
MATH 255: Lecture 25

Introduction to Metric Spaces: Compactness

Definition (Covering). A covering of a set X is a family of sets (Yi)i∈I such that X ⊆ ⋃
i∈I Yi. It is

said to be finite if I is finite. If X is a subset of a metric space S, the covering is said to be an open if
the sets Yi are open in S. A sub-covering is any covering of the form (Yi)i∈J , where J ⊆ I.

Heine-Borel Property. A subset X of a metric space S is said to satisfy the Heine-Borel property if
every open covering of X has a finite sub-covering.

Definition (Compactness). A subset of a metric space is said to be compact if it satisfies the
Heine-Borel property.

Exercise 3. Show that a compact subset of a metric space is closed.

Definition (Nested Sequence of Sets). A sequence of sets (Xi) is said to be nested if Xi+1 ⊆ Xi.

Cantor Property. A subset X of a metric space S is said to have the Cantor property if every nested
sequence of closed non-empty subsets of X has a non-empty intersection.

Definition (Total Boundedness). A subset X of a metric space S is said to be totally bounded if
for every r > 0 there are a finite number of open disks of radius r and centers in X which cover X.

Theorem 3. For a subset X of metric space S the following are equivalent:

(a) X satisfies the Boltzano-Weierstrass property.

(b) X is compact.

(c) X satisfies the Cantor property.

(d) X is complete and totally bounded.

Corollary (Heine-Borel Theorem). A subset of Rn is compact if and only if it is closed and
bounded.

Proof of Theorem 3. (a) =⇒ (b)

Lemma 1. X satisfies the Bolzano-Weierstrass property =⇒ X totally bounded.

Proof. If X is not totally bounded there exists r > 0 such that no finite set of open disks of radius r
covers X. Take p1 ∈ X arbitrarily. If p1, . . . , pn ∈ X have already been chosen so that d(pi, pj) > r for
i 6= j, chose

pn+1 ∈ X −
n⋃

k=1

Dr(pk).

This defines a sequence (xn) in X that that has no convergent subsequence. which implies that X does
not have the Bolzano-Weierstrass property. QED

Lemma 2. If X satisfies the Bolzano-Weierstrass property and (Gi)i∈I is an open covering of X, there
exists an r > 0 such that for any p ∈ X we have Dr(p) ⊆ Gi for some i ∈ I.

Proof. If not, we can find for each n ≥ 1 a point pn ∈ X such that D1/n(pn) * Gi for any i ∈ I.
Let (pnk

) be a subsequence of (pn) which converges to p ∈ X. Then p ∈ Gi for some i. Since Gi is
open, we have Dr(p) ⊆ Gi for some r > 0. Now chose k so that d(pnk

, p) < r/2 and 1/nk < r/2. Then
D1/nk

(pnk
) ⊆ Dr(p) ⊆ Gi which is a contradiction. QED

Let (Gi) be an open covering of X and choose r as in Lemma 2. By Lemma 1, there are points
p1, p2, . . . , pn ∈ X with X ⊆ ⋃n

k=1 Dr(pk). By Lemma 2, we have Dr(pk) ⊆ Gik
which implies that

(Gik
)1≤k≤n is a finite subcovering. QED
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(b) =⇒ (a) Let Y be an infinite subset of X. We have to show that Y has a limit point in X. If
not, we can find for each p ∈ X an rp > 0 such that D(rp

(p) has no points in common with Y except
possibly for p. Since the sets Drp(p) cover X, we can find a p1, . . . , pn such that X ⊆ ⋃n

k=1 Drpk
(pk).

But then Y ⊆ {p1, . . . , pk} which contradicts the fact that Y is infinite. QED

(a) =⇒ (c) Let (Fn) be a nested sequence of closed non-empty subsets of X, let (pn) be a sequence
with pn ∈ Fn. By the Bolzano-Weierstrass property for X, this sequence contains a subsequence (pnk

)
which converges to p. Since pnk

∈ Fj for all nk > j and Fj is closed, we see that p ∈ Fj for all j.
QED

(c) =⇒ (d) Let (pn) be a Cauchy sequence in X and let Fn be the closure in X of the set {pj | j ≥ n}.
Then the sets Fn are nested, nonempty and closed in X. By the Cantor property, there is a point p
in the intersection of the sets Fn. To show that pn → p, let ε > 0 be given. Then there exist N so
that d(pn, pm) < ε/2 for m,n ≥ N . Since p ∈ FN , there exists m ≥ N with d(pm, p) < ε/2. But then
d(pn, p) ≤ ε for n ≥ N . This shows that X is complete.

If X is not totally bounded, there exists r > 0 and a sequence (pn) in X such that d(pi, pj) ≥ r if
i 6= j. If Fn is the closure of {pj | j ≥ n}, the set Fn are closed, nested and have an empty intersection
which contradicts the Cantor property. QED

(d) =⇒ (a) This follows from the following Lemma:

Lemma 3. If X is totally bounded, then every sequence contains a Cauchy subsequence.

Proof. Let (pn) be a sequence in X and let Y = {pn | n ≥ 1}. If Y is finite, then the sequence contains
a constant subsequence. If Y is infinite, we can find a point q1 ∈ X such that Y1 = D1(q1) ∩ Y is
infinite. Suppose that we have found infinite sets Y1, . . . , Yn such that Yi+1 ⊆ Yi for 1 ≤ i < n and
such that Yi ⊆ D1/n(qi) with qi ∈ X. Since Yn is infinite, we can find a point qn+1 ∈ X such that
Yn+1 = D1/n+1(qn+1) ∩ Yn is infinite. Now construct inductively a sequence (nk) where pnk

∈ Yk and
nk+1 > nk. To show the subsequence (pnk

) of (pn) is Cauchy, let ε > 0 be given and choose N with
2/N < ε. If j, k ≥ N , we have pnj , pnk

∈ YN so that d(pnj , pnk
) < 2/N < ε. QED
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