ x

0
−1 dx) = (1,−x)

Y2(x) = (1 +
∫ x

0
−x dx, 0 +

∫ x

0
−1 dx) = (1− x2/2,−x)

Y3(x) = (1 +
∫ x

0
−x dx, 0 +

∫ x

0
(−1 + x2/2) dx) = (1− x2/2,−x + x3/6)

Y4(x) = (1 +
∫ x

0
(−x + x3/6) dx, 0 +

∫ x

0
(−1 + x2/2) = (1− x2/2 + x4/24,−x + x3/6)

Y5(x) = (1 +
∫ x

0
(−x + x3/6) dx, 0 +

∫ x

0
(−1 + x2/2− x4/24) dx = (1− x2/2 + x3/6,−x + x3/6− x5/120).

We leave it to the reader to show that Yn(x) converges to (cos(x),− sin(x)) as n →∞.


