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Math 325B: Differential Equations

Notes for Lecture 10

The aim of this lecture is to prove the following existence and uniqueness theorem for first order
ODE’s. The notation and terminology is the same as in the previous lecture.

Theorem. Suppose that the function f(x, y) is continuous on the infinite strip

R = {(x, y) ∈ R | |x− x0| ≤ h}

and suppose that f satisfies the Lipschitz condition

|f(x, y)− f(x, z)| ≤ L|y − z|

on R. This happens if ∂f
∂y is continuous on R and is in absolute value ≤ L on R. Then, if (x0, y0) ∈ R,

the n-th Picard iteration yn = Tn(y0) converges to a continuous function y which is the unique fixed
point of T . Moreover, if M is the maximum of |f(x, y0)| on the interval I = {x ∈ R | |x− x0| ≤ h},
we have

|y(x)− yn(x)| ≤ M
L

eLh (Lh)n+1

(n + 1)!

for n ≥ 1.

Proof. We have

|y1(x)− y0(x)| = |
∫ x

x0

f(x, y0) dx| ≤ M |x− x0|,

|y2(x)− y1(x)| = |
∫ x

x0

(f(x, y1(x))− f(x, y0(x))) dx ≤ ML
|x− x0|2

2
≤ MLh2/2,

|y3(x)− y2(x)| = |
∫ x

x0

(f(x, y2(x))− f(x, y1(x))) dx ≤ ML2 |x− x0|3

3!
≤ ML2h3/3!

and, by induction,

|yn(x)− yn−1(x)| ≤ MLn−1 |x− x0|n

n!
≤ MLn−1 hn

n!
.

Since yn(x) = y0(x) + y1(x)− y0(x) + y2(x)− y1(x) + · · ·+ yn(x)− yn−1 we see that yn(x)− y0(x)
is the n-th partial sum of the series

∞
∑

k=1

yk(x)− yk−1

which is, in absolute value, term by term less than or equal to the convergent series

M
L

∞
∑

k=1

(Lh)n

n!
.

It follows that yn(x) converges as n → ∞. If y(x) is this limit the function y = y(x) is continuous
on I since the convergence is uniform on I. Moreover, for n ≥ 1

|y(x)− yn(x)| ≤
∞
∑

k=n+1

|yk(x)− yk−1| ≤
M
L

∞
∑

k=n+1

(Lh)n

n!
≤ M

L
eLh (Lh)n+1

(n + 1)!
.



To prove that T (y) = y we use the fact that

|T (y)− T (z)| ≤ Lh|y − z|

for any two continuous functions y, z on I. Setting z = yn we get

|T (y)− yn+1| ≤ Lh|y − yn|

we see that T (y) is the limit of the sequence yn and hence that T (y) = y.
Finally, if y, z are fixed points of T , we have

|y(x)− z(x)| = |T (y(x)− T (z(x))| ≤ |
∫ x

x0

(f(x, y(x))− f(x, z(x))) dx| ≤ LhK,

where K is the maximum of |y(x)− z(x)| on I. This gives

|y(x)−z(x)| ≤ KhL2|x−x0|, |y(x)−z(x)| ≤ KhL3|x−x0|2/2, |y(x)−z(x)| ≤ KhL4|x−x0|3/3!

and, by induction,

|y(x)− z(x)| ≤ KhLn+1|x− x0|n/n! ≤ KhL(Lh)n/n! →∞

which shows that y(x) = z(x) for all x ∈ I and hence that y = z.

Remark. If Lh < 1 then the Banach fixed point theorem applies but gives the weaker estimate
|y − yn| < (Lh)n+1/(1− Lh).

Corollary. If f(x, y) is continuous for all x, y and if ∂f
∂y is bounded on any vertical strip |x−x0| ≤ a

then the initial value problem
dy
dx

= f(x, y), y(x0) = y0.

has a unique solution on any interval containing x0; in particular, a unique solution on R.

Example. For the initial value problem

y′ = 1 + xy, y(0) = 0

we have f(x, y) = 1 + xy and ∂f
∂y = x which is bounded above by h on the strip |x| ≤ h. The

existence theorem assures the existence of a unique solution which is defined for all x. The Picard
iterations are y0(x) = 0

y1(x) =
∫ x

0
dx = x, y2(x) =

∫ x

0
(1 + x2) dx = x +

x3

3
, y3(x) =

∫ x

0
(1 + x2 +

x4

3
) dx = x +

x3

3
+

x5

15

and, by induction,

yn(x) = x +
x3

3
+

x5

15
+ · · ·+ xn

1 · 3 · 5 · 2n− 1
+ · · · .

Since L = h, we have |y − yn| ≤ eh2
h2n+2/(n + 1)! on the interval |x| ≤ h for n ≥ 1. The following

exercises show how the solutions to our initial value problem depend on initial conditions and small
changes in f .



Exercise 1. If T̃ is the operator obtained by replacing y0 by ỹ0, show that

|Tn(y0)− T̃n(ỹ0)| ≤ |y0 − ỹ0|(1 + Lh + · · · (Lh)n

n
).

If T (y) = y, T̃ (ỹ) = ỹ, deduce that

|y − ỹ| ≤ |y0 − ỹ0|eLh.

Exercise 2. If |f(x, y)− f̃(x, y)| ≤ ε on R and T̃ is the operator with f replaced by f̃ , show that

|Tn(y0)− T̃n(y0)| ≤ εh(1 + Lh + · · · (Lh)n

n
).

If T (y) = y, T̃ (ỹ) = ỹ, deduce that
|y − ỹ| ≤ εheLh.


