
1 The Chain Rule

If z = g(y) and y = f(x) and then the chain rule is a formula for the derivative of z with respect to
x. If we let z = h(x) = g(f(x)), the chain rule formula is
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or h′(x) = g′(y)f ′(x) where y = f(x).

The second formula shows where the derivatives are to be evaluated. In other words dz
dx is

evaluated at x, dz
dy is evaluated at y = f(x) and dy

dx is evaluated at x.
For example, if y = ex and z = log y = ln y, then z = x as log(ex) = x. This gives us
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This formula needs to read carefully as it says that dx
dy , when y = ex, is equal to the reciprocal of

dy
dx at x.

The typical chain rule in calculus of several variables is more complicated. For example, if
T = T (x, y) is viewed as the temperature at (x, y) and −→r (t) = (x(t), y(t) is a path or curve in the
plane, then the temperature T (x(t), (y(t)) depends on t as the curve is traversed. This temperature
at “time” t, is the temperature T (x(t), y(t)) at (x(t), y(t)), namely the temperature at the location
of “moving point” (x(t), y(t)) at “time” t. Then the rate of change of T = (x(t), y(t)) is given by
the formula
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Here, the partial derivatives with respect to x and y are to be evaluated at (x, y) = (x(t), y(t)).
One might also have x and y themselves functions of several variables, say, u, v, and w. This

situation is given by a function (x, y) = F (u, v, w) = (F1(u, v, w), F2(u, v, w)). Then, if one fixes in
turn all the variables but one, one gets three chain rule formulas
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These three chain rule formulas can all be “packaged” as one equation if one uses matrix multi-
plication. It involves the gradient of T and what is called the derivative (matrix) DF or F ′ of F .
This is the matrix
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Notice the pattern of the matrix, it follows the pattern of the variables (x, y) and (u, v, w). The
three formulas for the three partial derivatives of T can be written as one matrix equation
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Setting p = (u, v, w), this can be written in the form

D(T ◦ F )(p) = DT (F (p))DF (p) or (T ◦ F )′(p) = T ′(F (p))F ′(p)



where the sign ◦ stands for composition of functions. In this way the chain rule for functions of
several variables looks exactly the same as the one variable case.

The derivative matrix DF is often called the Jacobian matrix. For example, when

(y1, y2, · · · , ym) = F (x1, x2, · · · , xn)

the Jacobian matrix (see Adams, p. 189 of the third edition) is the matrix
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In other words, the (i, j)-entry is ∂yi
∂xj

. When m = n the determinant of the Jacobian matrix DF is
called the Jacobian of F or the Jacobian determinant of F and is sometimes denoted by

∂(y1, y2, . . . , ym)
∂(x1, x2, . . . , xn)

.

One important consequence of the matrix version of the chain rule is that if

(y1, y2, · · · , yn) = F (x1, x2, · · · , xn) and (x1, x2, · · · , xn) = G(y1, y2, · · · , yn)

are two transformations such that (x1, x2, · · · , xn) = G(F (x1, x2, · · · , xn)) then the Jacobian matri-
ces DF and DG are inverse to one another. This is because, if I(x1, x2, · · · , xn) = (x1, x2, · · · , xn)
then DI is the identity matrix n× n matrix In. Hence,

In = D(I) = D(F ◦G) = D(F )D(G).

Taylor’s formula for a function of several variables is an immediate consequence of Taylor’s
formula in one variable and the chain rule. For example if y = f(x) with x = (x1, x2) and one wants
the Taylor polynomial of order 2 of the function corresponding to the point a = (a1, a2) let

g(t) = f(a + t(x− a).

Then it follows that
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The Taylor polynomial of order 2 for g corresponding to t = 0 is

g(t) = g(0) + tg′(0) +
t2

2
g′′(0).

If we evaluate this polynomial at t = 1 and observe that g(1) = f(x), then
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