189-265A: Advanced Calculus

Tutorial Problem Set 6: Triple integrals and the divergence theorem

- 1. Compute the following integrals
 - (a) $\iint \int_W (2x + 3y + z)$, where W is the solid pyramid with apex at (0, 0, 1) = A and base the square S with corners at (0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, 0). In other words, the solid W is made up of all the points on the lines joining A to some point P in the square S;
 - (b) $\iiint_W z dV$, where W is the solid in (a);
 - (c) $\int \int \int_{\Omega} dV$, where Ω is the solid tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Alternatively, Ω is the solid pyramid with triangular base T, vertices at (1, 0, 0), (0, 1, 0), and (0, 0, 0), obtained by joining all the points P in T to the apex (0, 0, 1). Or again, Ω is bounded by the plane x + y + z = 1 and the three coordinate planes x = 0, y = 0, and z = 0;
 - (d) $\iiint_{\Omega} x dV$ with Ω as in (c),
 - (e) $\int \int \int_B (2x+3y) dV$, where B is bounded by the plane x + 2y + 3z = 4 and the three coordinate planes x = 0, y = 0, and z = 0, [Hint: one can solve this question by using the result in part (c) and a linear change of coordinates.]
 - (f) $\iiint_B x dV$ where B is bounded by the cylinder $x = y^2$ and the planes y = z, x = 2y, and z = 0,
 - (g) $\iiint_W dV$ where W is the solid bounded by $x^2 + y^2 = 9, z = 0$, and $x + y + z = 3\sqrt{2}$,
 - (h) $\iiint_W x dV$ where W is the solid ball bounded by $x^2 + y^2 + z^2 = 9$. [Hint: the answer is zero. Use symmetry to see why this is so without actually calculating the integral.]

Comment The centroid of the solid Ω in (c) has all three coordinates the same. What is the *x*-coordinate of its centroid?

- 2. Use cylindrical coordinates to compute
 - (a) the volume of a right circular cone with base radius a and height h;
 - (b) $\iiint_{\Omega} dV$ where Ω is the solid in the upper half space $z \ge 0$ that is bounded by $x^2 + y^2 = 4, z = 0, z^2 = x^2 + y^2$;
 - (c) $\iiint_{\Omega} dV$ where Ω is the solid bounded by $x^2 + y^2 = 4, z = 0, z = x^2 + y^2$,
 - (d) the volume of the solid W containing (1, 1, 1/2) that is bounded by z = 0, z = y, and $x^2 + y^2 = 4$,
 - (e) $\iiint_W yzdV$, where W is the solid in (4),
 - (f) the volume of the part of the solid ball bounded by $x^2 + y^2 + z^2 = 4$ that is outside the cylinder $x^2 + y^2 = 1$,
- 3. Use spherical coordinates to compute
 - (a) the volume of the solid ball of radius a;
 - (b) $\iiint_W dV$ where W is the solid containing the point $(0, 0, \frac{3}{4})$ that is bounded by $x^2 + y^2 + z^2 = 1$ and $z^2 = x^2 + y^2$;
 - (c) $\iiint_W (x^2 + y^2 + z^2) dV$ where W is the solid in (b);
 - (d) the volume of the solid B in the upper half space $z \ge 0$ that is bounded by $x^2 + y^2 + z^2 = 9, z = 0$, and $z^2 = x^2 + y^2$;
 - (e) $\iiint_B x^2 dV$, where B is the solid in (d),

- 4. Calculate the following integrals
 - (a) $\iiint_W dV$, where W is the solid defined by $1 \le x + y + z \le 2, 0 \le x y \le 3$, and $-1 \le x + 2y + 3z \le 4$,
 - (b) $\iiint_W (x-y) dV$, where W is the solid in (a),
 - (c) $\iiint_{\Omega} y \, dV$ where $\Omega = \{(x, y, z) \mid 2 \le x + y \le 4, 0 \le y \le 1, -2 \le y + z \le 3\},\$
 - (d) $\int \int \int_W x^2 dV$ where W is the cylindrical ring bounded by $x^2 + y^2 = 1, x^2 + y^2 = 4, z = 0$, and z = 1,
 - (e) $\iiint_W x^2 dV$ where W is the part of the cylindrical ring bounded by $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, z = 0, and z = 1 for which $x \ge 0$,
 - (f) $\iiint_W \frac{1}{x^2+y^2+z^2} dV$, where W is the region lying between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 9$,
 - (g) $\iiint_W x^2 dV$, where W is the part of the region lying between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 9$ in the first octant, i.e., for which $x \ge 0, y \ge 0$, and $z \ge 0$.
- 5. Calculate the outward flux of the vector field $\overrightarrow{F}(x, y, z) = (2x + yz, x z, x^2y)$ across the boundary of the solid W where W is the solid
 - (a) bounded by the sphere $x^2 + y^2 + z^2 = 4$;
 - (b) bounded by x + y + z = 1, x = 0, y = 0, and z = 0;
 - (c) that is the part of the solid ball bounded by $x^2 + y^2 + z^2 = 4$ outside the cylinder $x^2 + y^2 = 1$;
 - (d) in the upper half space $z \ge 0$ containing the point (0, 0, 1) that is bounded by $x^2 + y^2 + z^2 = 9$ and $z^2 = x^2 + y^2$;
 - (e) defined by $1 \le x + y + z \le 2, 0 \le x y \le 3$, and $-1 \le x + 2y + 3z \le 4$.
- 6. Let r^2 denote $x^2 + y^2 + z^2$. Use the divergence theorem to calculate the outward flux of the vector field $\overrightarrow{F} = -\nabla(\frac{1}{r})$ across the boundary of the solid
 - (a) bounded by the spheres $r^2 = x^2 + y^2 + z^2 = 1$ and $r^2 = x^2 + y^2 + z^2 = 4$, [Hint: use the fact that $\Delta(\frac{1}{r}) = 0$;
 - (b) obtained by removing the solid ball $x^2 + y^2 + z^2 \le 1$ from the cube centered at the origin which has one corner at (2, 2, 2).
- 7. Calculate the outward flux of $\overrightarrow{f} = -\nabla(\overrightarrow{1}r)$ across the boundary of
 - (a) the solid ball $x^2 + y^2 + z^2 \le a^2$;
 - (b) the cube centered at the origin with one corner at (2, 2, 2);
 - (c) the solid bounded by the ellipsoid $x^2 + \frac{1}{4}y^2 + \frac{1}{9}z^2 = 1$,
 - (d) the parallelepiped defined by $-1 \le x + y + z \le 2, -3 \le x y \le 4$, and $-5 \le x + 2y + 3z \le 1$.

Comments The above exercise should remind you of the types of questions that arise in the plane with line integrals of the vector field $(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$. Recalling that the line integral $\int_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$ is the flux across C of the vector field $(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2})$ the parallel becomes even more apparent. Recall also that this plane vector field is the gradient of the harmonic function $\frac{1}{2}\log(x^2+y^2)$.

- 8. Calculate the outward flux of the vector field $\vec{F} = (yz + x, y + zx, z + xy)$ across the boundary of the solid W defined by the inequalities $z^2 \ge x^2 + y^2, x^2 + y^2 + z^2 \le 1$. Calculate the outward flux of \vec{F} across the boundary of the solid obtained by removing W from the solid ball $x^2 + y^2 + z^2 \le 1$. Notice that W consist of two pieces.
- 9. Calculate the outward flux of \vec{F} across the surface of the hemisphere $x^2 + y^2 + z^2 = 9, x < 0$, where "outward" is relative to the solid sphere $x^2 + y^2 + z^2 = 9$ and $\vec{F}(x, y, z) = (1, 2, 3)$.
- 10. Consider the solid D that is bounded by $x^2 + y^2 + z^2 = 4$, $z = \sqrt{2}$ and contains the point $(0, 0, 1 + \frac{1}{\sqrt{2}})$.
 - (a) Express the outward flux of $\vec{F}(x, y, z) = (x, y, z)$ across the piece S₁ of the surface S of D that lies on the sphere as a double integral over a rectangle and evaluate this integral;
 - (b) Calculate the outward flux of $\overrightarrow{F}(x, y, z) = (x, y, z)$ across the surface S of D.
 - (c) Express the outward flux of $\overrightarrow{F}(x, y, z) = (x, y, z)$ across the surface S of D as a triple integral in spherical coordinates.