189-265A: Advanced Calculus

Solution Outlines for Assignment 2

1. (a) The moment of R with respect to the line az + by + ¢ =0is
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using the fact that [[, xdedy = TA, [[,ydrdy =7FA. This moment is zero if and only if the line
passes through the centroid. If P is any point such that the moment of R with respect to any line
passing through P is zero then P must be the centroid of R since the centroid lies on all these
lines and these lines have P as the unique point of intersection. If L is a line of symmetry for R
then L divides R into two parts, R; and Ro, which are mirror images in the line L; this means
that there is a one-to-one correspondence (z,y) < (2’,y") between the points of R; and Ry such
that the line joining these two points is right-bisected by L giving h(z,y) = —h(z’,y’). Thus
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(b) (i) Direct method:
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(ii) Using Green’s Theorem: We use the fact that, if C = Cy — Cy is the positively oriented
boundary of R, then
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2. (a) The curve C is a circle with center (1,1) and radius v/2. It has the parametric representation
r=1+4+2cos(f), y =1+ +/2sin(f), 0 < 0 < 27. Thus
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(b) Since the centroid of the disk R with center (1,1) and radius v/2 has centroid (1,1) and area 27,

we have
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since [[p xdrdy = [[,ydrdy = 2m by 1(a).

3. (a) Ast goes from —1 to 1, the point (1 — t2,¢ — t3) traces out a positively oriented closed curve C
starting and ending at the origin. The area of the region R bounded by C' is
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(b) The flux is given by
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4. If ¢ =In/(x — 1)%2 + y2, we have
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since C'is a closed curve.
5. Since div(fVg) = Vf - Vg — fV2g, we have
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