MATH 255: Lecture 4

The Riemann-Stieltjes Integral: The Darboux Definition

Let f, α be functions on [a, b]. In the case f is bounded and α is increasing, there is an equivalent definition of integrability of f with respect to α due to Darboux. If P is a partition $a = x_0 < x_1 < \cdots x_n = b$ of [a, b], let $I_k = [x_{k-1}, x_k]$ and let

$$m_k = \inf_{x \in I_k} f(x), \quad M_k = \sup_{x \in I_k}.$$

If we define the upper and lower Darboux sums $U(P, f, \alpha)$ and $L(P, f, \alpha)$ by

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_k \Delta \alpha_k, \quad L(P, f, \alpha) = \sum_{k=1}^{n} m_k \Delta \alpha_k,$$

we have $L(P, f, \alpha) \leq S(P, t, f, \alpha) \leq U(P, t, f, \alpha)$ for any tag t for P. Thus the Riemann-Stieltjes sums are squeezed in between the upper and lower Darboux sums. We propose to show that f is integrable with respect to α if and only if the difference between the upper and lower Darboux sums can be made arbitrarily small in which case the integral of f with respect to α will be the unique number between every upper and lower Darboux sum. We begin with some elementary properties of Darboux sums; P and Q will denote partitions of [a, b].

(D1) If $P \subseteq Q$ then $L(P, f, \alpha) \leq L(Q, f, \alpha)$ and $U(Q, f, \alpha) \leq L(P, f, \alpha)$.

(D2)
$$L(P, f, \alpha) \le U(Q, f, \alpha)$$

To prove (D1), it suffices to consider the case $Q = P \cup \{c\}$. If P is the partition $a = x_0 < x_1 < \cdots > x_n = b$ and $x_{k-1} < c < x_k$ then

$$m_k \Delta \alpha_k = m_k (\alpha(c) - \alpha(x_{k-1})) + m_k (\alpha(x_k) - \alpha(c)) \le m'_k (\alpha(c) - \alpha(x_{k-1})) + m''_k (\alpha(x_k) - \alpha(c)),$$

where m'_k , m''_k are respectively the greatest lower bounds of f(x) on $[x_k, c]$ and $[c, x_{k-1}]$. Similarly,

$$M_k \Delta \alpha_k = M_k(\alpha(c) - \alpha(x_{k-1})) + M_k(\alpha(x_k) - \alpha(c)) \ge M'_k(\alpha(c) - \alpha(x_{k-1})) + M''_k(\alpha(x_k) - \alpha(c)),$$

where where M'_k , M''_k are respectively the least upper bounds of f(x) on $[x_k, c]$ and $[c, x_{k-1}]$.

To prove (D2), let
$$R = P \cup Q$$
. Then $L(P, f, \alpha) \le L(R, f, \alpha) \le U(R, f, \alpha) \le U(Q, f, \alpha)$. QED

Definition: Riemann's Condition. The function f is said to satisfy Riemann's condition with respect to α on [a, b] if for every $\epsilon > 0$ there is a partition P of [a, b] such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$.

Theorem 11. $f \in \mathcal{R}(\alpha) \iff f$ satisfies Riemann's condition with respect to α .

Proof. (\Rightarrow) Let $\epsilon > 0$ be given. Since $f \in \mathcal{R}(\alpha)$ on [a, b], there exists a tagged partition (Q, s) such that

$$|S(P, t, f, \alpha) - S(P', t', f, \alpha)| = |\sum_{k=1}^{n} (f(t_k) - f(t'_k))\Delta\alpha_k| < \frac{6}{2}$$

for all tagged partitions $(P,t), (P',t') \ge (Q,s)$. Let $P = \{x_0, x_1, \ldots, x_n\}$ be any partition finer than Q. If $m_k = M_k$, then f is constant on $[x_{k-1}, x_k]$ and we let $t_k = t'_k = x_k$. If $m_k \ne M_k$, choose t_k, t'_k so that $f(t_k) < f(t'_k)$ and

 $M_k - \delta < f(t_k), \quad f(t'_k) < m_k + \delta,$

where $\delta > 0$ is chosen so that $2(\alpha(b) - \alpha(a))\delta < \frac{\epsilon}{2}$. Then

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{k=1}^{\infty} (M_k - m_k) \Delta \alpha_k < \sum_{k=1}^{n} (f(t_k) - f(t'_k)) \Delta \alpha_k + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

 (\Leftarrow) If Riemann's conditionis satisfied, we have

$$\sup_{P} L(P, f, \alpha) = \inf_{P} U(P, f, \alpha) = A,$$

where P ranges over all partitions of [a, b]. Let $\epsilon > 0$ be given and choose a partition Q so that $U(Q, f, \alpha) < A + \epsilon$ and $L(Q, f, \alpha) > A - \epsilon$. Then

$$A - \epsilon < L(P, f, \alpha) \le S(P, t, f, \alpha) \le U(P, f, \alpha) < A + \epsilon$$

for any tagged partition (P, t) with $P \supseteq Q$ which shows that $f \in \mathcal{R}(\alpha)$ on [a, b] and $A = \int_a^b f \, d\alpha$. QED

Example. Define f on [a, b] by f(x) = 1 if x is rational and f(x) = 0 if x is irrational. Then $U(P, f, \alpha) = \alpha(b) - \alpha(a)$ and $L(P, f, \alpha) = 0$ so that f is not integrable with respect to α unless α is constant on [a, b].