
McGill University
Math 325B: Differential Equations

Notes for Lecture 1

Text: Section 1.1

A differential equation is an equation involving the derivatives of an unknown function u. If u
is a function of one variable, the differential equation is said to be an ordinary differential equation
(ODE). If u is a function of more than one variable, the differential equation is called a partial
differential equation (PDE); the name coming from the fact that the derivatives will be partial
derivatives. The order of a differential equation is the order of the highest derivative occurring in
the equation. For example,
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are respectively PDE’s of order one and two.
In order to build some intuition let us try to find all solutions y(x) of the ODE
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Integrating both sides with respect to x, we get∫
y
dy

dx
dx =

∫
x dx

or, equivalently, ∫
y dy =

∫
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which yields y2/2 = x2/2+C0 for some constant C0. Multiplying by 2 and setting C = 2C0, we get

y2 − x2 = C.

This is a one parameter family of curves which define the solutions implicitly. A differentiable
function y = y(x) is a solution if and only if there is a constant C such that y2 − x2 = C. Solving
for y, we get y = ±

√
x2 + C. Setting C = 0, we find the solutions y = x and y = −x both of

which satisfy y(0) = 0. If C > 0, the functions y = ±
√
x2 + C are differentiable for all x while for

C < 0 these functions are differentiable only for |x| >
√

|C|. The constant C can be determined by
an initial condition y(x0) = y0. If y0 ̸= 0, there is a unique solution y = y(x) with y(x0) = y0. If
y0 = 0, there are two solutions if x0 = 0 and no solution if x0 ̸= 0.

The unusual behaviour for y0 = 0 is due to the fact that when we solve the given ODE for dy
dx

we get
dy

dx
=

x

y

which is not defined if y = 0.
The general first order ODE is F (x, y, y′) = 0, where y′ = dy

dx . If y′ = f(x, y) then the ODE is
said to be in normal form.



As a second example we will solve the ODE y′ = y. Using the properties of the function ex, it is
an easy exercise to show that the solutions of y′ = y are precisely the functions of the form y = Cex

with C an arbitrary constant. Then y = Cex is the unique solution with y(0) = C. However, one
can use the differential equation to define the function ex and find its properties. The method we
use to prove existence and uniqueness is extremely important one which we will explore more fully
in this course.

Let us first show that there is a solution of y′ = y with y(0) = 1. Such a function would satisfy
y(n)(0) = 1 and therefore its Taylor series about x = 0 would be

1 + x+
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2!
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+ · · · .

This series converges for all x and therefore defines a function y = exp(x). Since Taylor series can be
differentiated term by term in the interval of convergence, the function y = exp(x) satisfies y′ = y
and moreover y(0) = 1. The function y = C exp(x) also satisfies y′ = y but with y(0) = C.

Let us now show that y = C exp(x) is the unique solution y with y(0) = C. If y1 is another such
solution the z = y − y1 satisfies z′ = z and z(0) = 0. We want to show z(x) = 0 for all x. If we
integrate z′ = z form 0 to x we get

z(x) =

∫ x

0

z(t) dt

and hence

|z(x)| =
∫ |x|

0

|z(t)| dt

Fix x and let M be the maximum of |z(x)| between 0 and x. Then

|z(x)| ≤
∫ |x|

0

M dt = M |x|.

Using this new estimate for |z(x)|, we get

|z(x)| ≤
∫ |x|

0

Mtdt = M |x|2/2.

Proceeding inductively, in this way we get |z(x)| ≤ M |x|n/n!. Since |x|n/n! → 0 as n → ∞, we get
z(x) = 0 for any x.

All that is let is to show that exp(x) = ex, where
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1
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To do this we first show that exp(x + a) = exp(x) exp(a). But this follows immediately from the
fact that both sides of this equation are functions satisfying the initial value problem

y′ = y, y′(0) = exp(a).

We now have exp(1) = e from which exp(2) = exp(1 + 1) = exp(1) exp(1) = e2 and by induction on
can show that exp(n) = en for all natural numbers n. Since

1 = exp(0) = exp(−x+ x) = exp(−x) exp(x),



we have exp(−x) = 1/ exp(x) and so exp(−n) = e−n. Again, by induction, one can show that

exp(x/n)n = exp(x)

for any natural number n > 0 and hence that exp(x/n) = exp(x)1/n. It follows that

exp(m/n) = em/n

for all integers m and all natural numbers n > 0. Thus exp(x) = ex for all rational numbers and,
by continuity, exp(x) = ex for all x.

The function y = log(x) = ln(x), (x > 0) is the inverse function of exp(x) = ex. The general
solution of y′ = 1/x, (x > 0) is y = log(x) +C. The function y = log(x) is the unique solution with
y(0) = 1.

The function y = log(−x) satisfies y′ = 1/x for x < 0. It follows that the general solution of
y′ = 1/x on x < 0 or x > 0 can be written in the form

y = log |x|+ C.

The use of series to define solutions of ODE’s is an important technique and the use uniqueness
properties of the ODE is instrumental in studying the solutions.


