189-265A: Advanced Calculus

Tutorial Problem Set 5: Surface Integrals

- 1. Using a suitable parametrization, compute the areas and centroids of the surfaces
 - (a) the graph of $z = \sqrt{1 (x^2 + y^2)}, x^2 + y^2 \le 1;$
 - (b) the part of the cone $z = 2\sqrt{x^2 + y^2}$ where $1 \le z \le 3$;
 - (c) the cylinder $x^2 + y^2 = 4, 0 \le z \le 3;$
 - (d) the part of the plane 3x + 2y + z = 1 that lies inside the cylinder $x^2 + y^2 = 9$;
 - (e) the part of the plane 3x + 2y + z = 1 that lies inside the cylinder $x^2 + 4y^2 = 9$;
 - (f) the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies above the cone $z = \sqrt{3(x^2 + y^2)}$;
 - (g) the part of the hemisphere $x^2 + y^2 + z^2 = 36, z \ge 0$, that lies inside the cylinder $x^2 + y^2 = 6y$;
 - (h) the square with corners at (1, 1, 2), (-1, 1, 2), (-1, -1, 2) and (1, -1, 2);
 - (i) the rectangle with corners at (1, 3, 4), (-2, 3, 4), (-2, 3, -1) and (1, 3, -1);
 - (j) the triangle with vertices at (0, 0, 0), (-1, 2, 3) and (2, -1, 5);
 - (k) the triangle with vertices at (1, 1, 1), (0, 3, 4) and (3, 0, 6);
 - (1) the part of the cylinder $x^2 + y^2 = 9$ for which $0 \le z \le x + 3$,
 - (m) the spiral ramp or helicoid obtained by joining the point $(\cos t, \sin t, 2t)$ on a helix to (0, 0, 2t) where $0 \le t \le 2\pi$, [not a nice integral!]
 - (n) the part of the hyperboloid $x^2 + y^2 z^2 = 1$ for which $-2 \le z \le 2$,
 - (o) the part of the sphere $x^2 + y^2 + z^2 = 4$ for which $-\sqrt{2} \le z \le \sqrt{2}$.
- 2. Calculate $\iint_S \varphi(x, y, z) dS$ if
 - (a) $\varphi(x, y, z) = x^2 + y$ and S is the cone $z = 2\sqrt{x^2 + y^2}$, $x^2 + y^2 \le 4$;
 - (b) $\varphi(x, y, z) = z$ and S is the surface $z = 4(x^2 + y^2), x^2 + y^2 \le 1$;
 - (c) $\varphi(x, y, z) = x^2$ and S is the spiral ramp in 1(m).
- 3. Calculate the flux of the given vector fields \overrightarrow{F} over the given surfaces S.
 - (a) S is the unit sphere $x^2 + y^2 + z^2 = 1$ with the normal outward and $\overrightarrow{F}(x, y, z) = \overrightarrow{i}$;
 - (b) S is the surface made up of the hemisphere $x^2 + y^2 + z^2 = 1, z \le 0$ and the disc $x^2 + y^2 \le 1, z = 0$ — the boundary of half of a ball of radius 1 — (again with the normal outward) and $\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$;
 - (c) S is the boundary of the cube $C = [0,1] \times [0,1] \times [0,1]$ with corners at (0,0,0), (1,0,0), (1,1,0), (0,1,0) and (0,0,1), (1,0,1), (1,1,1), (0,1,1) with inward normal and $\overrightarrow{F}(x,y,z) = (x,y,0)$;
 - (d) S is the cone $z = 2\sqrt{x^2 + y^2}$, $x^2 + y^2 \leq 4$ with the standard parametrization (which means that the normal points into the cone) and $\vec{F} = \vec{k}$;
 - (e) S is the cone $z = 2\sqrt{x^2 + y^2}$, $x^2 + y^2 \le 4$ with the standard parametrization and $\overrightarrow{F} = (x^2, y^2, z^2)$;
 - (f) S is the sphere $x^2 + y^2 + z^2 = 1$ and $\vec{F}(x, y, z) = (xz, yz, 0);$
 - (g) S is the cylinder $x^2 + z^2 = 4, 0 \le y \le 1$ and $\overrightarrow{F}(x, y, z) = (x, y, z);$
 - (h) S is the surface of the sphere $x^2 + y^2 + z^2 = R^2$ with outward normal and $\overrightarrow{F} = \nabla(-1/r)$, where $r^2 = x^2 + y^2 + z^2$. [Note that the answer does not depend upon R. This will be important when discussing the divergence theorem.]