MATH 255: Lecture 17

Infinite Series

Given an infinite sequence (a,)(»>1) We can construct a new sequence (s,)n>0), where
n
Sp=a1tag+---+ap, = E ag
k=1

is the sum of the first n terms of the sequence (a,). This sequence of partial sums is called the infinite
series associated to the sequence (a,). If the sequence (s,) converges to s as n — oo, we say that the
series converges and write

o0
s:a1+a2+-~-+an+~-~=zak~
k=1

In this case s is called the sum of the terms of the sequence (ay). Otherwise, the series is said to diverge
and the sequence (a,) is not summable. By convention, one formally lets >~ ax denote the infinite
series, even in the case of a divergent series.

A necessary and sufficient condition for the convergence of the series > a,, is the
n

>

k=m

Cauchy Criterion: (Ve)(IN > 1)(Ym,n > N,n>m) |[sm — S| = <e.

Since a, = Sp41 — Sn, a necessary condition for convergence of the series Y a,, is lim, o0 a, = 0. It
is not a sufficient condition as is shown by the harmonic series Y>> | 1 which diverges since syn > n/2.

n—1

Example 1(Geometric Series). The series Y > r is called a geometric series. If r # 1, we have
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not converge to 0.

When the series Y a,, converges,

if |r| < 1. If |r| > 1, the series diverges since the n-th term does
,

(e o)
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is called the remainder after n terms. The given series converges if and only if the remainder series
o0
> a
k=n

converges for some n. It follows that the convergence or divergence of a series is unaffected by adding
or deleting a finite number of terms.
If > a, and > °° | b, are convergent series and «, 8 € R, then >

>, (aay, + Bby,) converges and

n=1
oo o0 (o)
Z(aan + ﬂbn) = azan + ﬁz by,.
n=1 n=1 n=1
The associative law applies for convergent series. If {1 =1 <ty < --- is a strictly increasing sequence

of natural numbers, then one can group the terms of the sequence (a,) to form another sequence (a.,)
by defining



The series Y -, a, is called a regrouping of the series >, ; a,. If s, is the n-th partial sum of (a'n),
we have s, = s;, 1 which shows that the regrouped series converges with the same sum if the original
series converges.

Theorem. Any regrouping of a convergent series is convergent and both series have the same sum.

The converse of this theorem is false as the series Z;)f:l(—l)”“‘1 diverges but the regrouping
1-D4+1-D)+1-1)+---

corresponding to ¢, = 2n — 1 is convergent.

However, the converse is true for absolutely convergent series. A series Y - | a, is said to converge
absolutely if the series Y.~ | |a,| converges or, equivalently, if the partial sums of y_ |a,| are bounded
since the sequence of partial sums of a series of positive terms is an increasing sequence. An absolutely
convergent sequence is convergent since, for n > m,

n
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If >, is absolutely convergent and ) °  al is a regrouping of this series corresponding to the

partitioning sequence (i, ), then
tn—1

n
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which shows that the partial sums s), of the series ;" ; |ax| are bounded and hence convergent since
(s,) is an increasing sequence.

. o0 . . o0 . .o .
A rearrangement of a series ), a, is any series of the form ), as(n), where o is a bijection of

the nonzero natural numbers with itself.

Theorem. Any rearrangement of an absolutely convergent sequence converges absolutely and has the
same sum.

Proof. Let a), = ay(,) and let s, be the n-th partial sum of _° | aj. Then for all m, there exists N,

such that
o0
Ity = sml <> lax|
k=m-+1
for all n > N. Morever, the same is true if a,, is replaced by |a,]|. QED

An infinite series is said to be conditionally convergent if it is convergent but not absolutely conver-
gent. For example, the alternating harmonic series

o
1 1 1 1

e B T

n=1

is not absolutely convergent. It is however convergent as follows from the following more general result.

Theorem (Alternating Series Test). If (a,,) is a decreasing sequence with lim,, . a,, = 0, then the

alternating series
o0

(_1)nan

3
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converges.

Proof. If m > n, we have < ay,. QED




If > | ay is conditionally convergent, then it is possible to find a rearrangement of this series
which diverges or which converges to any prescribed value, even to £o0o. To see this, let

al = max(a,,0), a,

n = max(—ap, 0).

Then

0<at,a, <lan|, an=al—a,, |an|:a++a*

which shows that > ° | a, converges absolutely if and only if > >°  a} and Y 7, a, converge and
diverges if exactly one of these series diverges. Therefore, for Y7 | a, to converge conditionally, both
of these series must diverge. In this case, to find a rearrangement which converges to ¢ say, we choose
just enough positive terms so that the sum is > ¢ and then just enough positive terms so that the sum
is < ¢ and so on. The partial sums ¢, of the resulting series have the property that for all NV, there
exists n > N and M such that for all m > M we have |t,, — ¢| < a,. Since a,, — 0, the result follows.

Example 2. Let s = >.°7  (—1)""!/n. We shall see later that s = log2. We have

i(zn—l 2n) Z(4n—2 41n)'

Subtracting these two series, we get

When the parentheses are removed, we obtain

1 1 1+1 1 1+ n 1 1 1
2 4 3 6 8 2n—-1 4n—-2 4n

To justify the removal of parentheses, we must show that this series converges. If s/, is the n-th partial
sum of this series, then s5, — s/2. Moreover, s5, — s5,,_; and s3, — s4,,_o converge to 0 so that s,
and s5,,_, both converge to s/2.

If we group the terms of the alternating harmonic series in groups of 4, we get

> 1 1 1 1
8_7;<4n—34n—2+4n—14n)'

- 1 1
If we add to this series the ; = Z (4 — 4n)’ we get

n=1 n_2
3 > 1 1 1
28_;<4n—3+4n—1_2n>‘

When the parentheses are removed, we get the following rearrangement of the alternating harmonic

series
1+1 1+1+1 1+ + L + 1 1+
3 2 5 7 4 dn—3 4dn—-1 2n

which converges to 3s/2 using the same argument as before.

Example 3. The alternating series > - (—1)"~!/y/n is conditionally convergent but the rearranged
series

1 1 1 1 1 1 1 1
+ ="ttt -+ + + - +-- > 00
V3 V2 W5 T 4 Vin=3 Vin—1 n
_ 1 N 1 12 1 <1 1) L1
since — — = - | — —.
Vin=3 Vin—1 V20~ VAn Von V2)Vn T 2n
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