
MATH 255: Lecture 11

Sequences of Functions: Pointwise and Uniform Convergence

The study of functions defined by means of differential equations is a central problem in mathematics.
Consider for example, the differential equation

dy

dx
= y.

A solution to this equation is a function y = f(x) with f ′ = f . It we integrate this equation on [0, x],
we get

f(x) = f(0) +

∫ x

0

f(t) dt

which is an integral equation which has the same solutions as the original differential equation. We now
describe an iterative process for constructing a solution of this integral equation.

Let f0, f1, . . . , fn, . . . be the sequence of functions defined by

f0(x) = C, fn+1(x) = C +

∫ x

0

fn(t) dt.

Then f1(x) = C(1 + x), f2(x) = C(1 + x+ x2/2), fn = C(1 + x+ x2/2 + x3/6 + · · ·+ xn/n!). Suppose
that we could show that the sequence (fn(x))n≥0 converged for each x to f(x). In this case we would
say that the sequence of functions (fn) converged pointwise to the function f . Passing to the limit in
the above integral equation we would have

f(x) = C + lim
n→∞

∫ x

0

fn(t) dt.

If we could interchange the limit and the integral, we would have a solution to our integral equation since
f(0) = C. The justification of this last step uses the fact that the sequence (fn) converges ”uniformly”
to f . We thus obtain that

f(x) = C(1 + x+
x2

2
+

x3

6
+ · · ·+ xn

n!
+ · · · ) = C

∞∑
n=0

xn/n!

is a solution to our differential equation. We also see that f(0) = 0 implies that f = 0. This shows
that any two solutions f, g with f(0) = g(0) must be equal. Indeed, h = f − g is then a solution and
h(0) = 0. Thus the initial value problem y′ = y, y(0) = C has the unique solution y = C(

∑∞
n=0 x

n/n!).

Definition. A sequence (fn) of real-valued functions fn defined on a set A is said to converge pointwise
on A if for each x ∈ A, the sequence (fn(x)) converges. If (fn) converges pointwise on A and we set,
for each x ∈ A,

f(x) = lim
n→∞

fn(x),

we obtain a function f on A. When such a function exists, we say that (fn) converges to f and write

f = lim fn on A or fn → f on A.

Example 1. Let fn(x) = xn. Then fn(x) converges if and only if x ∈ A = (−1, 1] with limit f where
f(1) = 1 and f(x) = 0 for x ∈ (−1, 1). Even though the functions fn are continuous on A, their limit
f is not continuous at x = 1 . This fact can be expressed as

lim
x→1

lim
n→∞

fn(x) ̸= lim
n→∞

lim
x→1

fn(x).
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Example 2. Let fn(x) = n2x(1− x)n. Then f(x) = limn→∞ fn(x) = 0 on [0, 1]. However,∫ 1

0

fn(x) dx = n2

∫ 1

0

(1− x)xn dx =
n2

n+ 1
− n2

n+ 2
=

n2

(n+ 1)(n+ 2)

so that

1 = lim
n→∞

∫ 1

0

fn(x) dx ̸=
∫ 1

0

lim
n→∞

fn(x) dx = 0.

These examples point out that one cannot interchange limits in general; note that an integral is also
a limit. In certain cases this can be remedied with a stronger notion of convergence, namely uniform
convergence.

Definition. A sequence of functions (fn) on a set S ⊆ R is said to converge uniformly to a function f
on S if, for every ϵ > 0, there is an N such that n ≥ N implies |fn(x)− f(x)| < ϵ for every x ∈ S.

Note that the N is independent of x, which is not necessarily the case for pointwise convergence.

Example 3. The sequence of functions (fn) in Example 1 does not converge uniformly on S = (−1, 1].
In fact, it does not converge uniformly on (0, 1). To see this have to show that

(∃ϵ > 0)(∀N)(∃x, 0 < x < 1)(∃n ≥ N)|fn(x)− f(x)| ≥ ϵ.

Since 0 < x < 1, we have fn(x) − f(x) = xn. Let ϵ = 1/2. Then we have to show that, given N , we
have xn > 1/2 for some x and some n ≥ N . To do this pick x so that

1 > x >
1

N
√
2
.

This is possible since N
√
2 > 1. Then 0 < x < 1 and xN ≥ 1/2.

Example 4. The sequence of functions (fn) in Example 1 converges uniformly on [0, a] for any 0 <
a < 1. Indeed, given ϵ > 0, choose N such that aN < ϵ. Then 0 ≤ x ≤ a and n ≥ N implies
xn ≤ an ≤ aN < ϵ

Exercise 1. Prove that the sequence of functions in Example 2 does not converge uniformly.

Theorem. Let (fn) be a sequence of functions defined on a set S. Then

(fn) converges uniformly on S ⇐⇒ (∀ϵ > 0)(∃N)(∀m,n ≥ N)(∀x ∈ S)|fm(x)− fn(x)| < ϵ.

This is the Cauchy Condition for uniform convergence. The proof is left as an exercise.

Definition. If (fn)n≥1 is a sequence of functions on the set S, the series
∑∞

n=1 fn is said to converge
uniformly to f on S if the sequence (sn) of partial sums, defined by

sn(x) =
n∑

k=1

fk(x),

converge uniformly to f on S. It converges absolutely on S if
∑∞

n=1 |fn| converges on S.

Theorem. The infinite series
∞∑

n=1

fn converges uniformly on S if and only if

(∀ϵ > 0)(∃N)(∀x ∈ S)(∀m,n ≥ N,m < n)

∣∣∣∣ n∑
k=m

fk(x)

∣∣∣∣ < ϵ

Corollary (Weierstrass M-Test). If |fn(x)| ≤ Mn for all x ∈ S and
∑

Mn converges, then
∑

fn is
uniformly and absolutely convergent on S.

Proof. We have |
∑n

k=m fk(x)| ≤
∑n

k=m |fk(x)| ≤
∑n

k=m Mk for all x ∈ S.
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