
1 The Divergence Theorem

The divergence theorem, also known as Gauss’ theorem, states that the outward flux of a vector field−→
F = (P, Q,R) across the boundary of a “nice” solid W equals the (triple) integral of the divergence
of
−→
F over the solid W . By definition, the divergence of

−→
F = (P,Q, R) is the scalar field

div(
−→
F ) =

∂P
∂x

+
∂P
∂y

+
∂P
∂z

.

As in the case of the proof of Green’s Theorem, the Divergence Theorem can be proved for
regions that can be decomposed into ’elementary’ regions.

Theorem 1. Let W be of type I, i.e., W is the set of points (x, y, z) such that g(x, y) ≤ z ≤ f(x, y),
where (x, y) belongs to a region D1 in the xy-plane for which the double integral exists and the two
functions g ≤ f are continuous and defined on D1. Then, if

−→
F = (0, 0, R), it follows that

∫∫

∂W

−→
F ·

−→
N dS =

∫∫∫

W

∂R
∂z

dxdydz.

Proof. Since the solid is of type I,
∫∫∫

W

∂R
∂z

dxdydz =
∫∫

D1

(

∫ f(x,y)

g(x,y)

∂R
∂z

dz
)

dxdy

=
∫∫

D1

(

R(x, y, f(x, y))−R(x, y, g(x, y))
)

dxdy.

The boundary ∂W of W consist of three pieces of surface:

S1 = {(x, y, f(x, y)) | (x, y) ∈ D1}, S2 = {(x, y, g(x, y)) | (x, y) ∈ D1}

and S3, the lateral part of the boundary, which consists of all the line segments joining (x, y, f(x, y))
to (x, y, g(x, y)), where (x, y) ∈ ∂D1. Since the outward normal at any point of S3 is perpendicular
to the line segment joining (x, y, f(x, y)) to (x, y, g(x, y)) on which the point lies, it is parallel to the
xy-plane and so its dot product with

−→
F = (0, 0, R) equals 0. So it suffices to compute the outward

flux of
−→
F across S1 and S2.

In the case of S1 we may use the standard parametrization of the graph of z = f(x, y) to do the
computation. As a result, the vector (− ∂z

∂x ,− ∂z
∂y , 1) is parallel to the outward normal at the point

(x, y, f(x, y)) on S1 (recall it points “upward”). Hence, the outward flux across S1 is given by
∫∫

S1

−→
F · −→N dS =

∫∫

D1

(0, 0, R(x, y, f(x, y))) · (−∂z
∂x

,−∂z
∂y

, 1) dxdy

=
∫∫

D1

R(x, y, f(x, y)) dxdy.

align In the case of S2 we are again dealing with the graph of a function. Hence, we might expect
the flux across S2 to be

∫∫

D1

R(x, y, g(x, y)) dxdy.

This is not correct, because on S2 the normal outward relative to W points “downward” (see
Figure 1). The correct answer is therefore

∫∫

S2

−→
F ·

−→
N dS = −

∫∫

D1

R(x, y, g(x, y)) dxdy.

Hence, the outward flux across ∂W of
−→
F = (0, 0, R) is

∫∫

D1

R(x, y, f(x, y)) dxdy −
∫∫

D1

R(x, y, g(x, y)) dxdy,

which completes the proof.



In exactly the same way one proves the following two theorems.

Theorem 2. Let W be of type II, i.e., W is the set of points (x, y, z) such that q(y, z) ≤ x ≤ p(y, z),
where (y, z) belongs to a region D2 in the yz-plane for which the double integral exists and the two
functions q ≤ p are continuous and defined on D2. Then, if

−→
F = (P, 0, 0), it follows that

∫∫

∂W

−→
F · −→N dS =

∫∫∫

W

∂P
∂x

dxdydz.

Theorem 3. Let W be of type III, i.e., W is the set of points (x, y, z) such that k(x, z) ≤ y ≤ h(x, z),
where (x, z) belongs to a region D3 in the xz-plane for which the double integral exists and the two
functions k ≤ h are continuous and defined on D3. Then, if

−→
F = (0, Q, 0), it follows that

∫∫

∂W

−→
F ·

−→
N dS =

∫∫∫

W

∂Q
∂y

dxdydz.

As a result, we obtain the divergence theorem for regions W which are simultaneously of type
I, II and III; such regions are called elementary regions. As in the case of the flux form of Green’s
theorem, if W1 and W2 are two solids for which the divergence theorem holds, then it holds for
their union if there is a piece of surface S0 common to both of their boundaries. The reason is that
the outward normals to W1 and to W2 on S0 agree except for a minus sign. As a result, there is
cancellation of the outward flux across S0.

Examples Let W1 = {(x, y, z) | x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0} and

W2 = {(x, y, z) | 0 ≤ x ≤ 1/2,−2 ≤ y ≤ 0, 0 ≤ z ≤ 1/2}.

These two solids have the square S0 = {(x, 0, z) | 0 ≤ x ≤ 1/2, 0 ≤ z ≤ 1/2} as the intersection of
their boundaries. The divergence theorem holds for W1 ∪W2. The divergence theorem also holds
for

W3 = {(x, y, z) | 1 ≤ x2 + y2 + z2 ≤ 2, x ≥ 0, y ≥ 0, z ≥ 0}

and for W4 = {(x, y, z) | 1 ≤ x2 + y2 + z2 ≤ 2}. In the case of W4, this solid is the solid ball of
radius 2 with the open solid ball

B1 = {(x, y, z) | x2 + y2 + z2 < 1}

removed. The divergence theorem holds for W4 since it holds for the closed solid unit ball

B1 = {(x, y, z) | x2 + y2 + z2 ≤ 1}

and for the closed solid ball B2 = {(x, y, z) | x2 + y2 + z2 ≤ 2}.


