
MATH 255: Lecture 17

Infinite Series

Given an infinite sequence (an)(n≥1) we can construct a new sequence (sn)(n≥0), where

sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak

is the sum of the first n terms of the sequence (an). This sequence of partial sums is called the infinite
series associated to the sequence (an). If the sequence (sn) converges to s as n → ∞, we say that the
series converges and write

s = a1 + a2 + · · ·+ an + · · · =
∞∑

k=1

ak.

In this case s is called the sum of the terms of the sequence (an). Otherwise, the series is said to diverge
and the sequence (an) is not summable. By convention, one formally lets

∑∞
k=1 ak denote the infinite

series, even in the case of a divergent series.
A necessary and sufficient condition for the convergence of the series

∑
an is the

Cauchy Criterion: (∀ε)(∃N ≥ 1)(∀m,n ≥ N,n ≥ m) |sm − sn| =
∣∣∣∣

n∑

k=m

ak

∣∣∣∣ < ε.

Since an = sn+1− sn, a necessary condition for convergence of the series
∑

an is limn→∞ an = 0. It
is not a sufficient condition as is shown by the harmonic series

∑∞
n=1

1
n which diverges since s2n > n/2.

Example 1(Geometric Series). The series
∑∞

n=1 rn−1 is called a geometric series. If r 6= 1, we have

sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
=

1
1− r

− rn

1− r

which shows that
∞∑

n=1

rn−1 =
1

1− r
if |r| < 1. If |r| ≥ 1, the series diverges since the n-th term does

not converge to 0.
When the series

∑
an converges,

rn = s− sn = sn+1 + sn+2 + · · · =
∞∑

k=n+1

ak

is called the remainder after n terms. The given series converges if and only if the remainder series

∞∑

k=n

ak

converges for some n. It follows that the convergence or divergence of a series is unaffected by adding
or deleting a finite number of terms.

If
∑∞

n=1 an and
∑∞

n=1 bn are convergent series and α, β ∈ R, then
∑∞

n=1(αan + βbn) converges and

∞∑
n=1

(αan + βbn) = α

∞∑
n=1

an + β

∞∑
n=1

bn.

The associative law applies for convergent series. If t1 = 1 < t2 < · · · is a strictly increasing sequence
of natural numbers, then one can group the terms of the sequence (an) to form another sequence (a′n)
by defining

a′n =
tn−1∑

k=tn−1

ak.
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The series
∑∞

k=1 a′n is called a regrouping of the series
∑∞

k=1 an. If s′n is the n-th partial sum of (a′n),
we have s′n = stn−1 which shows that the regrouped series converges with the same sum if the original
series converges.

Theorem. Any regrouping of a convergent series is convergent and both series have the same sum.

The converse of this theorem is false as the series
∑∞

n=1(−1)n+1 diverges but the regrouping

(1− 1) + (1− 1) + (1− 1) + · · ·

corresponding to tn = 2n− 1 is convergent.
However, the converse is true for absolutely convergent series. A series

∑∞
n=1 an is said to converge

absolutely if the series
∑∞

n=1 |an| converges or, equivalently, if the partial sums of
∑ |an| are bounded

since the sequence of partial sums of a series of positive terms is an increasing sequence. An absolutely
convergent sequence is convergent since, for n ≥ m,

∣∣∣∣
n∑

k=m

ak

∣∣∣∣ ≤
n∑

k=m

|ak|.

If
∑∞

n=1 is absolutely convergent and
∑∞

n=1 a′n is a regrouping of this series corresponding to the
partitioning sequence (tn), then

tn−1∑

k=1

|ak| =
n∑

k=1

|a′k|

which shows that the partial sums s′n of the series
∑tn

k=1 |ak| are bounded and hence convergent since
(s′n) is an increasing sequence.

A rearrangement of a series
∑∞

n=1 an is any series of the form
∑∞

n=1 aσ(n), where σ is a bijection of
the nonzero natural numbers with itself.

Theorem. Any rearrangement of an absolutely convergent sequence converges absolutely and has the
same sum.

Proof. Let a′n = af(n) and let s′n be the n-th partial sum of
∑∞

k=1 ak. Then for all m, there exists N ,
such that

|s′n − sm| ≤
∞∑

k=m+1

|ak|

for all n ≥ N . Morever, the same is true if an is replaced by |an|. QED

An infinite series is said to be conditionally convergent if it is convergent but not absolutely conver-
gent. For example, the alternating harmonic series

∞∑
n=1

(−1)n+1 1
n

= 1− 1
2

+
1
3
− 1

4
+ · · ·+ (−1)n+1 1

n
+ · · ·

is not absolutely convergent. It is however convergent as follows from the following more general result.

Theorem (Alternating Series Test). If (an) is a decreasing sequence with limn→∞ an = 0, then the
alternating series

∞∑
n=1

(−1)nan

converges.

Proof. If m ≥ n, we have
∣∣∣∣

m∑

k=n

(−1)k+1ak

∣∣∣∣ ≤ an. QED
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If
∑∞

n=1 an is conditionally convergent, then it is possible to find a rearrangement of this series
which diverges or which converges to any prescribed value, even to ±∞. To see this, let

a+
n = max(an, 0), a−n = max(−an, 0).

Then
0 ≤ a+

n , a−n ≤ |an|, an = a+
n − a−n , |an| = a+

n + a−n
which shows that

∑∞
n=1 an converges absolutely if and only if

∑∞
n=1 a+

n and
∑∞

n=1 a−n converge and
diverges if exactly one of these series diverges. Therefore, for

∑∞
n=1 an to converge conditionally, both

of these series must diverge. In this case, to find a rearrangement which converges to c say, we choose
just enough positive terms so that the sum is > c and then just enough positive terms so that the sum
is < c and so on. The partial sums tn of the resulting series have the property that for all N , there
exists n ≥ N and M such that for all m ≥ M we have |tm − c| ≤ an. Since an → 0, the result follows.

Example 2. Let s =
∑∞

n=1(−1)n−1/n. We shall see later that s = log 2. We have

s =
∞∑

n=1

(
1

2n− 1
− 1

2n

)
,

s

2
=

∞∑
n=1

(
1

4n− 2
− 1

4n

)
.

Subtracting these two series, we get

s

2
=

∞∑
n=1

(
1

2n− 1
− 1

4n− 2
− 1

4n

)
.

When the parentheses are removed, we obtain

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+ · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n
+ · · · .

To justify the removal of parentheses, we must show that this series converges. If s′n is the n-th partial
sum of this series, then s′3n → s/2. Moreover, s′3n − s′3n−1 and s3n − s′3n−2 converge to 0 so that s′3n−1

and s′3n−2 both converge to s/2.
If we group the terms of the alternating harmonic series in groups of 4, we get

s =
∞∑

n=1

(
1

4n− 3
− 1

4n− 2
+

1
4n− 1

− 1
4n

)
.

If we add to this series the
s

2
=

∞∑
n=1

(
1

4n− 2
− 1

4n

)
, we get

3
2
s =

∞∑
n=1

(
1

4n− 3
+

1
4n− 1

− 1
2n

)
.

When the parentheses are removed, we get the following rearrangement of the alternating harmonic
series

1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+ · · ·+ 1

4n− 3
+

1
4n− 1

− 1
2n

+ · · ·
which converges to 3s/2 using the same argument as before.

Example 3. The alternating series
∑∞

n=1(−1)n−1/
√

n is conditionally convergent but the rearranged
series

1 +
1√
3
− 1√

2
+

1√
5

+
1
7
− 1

4
+ · · ·+ 1√

4n− 3
+

1√
4n− 1

− 1√
2n

+ · · · → ∞

since
1√

4n− 3
+

1√
4n− 1

− 1√
2n

>
2√
4n

− 1√
2n

=
(

1− 1√
2

)
1√
n

>
1
2n

.
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