
1 The Continuity Equation

Imagine a fluid flowing in a region R of the plane in a time dependent fashion. At each point
(x, y) ∈ R2 it has a velocity −→v = −→v (x, y, t) at time t. Let ρ = ρ(x, y, t) be the density of the fluid
at (x, y) at time t. Let P be any point in the interior of R and let Dr be the closed disk of radius
r > 0 and center P . The mass of fluid inside Dr at any time t is

∫∫

Dr

ρ dxdy.

If matter is neither created nor destroyed inside Dr, the rate of decrease of this quantity is equal to
the flux of the vector field

−→
J = ρ−→v across Cr, the positively oriented boundary of Dr. We therefore

have
d
dt

∫∫

Dr

ρ dxdy = −
∫

Cr

−→
J ·

−→
N ds,

where ~N is the outer normal and ds is the element of arc length. Notice that the minus sign is
needed since positive flux at time t represents loss of total mass at that time. Also observe that the
amount of fluid transported across a small piece ds of the boundary of Dr at time t is ρ−→v · −→N ds.
Differentiating under the integral sign on the left-hand side and using the flux form of Green’s
Theorem on the right-hand side, we get

∫∫

Dr

∂ρ
∂t

dxdy = −
∫∫

Dr

∇ · −→J dxdy.

Gathering terms on the left-hand side, we get
∫∫

Dr

(
∂ρ
∂t

+∇ · −→J ) dxdy = 0.

If the integrand was not zero at P it would be different from zero on Dr for some sufficiently small
r and hence the integral would not be zero which is not the case. Hence the integrand is zero at P
and, since P was arbitrary, we have

∂ρ
∂t

+∇ · −→J = 0.

Conversely, if this equation holds then matter is neither created nor destroyed in R. For this reason
this equation is called the conservation equation. It is also known as the continuity equation.
Since

∇(ρ−→v ) = ∇ρ · −→v + ρ∇ · −→v

the continuity equation can be written in the form

∂ρ
∂t

+∇ρ · −→v + ρ∇ · −→v = 0.

It follows that the vector field J is incompressible at any time t if and only if ∂ρ
∂t = 0. The vector

field −→v is incompressible at any time t if and only if

∂ρ
∂t

+∇ρ · −→v = 0.

If ρ does not depend on x, y then −→v is incompressible if and only if
−→
J is.

2 The Heat Equation

Imagine a metal plate in the shape of some region R of the plane. Let T = T (x, y, t) denote the
temperature of the plate at the point (x, y) at the time t. In the theory of heat flow, one assumes



that heat flows from hot to cold regions. As a result, the heat flow is the time dependent vector
field −→v = −∇T , where the gradient is taken relative to the space variables x and y. If c denotes the
specific heat and ρ is the mass density, then the quantity of heat inside a disk D in the interior of
R is at time t

∫∫

D
ρcT dxdy.

If there are no heat sources or sinks in D then the rate at which this quantity increases is equal
the rate at heat is gained at the boundary C of D. Since heat flows in the direction of −∇T and
the rate of flow is equal to κ|∇T |, where κ is the conductivity of the material, heat is gained at the
boundary of D at the rate

∫

C
κ∇T ·

−→
N ds =

∫∫

D
∇ · ∇T dxdy.

It follows that
d
dt

∫∫

D
ρcT dxdy =

∫∫

D
∇ · ∇T dxdy

and hence that
∫∫

D
ρc

∂T
∂t

dxdy =
∫∫

D
∇ · ∇T dxdy

Since D is arbitrary, it follows that

ρc
∂T
∂t

= ∇ · ∇T.

This equation can be written in the form

∂T
∂t

= k∇ · ∇T,

where k = κ/cρ is called the diffusivity. This equation is known as the heat equation. Since

∇ · ∇T =
∂2T
∂x2 +

∂2T
∂y2 ,

the heat equation can be written in the form

∂T
∂t

= k(
∂2T
∂x2 +

∂2T
∂y2 )

or, equivalently, in the form ∂T
∂t = k∆T , where by definition

∆ = ∇2 = ∇ · ∇ =
∂2

∂x2 +
∂2

∂y2 ,

the Laplacian operator.
From the above, it follows that if one has a distribution of heat on a metal plate R and the heat

distribution T does not change with time — the so-called steady state — then

∂2T
∂x2 +

∂2T
∂y2 = 0 on R.

This equation is known as Laplace’s equation. The solutions of Laplace’s equation are known as
harmonic functions. The functions

xy, x2 − y2, ex cos y, ex sin y.

are examples of harmonic functions on R2. The function log(x2 + y2) is harmonic on R2 − {(0, 0)}.
The gradient of this function is the vector field

−→
F =

x
x2 + y2

~i +
y

x2 + y2
~j.



This vector field is the field produced by a uniformly distributed electrical charge of unit charge
density along the z-axis. Indeed, an easy calculation shows that

−→
F =

∫ ∞

−∞

x~i + y~j − z~k
(x2 + y2 + z2)3/2 dz.


