Tutorial Problem Set 4: Vector Analysis

Recall the basic operations of grad, curl and div , i.e. of $\nabla, \nabla \times$, and $\nabla \cdot$, and the important diagram

 $\text{functions} \xrightarrow{\nabla} \text{ vector fields } \xrightarrow{\nabla \times} \text{ vector fields } \xrightarrow{\nabla \cdot} \text{ functions}$

where the composition of any two consecutive operations gives zero.

1. Compute $\nabla \times \overrightarrow{F}$ if

- (a) $\overrightarrow{F}(x, y, z) = (x^2, y^2, z^2),$
- (b) $\overrightarrow{F}(x,y,z) = xy \, \overrightarrow{i} + yz \, \overrightarrow{j} + zx \, \overrightarrow{k}$,
- (c) $\overrightarrow{F}(x, y, z) = \frac{1}{r^2}(x, y, z)$, where $r = \sqrt{x^2 + y^2 + z^2}$,
- (d) $\overrightarrow{F}(x, y, z) = e^x \{ \sin y \cos z \, \vec{i} + \cos y \cos z \, \vec{j} \sin y \sin z \, \vec{k} \}.$

Which of these vector fields is conservative?

- 2. Verify that $\nabla \times (f \overrightarrow{F}) = f(\nabla \times \overrightarrow{F}) + \nabla f \times \overrightarrow{F}$. Use this identity to calculate $\nabla \times \overrightarrow{G}$ when $\overrightarrow{G}(x, y, z) = e^{x+y+z} \{xy \overrightarrow{i} + yz \overrightarrow{j} + zx \overrightarrow{k}\}.$
- 3. Compute $\nabla \cdot \vec{F}$ if
 - (a) $\vec{F}(x, y, z) = x \vec{i} + y \vec{j} + z \vec{k}$, (b) $\vec{F}(x, y, z) = (x^2, y^2, z^2)$ (c) $\vec{F}(x, y, z) = xy \vec{i} + yz \vec{j} + zx \vec{k}$, (d) $\vec{F}(x, y, z) = e^{xyz} \{ \vec{i} + \vec{j} + \vec{k} \}$.
- 4. Verify the identity

$$\nabla \cdot (f\vec{F}) = \nabla f \cdot \vec{F} + f(\nabla \cdot \vec{F}).$$

Use this identity to compute $\nabla \cdot \vec{G}$ if

(a) $\overrightarrow{G}(x, y, z) = \frac{1}{r^2}(x, y, z)$, where $r = \sqrt{x^2 + y^2 + z^2}$, (b) $\overrightarrow{G}(x, y, z) = (x^2 + y^2 + z^2)(xy\,\vec{i} + yz\,\vec{j} + zx\,\vec{k})$

- 5. Calculate $\nabla \cdot \nabla f = \Delta f$ if
 - (a) $f(x, y, z) = x^2 + y^2 2z^2$,
 - (b) $f(x, y, z) = 4x^2 + 6y^2 10z^2$,
 - (c) f(x, y, z) = r and
 - (d) $f(x, y, z) = \frac{1}{r}$, where $r = \sqrt{x^2 + y^2 + z^2}$.
- 6. Assume that $\overrightarrow{F} = (F_1, F_2, F_3)$ is a vector field on \mathbb{R}^3 whose divergence $\nabla \cdot \overrightarrow{F}$ is zero. Define \overrightarrow{G} to be the vector field (G_1, G_2, G_3) where

$$G_1(x, y, z) = \int_0^z F_2(x, y, t) dt - \int_0^y F_3(x, t, 0) dt$$
$$G_2(x, y, z) = -\int_0^z F_1(x, y, t) dt$$
$$G_3(x, y, z) = 0.$$

Verify that $\nabla \times \vec{G} = \vec{F}$.

Use this fact to find a vector field \overrightarrow{G} whose curl $\nabla \times \overrightarrow{G}$ is (x, y, -2z).

Remark. If the curl of \overrightarrow{G} equals \overrightarrow{F} , then \overrightarrow{G} is called a vector potential of \overrightarrow{F} .

- 7. Let $\overrightarrow{F}(x, y, z) = xy \, \vec{i} + yz \, \vec{j} + zx \, \vec{k}$ and let $f(x, y, z) = x^2 + y^2 2z^2$. Let $\overrightarrow{G} = \overrightarrow{F} + \nabla f$. Then the difference $\overrightarrow{G} \overrightarrow{F}$ is a conservative vector field. Verify that $\nabla \cdot \overrightarrow{G} = \nabla \cdot \overrightarrow{F}$ by making use of earlier computations. What property of the function f ensures this?
- 8. Given two vector fields \vec{H} and \vec{K} whose difference is conservative, when do they have the same divergence?
- 9. Use the identity in question 4 to show that

$$\nabla \cdot (f\nabla g) = \nabla f \cdot \nabla g + f(\Delta g).$$

Since a function of two variables x and y is also a function of three variables x, y, and z, this identity also holds for functions f and g of two variables. Use the divergence form of Green's theorem to show that

$$\int_C f(\frac{\partial g}{\partial n}) ds = \int \int_D (\nabla f \cdot \nabla g + f(\Delta g)) \, dx dy,$$

where *C* is the boundary of the domain *D*, $\frac{\partial g}{\partial n}$ denotes the directional derivative of *g* in the direction of the outer normal \vec{N} , and *ds* is the differential of arc length. **Hint**: recall that the directional derivative of a function *g* in the direction of a unit vector \vec{u} can be expressed in terms of ∇g and \vec{u} .

The above identity is called **Green's first identity**. If g is harmonic and f = 1 then Green's first identity shows that for any domain D with a nice boundary ∂D with outer normal \vec{N} one has

$$\int_{\partial D} (\nabla g \cdot \overrightarrow{N}) \, ds = \int_{\partial D} \frac{\partial g}{\partial n} \, ds = \int \int_D \Delta g \, dx dy = 0.$$

In other words, if g is harmonic on a region $\Omega \subset \mathbb{R}^2$ then for any nice subdomain D one has $\int_{\partial D} (\nabla g \cdot \vec{N}) ds = 0$. By the general principle used in the discussion of the heat equation, the converse is true: a function g with continuous second order partial derivatives is harmonic on Ω if, for any nice subdomain D, $\int_{\partial D} (\nabla g \cdot \vec{N}) ds = 0$. This is because, by Green's first identity, $\int \int_D \Delta g \, dx \, dy = 0$ and the general principle implies that $\Delta g = 0$ on Ω .