
MATH 255: Lecture 12

Sequences of Functions: Uniform Convergence

The following theorem shows that, for uniformly convergent sequences of continuous functions, the limit
function is continuous.

Theorem. If (fn) is a sequence of continuous functions on S ⊆ R and (fn) converges uniformly to f
on S, then f is continuous.

Proof. Let a ∈ S, let ϵ > 0 be given and choose N so that |fN (x) − f(x)| < ϵ/3 for all x ∈ S. Now
pick δ > 0 so that |x− a| < δ implies |fn(x)− fn(a)| < ϵ/3. Then, for |x− a| < δ, we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ϵ.

QED

The following theorem shows that, for uniformly convergent sequences of integrable functions, one
can interchange the limit and the integral.

Theorem. Let α be of bounded variation on [a, b] and let (fn) be a uniformly convergent sequence of
functions on [a, b] such that fn ∈ R(α, a, b). Define gn on [a, b] by gn(x) =

∫ x

a
fn(t) dα(t). If f = lim fn,

then

(a) f ∈ R(α, a, b);

(b) If g(x) =
∫ x

a
f(t) dα(t), then gn → g uniformly on [a, b].

Proof. We can assume that α is increasing and that A = α(b)− α(a) > 0. To prove (a), let ϵ > 0 be
given and choose N so that, for all x ∈ [a, b],

|f(x)− fN (x)| < ϵ

3A
.

Now choose a partition P of [a, b] so that

U(P, fN , α)− L(P, fN , α) <
ϵ

3
.

Since |U(P, f − fN , α)| ≤ ϵ
3 and |L(P, f − fN , α)| ≤ ϵ

3 , we have

U(P, f, α)− L(P, f, α) ≤ U(P, f − fN , α)− L(P, f − fN , α) + U(P, fN , α)− L(P, fN , α)

< U(P, f − fN , α) + L(P, f − fN , α) +
ϵ

3
= ϵ

which proves (a). To prove (b), let ϵ > 0 be given and choose N so that |fn(t) − f(t)| < ϵ/2A for all
n ≥ N and all x ∈ [a, b]. Then, for every x ∈ [a, b], we have

|gn(x)− g(x)| ≤
∫ b

a

|fn(t)− f(t)| dα(t) ≤ ϵ

2
< ϵ.

This proves that gn → g uniformly on [a, b]. QED

Corollary. let α be of bounded variation on [a, b] and let (fn) be a sequence of functions fn ∈ R(α, a, b).
If
∑

fn converges uniformly to f on [a, b], then f ∈ R(α, a, b) and∫ b

a

(

∞∑
n=1

fn) dα =

∞∑
n=1

∫ b

a

fn dα.

Let apply these results to the solution of the differential equation y′ = F (x, y).
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Theorem (Picard). Let F (x, y) be a continuous function on the infinite strip S = {(x, y) : |x−a| ≤ h}
and let b ∈ R be given. Suppose that F (x, y) satisfies the Lipschitz condition |F (x, y) − F (x, z)| ≤
K|y− z| on S for some K > 0. Then there exists a unique function f defined on I = [a− h, a+ h] such
that f(a) = b and f ′(x) = F (x, f(x)).

Proof.. We have f ′(x) = F (x, f(x)), f(a) = b if and only if

f(x) = b+

∫ x

a

F (t, f(t)) dt.

We inductively define a sequence of functions (fn) on I by

f0 = b, fn+1(x) = b+

∫ x

a

F (t, fn(t)) dt.

We have |f1(x)− f0(x)| ≤
∣∣∣∣∫ x

a
|F (t, b)| dt

∣∣∣∣ ≤ M |x− a|, where M = supt∈I |F (t, b)|. Now

|f2(x)− f1(x)| ≤
∣∣∣∣ ∫ x

a

|F (t, f1(t))− F (t, f0(t)| dt
∣∣∣∣ ≤ ∣∣∣∣∫ x

a

K|f1(t)− f0(t)| dt
∣∣∣∣ ≤ MK

|x− a|2

2
.

Proceeding inductively, we get |fn(x)− fn−1(x)| ≤ MKn−1 |x−a|n
n! . Since

fn(x) = f0(x) +
n∑

k=1

(fk(x)− fk−1(x))

we have, for m < n,

|fn(x)− fm(x)| ≤
n∑

k=m+1

|fk(x)− fk−1(x)| ≤
M

K

n∑
k=m+1

(K|x− a|)n

n!
≤ M

K

n∑
k=m+1

(Kh)n

n!

It follows that the sequence (fn) satisfies the Cauchy Criterion for uniform convergence in virtue off the
following lemma.

Lemma. The series
∞∑

n=0

xn

n!
converges absolutely.

Proof. We can assume x > 0. If an = xn/n!, we have

an+1

an
=

x

n+ 1
→ 0 as n → ∞.

If 0 < r < 1, choose N so that an+1 ≤ ran for n ≥ N from which aN+n ≤ aNrn for n ≥ 0. Since the
geometric series

∑
rn converges for 0 ≤ r < 1 we obtain that

∑
n≥N an ≤ aN

∑
n≥0 r

n.

It follows that f(x) = b +
∫ x

a
F (t, f(t)) dt, which gives the existence of a solution to f ′(x) =

F (x, f(x)), f(a) = b. To prove uniqueness, suppose f1, f2 are two solutions and let g = f1 − f2.
If H is the maximum of |g| on I, we have

|g(x)| ≤
∣∣∣∣∫ x

a

|F (t, f1(t))− F (t, f2(t))| dt
∣∣∣∣ ≤ MK|x− a|.

Repeating this process, we find |g(x)| ≤ MKn|x− a|n/n! for all n which shows that g = 0. QED

Corollary. There exists a unique function exp defined on R such that exp′ = exp and exp(0) = 1.
Moreover,

exp(x) =
∞∑

n=0

xn

n!
.

Exercise. Show that exp(x + y) = exp(x) exp(y). Hint: Fix y and use the fact that the functions
y = f(x) = exp(x+ y), y = g(x) = exp(x) exp(y) both satisfy y′ = y, y(0) = exp(y).
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