Theorem 8. Let \(f \in \mathcal{R}(\alpha) \) on \([a, b]\) be bounded and suppose that \(\alpha \) is a function on \([a, b]\) with a continuous derivative \(\alpha' \). If \(g(x) = f(x)\alpha'(x) \) then \(g \in \mathcal{R} \) on \([a, b]\) and

\[
\int_{a}^{b} f(x)\,d\alpha(x) = \int_{a}^{b} f(x)\alpha'(x)\,dx.
\]

Proof. If \((P, t)\) is a tagged partition of \([a, b]\), consider the Riemann sum

\[
S(P, t, g) = \sum_{k=1}^{n} g(t_k)\Delta x_k = \sum_{k=1}^{n} f(t_k)\alpha'(t_k)\Delta x_k
\]

and the Riemann-Stieltjes sum

\[
S(P, t, f, \alpha) = \sum_{k=1}^{n} f(t_k)\Delta \alpha_k.
\]

Applying the Mean-Value Theorem, we have \(\Delta \alpha_k = \alpha'(u_k) \) with \(u_k \in (x_{k-1}, x_k) \) and hence

\[
S(P, t, f, \alpha) - S(P, t, g) = \sum_{k=1}^{n} f(t_k)(\alpha'(u_k) - \alpha'(t_k))\Delta x_k.
\]

Since \(f \) is bounded on \([a, b]\), we have \(|f(x)| \leq M \) on \([a, b]\) for some \(M > 0 \).

Now let \(\epsilon > 0 \) be given. Since \(\alpha'(x) \) is uniformly continuous on \([a, b]\), there exists \(\delta > 0 \) such that

\[
|x - y| \leq \delta \implies |\alpha'(x) - \alpha'(y)| < \frac{\epsilon}{2M(b-a)}.
\]

Let \((Q', s')\) be any tagged partition of \([a, b]\) with norm \(||Q'|| < \delta \). For any tagged partition \((P, t)\) of \([a, b]\) which is finer than \((Q', s')\), we have

\[
|S(P, t, f, \alpha) - S(P, t, g)| \leq \sum_{k=1}^{n} |f(t_k)||\alpha'(u_k) - \alpha'(t_k)|\Delta x_k < M\sum_{k=1}^{n} \Delta x_k = \frac{\epsilon}{2}.
\]

Since \(f \in \mathcal{R}(\alpha) \) on \([a, b]\), there exists a tagged partition \((Q'', s'')\) of \([a, b]\) so that for \((P, t)\) finer than \((Q'', s'')\) we have

\[
|S(P, t, f, \alpha) - \int_{a}^{b} f\,d\alpha| < \frac{\epsilon}{2}.
\]

If we set \(Q = Q' \cup Q'' \) and let \(s \) be any tag for \(Q \), then \((Q, s)\) is finer than \((Q', s')\) and \((Q'', s'')\) and hence, for any \((P, t)\) finer than \((Q, s)\), we have

\[
|S(P, t, g) - \int_{a}^{b} f\,d\alpha| \leq |S(P, tg) - S(P, t, f, \alpha)| + |S(P, t, f, \alpha) - \int_{a}^{b} f\,d\alpha| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

QED

Corollary: Fundamental Theorem of Integral Calculus (1st form). If \(f \) has continuous derivative \(f' \) on \([a, b]\), then \(f' \in \mathcal{R} \) on \([a, b]\) and

\[
\int_{a}^{b} f'(x)\,dx = f(b) - f(a).
\]
Theorem 9. Let $a < c < b$ and let α be a function on $[a, b]$ which is constant on $[a, c)$ and on $(c, b]$. If f is a function on $[a, b]$ such that at least one of the functions f or α is left continuous at c and at least one is right continuous at c, then $f \in \mathcal{R}$ on $[a, b]$ and

$$\int_a^b f \, d\alpha = f(c)(\alpha(c^+) - \alpha(c^-)).$$

The proof is left as an exercise. If $c = a$, we have

$$\int_a^b f \, d\alpha = f(a)(\alpha(a^+) - \alpha(a))$$

and

$$\int_a^b f \, d\alpha = f(b)(\alpha(b) - \alpha(b^-)).$$

Definition (Step Function). A function α defined on $[a, b]$ is called a step function if there is a partition $a = x_1 < x_2 < \cdots < x_n = b$ of $[a, b]$ such that α is constant on the interval (x_{k-1}, x_k) for $1 \leq k \leq n$. For $1 < k < n$, the number $\alpha(x_k^+) - \alpha(x_k^-)$ is called the jump at x_k. The jump at a is $\alpha(a^+) - \alpha(a)$ and the jump at b is $\alpha(b) - \alpha(b^-)$.

Step functions provide the link between Riemann-Stieltjes integrals and finite sums. If α is a step function on $[a, b]$ and f is a function on $[a, b]$ such that not both f and α are discontinuous from the right or from the left at each x_k, then $f \in \mathcal{R}$ on $[a, b]$ and

$$\int_a^b f(x) \, d\alpha(x) = \sum_{k=1}^n \alpha_k f(x_k).$$

Every finite sum $\sum_{k=1}^n a_k$ can be written as a Riemann-Stieltjes integral. Indeed, if we define the function f on $[0, n]$ by

$$f(0) = 0 \quad \text{and} \quad f(x) = a_k \quad \text{if} \quad k - 1 < x \leq k \quad (k = 1, 2, \ldots, n),$$

then

$$\sum_{k=1}^n a_k = \sum_{k=1}^n f(k) = \int_0^n f(x) \, d[x].$$

This follows from the fact that $\alpha(x) = [x]$ is right continuous and f is left continuous.

Theorem 10 (Euler Summation Formula). If f has a continuous derivative f' on $[a, b]$, then

$$\sum_{a < x \leq b} f(n) = \int_a^b f(x) \, dx + \int_a^b f'(x)(x) \, dx + f(a)((a)) - f(b)((b)),$$

where $((x)) = x - [x]$.

The proof is left as an exercise. That $f \in \mathcal{R}$ if f is continuous will be proven later.