
PROBLEM SET 2: Line Integrals and Green’s Theorem

1. Calculate the following line integrals by finding a potential function for the vector field in each
case

(a)
∫

C1
(2xy + y sin(xy))dx + (x2 + x sin(xy))dy, where C1 is the line segment from (−1, 1) to

(5, 6) followed by the line segment from (5, 6) to (−3, 4) followed by the short arc of the
circle x2 + y2 = 25 from (−3, 4) to (5, 0).

(b)
∫

C2
(y2z + 2xz + 3yz)dx + (2xyz + 2z + 3xz)dy + (xy2 + x2 + 2y + 3xy)dz, where C2 is

the part of the helix (cos 2t, sin 2t, 4t), 0 ≤ t ≤ π from (1, 0, 0) to (1, 0, 4π) followed by the
line segment from (1, 0, 4π) to (0,−3, 0).

2. Sketch (i.e., draw a few of the vectors) the constant vector field ~F in the plane with ~F (x, y) =
(1, 2) for all points (x, y) ∈ R2. Draw the graph of the line segment from (−1, 3) to (4,−1) and
the unit tangent vector ~T to the line segment at a point on the line. Denote by ~N the unit
normal to the line at the same point obtained by rotating ~T clockwise π/2 radians. Notice
that ~N is on your right-hand side as you walk along the line segment in the direction of ~T .
Given an oriented plane curve γ, the unit normal ~N to the curve will denote the normal that
is on your right-hand side as you walk along the curve in the direction of the unit tangent
vector vecT .

Important Comment: to rotate a vector (a, b) by π/2 radians clockwise, replace it by the
vector (b,−a). Let this vector (b,−a) be denoted by (a, b)⊥. Notice that if ~u and ~v are two
vectors in the plane then

~u · ~v = ~u⊥ · ~v⊥.

(a) Compute the flux of ~F across the line segment from (−1, 3) to (4,−1).
The flux of ~F across a plane curve C is

∫
C

~F · ~Nds.

(b) Compute the flux of ~F = (xy, x2 − y2) across the line segment from (−1, 3) to (4,−1).

(c) Compute the flux of ~F (x, y) = (y, x) across the arc of the parabola y = x2 from (−1, 1)
to (1, 1).

(d) Show that the line integral
∫

C
−xdx+ydy, where C is the curve in (c), is the same as the

flux of ~F (x, y) = (y, x) across the curve C. Can you see why this is automatically true
without actually doing the calculation?

If ~F = (R,S), then the line integral
∫

C
−Sdx + Rdy computes the flux of ~F across C.

3. Determine

(a)
∫ ∫

D
(3x− 2y)dA where D is the region bounded by x + y = 3, y − x = 1, y = −1,

(b) the area of the region bounded by y = x and the curve x + y2 = 2,

(c) the area of the region in the first quadrant bounded by x2 +y2 = 4 and (x−2)2 +y2 = 4.

4. Determine and sketch the region of integration for the following integrals. Then express them
as iterated integrals in which the order of integration is reversed. Finally, compute their values.

(a)
∫ 1

0

[∫√x

−
√

x
xydy

]
dx

(b)
∫ 4

1

[∫√x

x−2
xydy

]
dx.



5. Calculate
∫ ∫

D
ex2

dxdy, where D is the triangle with vertices (0, 0), (1, 0) and (1, 1).

6. Use Green’s theorem to evaluate the following line integrals.

(a)
∫

C
−y cos x dx+x sin y dy, where C is the polygonal path from (1, 1) to (−1, 1) to (−1,−1)

to (1,−1) and back to (1, 1),

(b)
∫

C
(−y sinx− x2y)dx + (cos x + xy2)dy where C is the circle x2 + y2 = 4.

7. Let C be the curve given by the arc of the parabola y = x2 from (1, 1) to (0, 0) followed by the
line segment from (0, 0) to (0, 1) and then by the line segment from (0, 1) to (1, 1). Calculate
the line integral

∫
C

(xy2 + y cos(xy))dx + (xy + x cos(xy))dy in two ways. WATCH OUT FOR
THE ORIENTATION.

The next exercise makes use of Green’s theorem to reduce the computations computation
around (or part of) a circle. Indicate which circle you are using and why you may reduce to
calculating on a circle.

8. Compute the line integral
∫

C
−y

x2+y2 dx + x
x2+y2 dy where

(a) C is the polygonal path from (1, 1) to (−1, 1) to (−1,−1) to (1,−1) and back to (1, 1),

(b) C is the polygonal path from (2, 1) to (−1, 1) to (−1,−1) to (2,−1) and back to (2, 1),

(c) C is the line segment from (2, 0) to (
√

2,
√

2).

9. Calculate the areas of the following regions by using a line integral:

(a) the disc bounded by x2 + y2 = 81,

(b) the quarter circle bounded by x = 0, y = 0 and x2 + y2 = R2,

(c) the triangle with vertices at (0, 0), (2, 1), and (3, 4),

(d) the region bounded by the curves y = 0, x = 1, and the curve y = x2 from (1, 1) to (0, 0).

(e) the region S bounded by x = 0, y = (tanα)x (for 0 < α < π
2 ), and the circle x2 +y2 = R2

is 1
2R2α.

10. Let D1 be the rectangle determined by (1,-2),(1,3),(-1,3), and (-1,-2) and let D2 be the lower
half of the disc bounded by x2 + (y + 2)2 = 1. Denote by Ci the boundary of Di traversed in
the counterclockwise direction. Sketch these regions and curves.

If ~F (x, y) = ( −y
x2+y2 + xy + y, x

x2+y2 + x2), calculate
∫

C
~F · d~r for

(a) C = C1;

(b) C = C2;

(c) C the boundary of D = D1 ∪D2 traversed in the counterclockwise direction.

Parts (b) and (c) of the next question make use of the divergence form of Green’s theorem to
reduce the computation to a computation across the boundary of a disc. What disc are you
using in each case? Why can you reduce to the case of the boundary of a disc?

11. Calculate the outward flux of ~F (x, y) = ( x
x2+y2 , y

x2+y2 )

(a) across the boundary of the disc x2 + y2 ≤ 81,

(b) across the boundary of the square with vertices (1, 1), (−1, 1), (−1,−1), and (1,−1),

(c) across the boundary of the triangle with vertices at (−1,−1), (1, 0), and (−1, 1).



12. Let u(x, y, t) = 1
2πte

− 1
2t (x2+y2), where x, y ∈ R and t > 0.

(a) Show that u satisfies the heat equation ∂u
∂t = 2∆2u. This partial differential equation is

very important in probability for the study of Brownian motion in the plane.

(b) Let v(x, y, t) = u(x, y, ct), c > 0. Show that v satisfies the heat equation ∂v
∂t = (c/2)∆2v.

The one-dimensional heat equation is k ∂2u
∂x2 = ∂u

∂t . Einstein showed in 1905 that a random
particle moving by Brownian motion has its position at time t governed by 1√

2π
e−

1
2t x2

— a
solution of the heat equation with k = 1

2 . This means that, if the particle starts at a point a

on the real line, then the probability that it is between α and β at time t is 1√
2πt

∫ β

α
e−

1
2t (x−a)2 .


