1 The Divergence Theorem

The divergence theorem, also known as Gauss' theorem, states that the outward flux of a vector field $\vec{F} = (P, Q, R)$ across the boundary of a "nice" solid W equals the (triple) integral of the divergence of \vec{F} over the solid W. By definition, the divergence of $\vec{F} = (P, Q, R)$ is the scalar field

$$\operatorname{div}(\overrightarrow{F}) = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z}.$$

As in the case of the proof of Green's Theorem, the Divergence Theorem can be proved for regions that can be decomposed into 'elementary' regions.

Theorem 1. Let W be of type I, i.e., W is the set of points (x, y, z) such that $g(x, y) \le z \le f(x, y)$, where (x, y) belongs to a region D_1 in the xy-plane for which the double integral exists and the two functions $g \le f$ are continuous and defined on \overline{D}_1 . Then, if $\vec{F} = (0, 0, R)$, it follows that

$$\iint_{\partial W} \overrightarrow{F} \cdot \overrightarrow{N} \, dS = \iiint_{W} \frac{\partial R}{\partial z} \, dx \, dy \, dz.$$

Proof. Since the solid is of type I,

$$\begin{split} \iiint_W \frac{\partial R}{\partial z} \, dx dy dz &= \iint_{D_1} \left(\int_{g(x,y)}^{f(x,y)} \frac{\partial R}{\partial z} dz \right) dx dy \\ &= \iint_{D_1} \left(R(x,y,f(x,y)) - R(x,y,g(x,y)) \right) dx dy. \end{split}$$

The boundary ∂W of W consist of three pieces of surface:

$$S_1 = \{(x, y, f(x, y)) \mid (x, y) \in D_1\}, \quad S_2 = \{(x, y, g(x, y)) \mid (x, y) \in D_1\}$$

and S_3 , the lateral part of the boundary, which consists of all the line segments joining (x, y, f(x, y))to (x, y, g(x, y)), where $(x, y) \in \partial D_1$. Since the outward normal at any point of S_3 is perpendicular to the line segment joining (x, y, f(x, y)) to (x, y, g(x, y)) on which the point lies, it is parallel to the xy-plane and so its dot product with $\vec{F} = (0, 0, R)$ equals 0. So it suffices to compute the outward flux of \vec{F} across S_1 and S_2 .

In the case of S_1 we may use the standard parametrization of the graph of z = f(x, y) to do the computation. As a result, the vector $\left(-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1\right)$ is parallel to the outward normal at the point (x, y, f(x, y)) on S_1 (recall it points "upward"). Hence, the outward flux across S_1 is given by

$$\begin{split} \iint_{S_1} \overrightarrow{F} \cdot \overrightarrow{N} \, dS &= \iint_{D_1} (0, 0, R(x, y, f(x, y))) \cdot (-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1) \, dx dy \\ &= \iint_{D_1} R(x, y, f(x, y)) \, dx dy. \end{split}$$

align In the case of S_2 we are again dealing with the graph of a function. Hence, we might expect the flux across S_2 to be

$$\iint_{D_1} R(x, y, g(x, y)) \, dx dy.$$

This is not correct, because on S_2 the normal outward relative to W points "downward" (see Figure 1). The correct answer is therefore

$$\iint_{S_2} \overrightarrow{F} \cdot \overrightarrow{N} \, dS = - \iint_{D_1} R(x, y, g(x, y)) \, dx dy.$$

Hence, the outward flux across ∂W of $\overrightarrow{F} = (0, 0, R)$ is

$$\iint_{D_1} R(x, y, f(x, y)) \, dx dy - \iint_{D_1} R(x, y, g(x, y)) \, dx dy,$$

which completes the proof.

In exactly the same way one proves the following two theorems.

Theorem 2. Let W be of type II, i.e., W is the set of points (x, y, z) such that $q(y, z) \le x \le p(y, z)$, where (y, z) belongs to a region D_2 in the yz-plane for which the double integral exists and the two functions $q \le p$ are continuous and defined on $\overline{D_2}$. Then, if $\overrightarrow{F} = (P, 0, 0)$, it follows that

$$\iint_{\partial W} \overrightarrow{F} \cdot \overrightarrow{N} \, dS = \iiint_W \frac{\partial P}{\partial x} \, dx dy dz$$

Theorem 3. Let W be of type III, i.e., W is the set of points (x, y, z) such that $k(x, z) \le y \le h(x, z)$, where (x, z) belongs to a region D_3 in the xz-plane for which the double integral exists and the two functions $k \le h$ are continuous and defined on $\overline{D_3}$. Then, if $\vec{F} = (0, Q, 0)$, it follows that

$$\iint_{\partial W} \overrightarrow{F} \cdot \overrightarrow{N} \, dS = \iiint_W \frac{\partial Q}{\partial y} \, dx dy dz$$

As a result, we obtain the divergence theorem for regions W which are simultaneously of type I, II and III; such regions are called elementary regions. As in the case of the flux form of Green's theorem, if W_1 and W_2 are two solids for which the divergence theorem holds, then it holds for their union if there is a piece of surface S_0 common to both of their boundaries. The reason is that the outward normals to W_1 and to W_2 on S_0 agree except for a minus sign. As a result, there is cancellation of the outward flux across S_0 .

Examples Let $W_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge 0\}$ and $W_2 = \{(x, y, z) \mid 0 \le x \le 1/2, -2 \le y \le 0, 0 \le z \le 1/2\}.$

These two solids have the square $S_0 = \{(x, 0, z) \mid 0 \le x \le 1/2, 0 \le z \le 1/2\}$ as the intersection of their boundaries. The divergence theorem holds for $W_1 \cup W_2$. The divergence theorem also holds for

$$W_3 = \{(x, y, z) \mid 1 \le x^2 + y^2 + z^2 \le 2, x \ge 0, y \ge 0, z \ge 0\}$$

and for $W_4 = \{(x, y, z) \mid 1 \le x^2 + y^2 + z^2 \le 2\}$. In the case of W_4 , this solid is the solid ball of radius 2 with the open solid ball

$$B_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 < 1\}$$

removed. The divergence theorem holds for W_4 since it holds for the closed solid unit ball

$$\overline{B}_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

and for the closed solid ball $\overline{B}_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 2\}.$