MATH 255: Lecture 24

Introduction to metric spaces

The concepts of limit and continuity and be formulated in the more general setting of a set where a
distance between points is defined that can be used to measure nearness. More precisely, a distance
function or metric on a set s is a function d : S x .S — R such that

(M1) d(z,y) > 0 with equality <= = =y;
(M2) d(z,y) = d(y, z);
(M3) d(x,y) < d(z,2) + d(z,y) (Triangle Property).

Example 1. A familiar example is the Euclidean distance on R™:

d(l‘, y) =

where x = (21, ...,Zn), y = (Y1, -, Yn)-

Example 2. An important on the set S = B(X) of bounded functions on a set X is
d(f,g) = sup [f(z) — g(x)|.
reX

Tt is left to the reader to prove that d is a metric on B(X). We will call this metric the uniform metric.
Definition (Metric Space). A metric space is a pair (S, d), where S is a set and d is a metric on S.

A subset S’ of a metric space (S,d) is a metric space with metric d’ equal to the restriction of d to
S’ x 8'. The set S" with this induced metric is called a subspace of (.5, d).

Example 3. The set C([a,b]) of continuous real-valued functions on the interval [a,b] is a subset of
B([a,b]), the bounded functions on [a,b] and so is a metric space with the induced metric d(f,g) =

SUP e a,0) |/ () — 9()].

Two metric spaces (S,d), (S’,d’) are said to be isomorphic if there exists a bijection f : S — S’
such that

d'(f(z), f(y)) = d(z,y).
A mapping f : S — S’ satisfying this condition is called an isometry.

Example 4. In the metric space R", with the Euclidean metric, any orthogonal linear transformation
T :R™ — R" is an isometry. It is left as an exercise to show that any isometry of R™ with the Euclidean
metric is a translation followed by an orthogonal linear transformation.

A sequence (z,) in a metric space (5, d) is said to converge to a point z € S if
(Ve > 0)(3IN)(Vn > N) d(zp,x) < €.
If (x,) converges to x and y, we have d(z,,x) < €/2 for n > Ny, d(zn,y) < €/2 for n > Ny so that
d(z,y) < d(z,z,) + d(xn,y) <e

for n > N = max(Ny, N2) which shows that d(x,y) = 0 since € is arbitrary. Hence z = y. The unique
element z is called the limit of the sequence and is denoted by lim x,,.

Example 5. If (f,) is a sequence of bounded functions on a set X, then lim f,, = f in B(X) if and
only if (f,) converges uniformly to f on X.



Example 6. If (z) is a sequence in R™ and z, = (1%, . . ., Znk), then (zx) converges to a = (ay,...,a,)
in the metric space R", with the Euclidean metric, if and only if each component sequence (xjk) E>1
converges to ¢; in R.

Every convergent sequence (z,,) satisfies the

Cauchy Property: (Ve > 0)(3IN)(Ym,n > N) d(xn,ym) < €. A sequence that satisfies the Cauchy
property is called a Cauchy sequence.

Definition (Complete Metric Space). A metric space is said to be complete if every Cauchy
sequence converges.

Example 7. The set C([a,b]) with the uniform metric is complete. It is a closed subspace of the
complete metric space B([a,b]) with the uniform metric. The space B(X) is complete for any set X.
In particular, R™ is complete.

If a is a point in a metric space (S, d) and r > 0, the set
Dy(a)={z € S|d(z,x)<r}

is called the open disk with center a and radius 7. The set D,.(a) = {x € S| d(z,z) < r} is called the
closed disk with center a and radius r. In R?, with the Euclidean metric, D,(a) is an open disk with
center a. With the metric d., the set D,.(a) is an open square with center a. In R3, with the Euclidean
metric, it is an open sphere with radius r and center a.

Let X be a subset of a metric space (S,d). A point a € S is said to be an interior point of X if
there is an r > 0 such that D, (a) C X. The set of interior points of X is called the interior of X and
is denoted by S°. The point a is said to be be be an exterior point of X if it is an interior point of
S — X. The point « is said to be a boundary point of X if it is neither an interior or exterior point
of X. The set of boundary points of X is called the boundary of X and is denoted by 9.X.

Definition (Open and Closed Sets). A subset X of a metric space S is said to be open if X = X
and closed if S — X is open.

Equivalently, X is open in S if for every a € X there is an r > 0 such that D, (a) C X. It follows
that the union of any family of open sets is open and that the intersection of a finite number of open
sets is open. Hence, any intersection of closed sets is closed and the union of a finite number of closed
sets is closed. The empty set and S are both open and closed. The closure X of a set X in S is the
intersection of the closed subsets of S which contain X. It is the smallest closed subset of S which
contains X. If X C Y, we have X C Y.

Exercise 1. Show that an open disk is open and a closed disk is closed.

Exercise 2. Show that a subset X of a metric space is closed if and only if X contains the limits of all
convergent sequences of elements of X.

Exercise 3. Prove that a closed subspace of a complete metric space is complete.

Bolzano-Weierstrass Property. A subset X of a metric space S is said to satisfy the Bolzano-
Weierstrass property if every sequence in X has a subsequence which converges to a point in X.

Theorem 1. A subset of R™ satisfies the Bolzano-Weierstrass property if and only if it is closed and
bounded.

The proof is left to the reader. A subset of a metric space is said to be bounded if it is contained in
some disk.

Theorem 2. A subset X of a metric space S satisfies the Bolzano-Weierstrass property if and only if
for every infinite subset Y of X there is a point a € X with the property that every open disk with
center a contains a point of Y which is not equal to a. Such a point a is called a limit point of Y.

The proof is left as an exercise for the reader.

Exercise 4. Show that d(z,y) = min(1, |z — y|) is a metric on R. Show that x,, — x with respect to d
if and only if ,, — = with respect to the distance dy(z,y) = |z — y|. Deduce that R is complete with
respect to the metric d. With respect to the metric d, the set R is closed and bounded but does not
satisfy the Bolzano-Weierstrass property.



