MATH 255: Lecture 25

Introduction to Metric Spaces: Compactness

Definition (Covering). A covering of a set X is a family of sets (Y;);e such that X C |J,.,; ;. It is
said to be finite if I is finite. If X is a subset of a metric space S, the covering is said to be an open if
the sets Y; are open in S. A sub-covering is any covering of the form (Y;);cs, where J C I.

Heine-Borel Property. A subset X of a metric space S is said to satisfy the Heine-Borel property if
every open covering of X has a finite sub-covering.

Definition (Compactness). A subset of a metric space is said to be compact if it satisfies the
Heine-Borel property.

Exercise 3. Show that a compact subset of a metric space is closed.
Definition (Nested Sequence of Sets). A sequence of sets (X;) is said to be nested if X;;; C Xj.

Cantor Property. A subset X of a metric space S is said to have the Cantor property if every nested
sequence of closed non-empty subsets of X has a non-empty intersection.

Definition (Total Boundedness). A subset X of a metric space S is said to be totally bounded if
for every r > 0 there are a finite number of open disks of radius r and centers in X which cover X.

Theorem 3. For a subset X of metric space S the following are equivalent:
(a) X satisfies the Boltzano-Weierstrass property.

)
(b) X is compact.

(c) X satisfies the Cantor property.

(d) X is complete and totally bounded.

Corollary (Heine-Borel Theorem). A subset of R" is compact if and only if it is closed and
bounded.

Proof of Theorem 3. (a) = (b)
Lemma 1. X satisfies the Bolzano-Weierstrass property = X totally bounded.

Proof. If X is not totally bounded there exists r > 0 such that no finite set of open disks of radius r
covers X. Take p; € X arbitrarily. If p1,...,p, € X have already been chosen so that d(p;,p;) > r for
1 # j, chose

Pny1 € X — U D (pr).-
k=1

This defines a sequence (x,) in X that that has no convergent subsequence. which implies that X does
not have the Bolzano-Weierstrass property. QED

Lemma 2. If X satisfies the Bolzano-Weierstrass property and (G;);er is an open covering of X, there
exists an 7 > 0 such that for any p € X we have D,.(p) C G; for some i € I.

Proof. If not, we can find for each n > 1 a point p, € X such that D/, (pn) ¢ G; for any i € I.
Let (pn,) be a subsequence of (p,) which converges to p € X. Then p € G; for some 4. Since G is
open, we have D, (p) C G; for some r > 0. Now chose k so that d(py,,p) < r/2 and 1/nj; < r/2. Then
D1 /p,, (Pny) € Dy (p) € Gy which is a contradiction. QED

Let (G;) be an open covering of X and choose r as in Lemma 2. By Lemma 1, there are points
P1:P2, -, pn € X with X C (J;_; Dr(pr). By Lemma 2, we have D,(p;) C G;, which implies that
(Giy )1<k<n is a finite subcovering. QED



(b) = (a) Let Y be an infinite subset of X. We have to show that Y has a limit point in X. If
not, we can find for each p € X an r, > 0 such that D(,,(p) has no points in common with Y except

possibly for p. Since the sets D, (p) cover X, we can find a py,...,p, such that X C Un-, D, (pr)-
But then Y C {p1,...,pr} which contradicts the fact that Y is infinite. QED

(a) = (c) Let (F,) be a nested sequence of closed non-empty subsets of X, let (p,) be a sequence

with p,, € F,,. By the Bolzano-Weierstrass property for X, this sequence contains a subsequence (p, )

which converges to p. Since p,, € Fj for all ny > j and Fj is closed, we see that p € F} for all j.
QED

(¢) = (d) Let (pn) be a Cauchy sequence in X and let F;, be the closure in X of the set {p; | j > n}.
Then the sets F,, are nested, nonempty and closed in X. By the Cantor property, there is a point p
in the intersection of the sets F;,. To show that p, — p, let € > 0 be given. Then there exist N so
that d(pn,pm) < €/2 for m,n > N. Since p € Fy, there exists m > N with d(p,,p) < €/2. But then
d(pn,p) < € for n > N. This shows that X is complete.

If X is not totally bounded, there exists r > 0 and a sequence (p,,) in X such that d(p;,p;) > r if
i # j. If F,, is the closure of {p; | j > n}, the set F,, are closed, nested and have an empty intersection
which contradicts the Cantor property. QED

(d) = (a) This follows from the following Lemma:
Lemma 3. If X is totally bounded, then every sequence contains a Cauchy subsequence.

Proof. Let (p,) be a sequence in X and let Y = {p,, | n > 1}. If Y is finite, then the sequence contains
a constant subsequence. If Y is infinite, we can find a point ¢; € X such that Y7 = Dy(q1) NY is
infinite. Suppose that we have found infinite sets Y7,...,Y;, such that Y;1; C Y, for 1 < i < n and
such that Y; € Dy/,(g;) with ¢; € X. Since Y, is infinite, we can find a point ¢,41 € X such that
Yni1 = Di/nt1(qny1) NY, is infinite. Now construct inductively a sequence (ny) where p,, € Y3 and
ng+1 > ng. To show the subsequence (py, ) of (p,) is Cauchy, let € > 0 be given and choose N with
2/N <e If j,k > N, we have p,,, p,, € Yy so that d(p,,,pn,) <2/N <e. QED
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