Notes on Linear Operators

Theorem 1. Let $T: U \rightarrow V$ be a linear mapping. Then U is finite-dimensional iff $\operatorname{Ker}(\mathrm{T})$ and $\operatorname{Im}(\mathrm{T})$ are finite-dimensional in which case

$$
\operatorname{dim}(U)=\operatorname{dim}(\operatorname{Ker}(\mathrm{T}))+\operatorname{dim}(\operatorname{Im}(\mathrm{T})) .
$$

Proof. (\Rightarrow) If U is finite-dimensional then so is $\operatorname{Ker}(\mathrm{T})$ since a subspace of a finite-dimensional vector space is also finite-dimensional. Also, if $U=\operatorname{Span}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$, then $\operatorname{Im}(\mathrm{T})=\operatorname{Span}\left(\mathrm{T}\left(\mathrm{e}_{1}\right), \ldots, T\left(\mathrm{e}_{\mathrm{n}}\right)\right)$ so that the image of T is also finite-dimensional. Now if f_{1}, \ldots, f_{s} is a basis for $\operatorname{Ker}(T)$ and we complete f_{1}, \ldots, f_{s} to a basis $f_{1}, \ldots, f_{s}, f_{s+1}, \ldots f_{s+r}$ of V then we claim that $T\left(f_{s+1}\right), \ldots, T\left(f_{s+r}\right)$ is a basis for $\operatorname{Im}(\mathrm{T})$. Indeed, they span $\operatorname{Im}(\mathrm{T})$ since $T\left(f_{1}\right)=\cdots T\left(f_{s}\right)=0$, and if $a_{1} T\left(f_{s+1}\right)+\cdots+$ $c_{r} T\left(f_{s+r}\right)=0$ we have $T\left(a_{1} f_{s+1}+\cdots a_{r} f_{s+r}\right)=0$ which implies $a_{1} f_{s+1}+\cdots a_{r} f_{s+r}=b_{1} f_{1}+\cdots b_{s} f_{s}$. Bringing all terms to the left side we get a dependence relation among f_{1}, \ldots, f_{r+s}. Since $f_{i}^{\prime} s$ are linearly independent we get $a_{1}=a_{2}=\cdots=a_{s}=0$. This yields $\operatorname{dim}(U)=s+r=\operatorname{dim}(\operatorname{Ker}(\mathrm{T}))+$ $\operatorname{dim}(\operatorname{Im}(T))$.
(\Leftarrow) Now suppose $\operatorname{Ker}(\mathrm{T})$ and $\operatorname{Im}(\mathrm{T})$ are finite-dimensional. Let f_{1}, \ldots, f_{s} be a basis for $\operatorname{Ker}(\mathrm{T})$ and let $h_{1}, \ldots h_{r}$ be a basis for $\operatorname{Im}(\mathrm{T})$. We have $h_{i}=T\left(f_{s+i}\right)$ with $f_{s+1}, \ldots, f_{s+r} \in U$. We claim that f_{1}, \ldots, f_{s+r} is a basis for U. Indeed, if $u \in U$, then $T(u)=a_{s+1} T\left(f_{s+1}+\cdots+a_{s+r} T\left(f_{s+r}\right)\right.$ which implies that $u-a_{s+1} f_{s+1}-\cdots-a_{s+r} f_{s+r} \in \operatorname{Ker}(\mathrm{~T})$ and hence that

$$
u-a_{s+1} f_{s+1}-\cdots-a_{s+r} f_{s+r}=a_{1} f_{1}+\cdots+s_{s} f_{s}
$$

which gives $u=a_{1} f_{1}+\cdots a_{s+r} f_{s+r}$ and hence that $f_{1}, \ldots f_{s+r}$ generate U. To show linear independence of these vectors suppose that $a_{1} f_{1}+\cdots a_{s+r} f_{s+r}=0$. Applying T to both sides yields $a_{s_{1}} h_{1}+\cdots a_{s+r} h_{r}=0$ which gives $a_{s+1}=\cdots=a_{s+r}=0$ since $h_{1}, \ldots h_{r}$ are linearly independent. But then $a_{1} f_{1}+\cdots a_{s} f_{s}=0$ which gives $a_{1}=\cdots=a_{s}=0$ by the fact that f_{1}, \ldots, f_{s} are linearly independent.Thus $\operatorname{dim}(U)=r+s=\operatorname{dim}(\operatorname{Ker}(\mathrm{T}))+\operatorname{dim}(\operatorname{Im}(\mathrm{T}))$.

Corollary 2. Let $T: U \rightarrow V, S: V \rightarrow W$ be linear mappings such that $\operatorname{Ker}(\mathrm{S})$ and $\operatorname{Ker}(\mathrm{T})$ are finite-dimensional. Then

$$
\operatorname{dim} \operatorname{Ker}(\mathrm{ST})=\operatorname{dim} \operatorname{Ker}(\mathrm{T})+\operatorname{dim}(\operatorname{Ker}(\mathrm{S}) \cap \operatorname{Im}(\mathrm{T}))
$$

Proof. We first note that $\operatorname{Ker}(\mathrm{T}) \subseteq \operatorname{ker}(\mathrm{ST})$ and that

$$
u \in \operatorname{ker}(S T) \Longleftrightarrow S T(u)=0 \Longleftrightarrow T(u) \in \operatorname{Ker}(\mathrm{S}) \cap \operatorname{Im}(\mathrm{T}) .
$$

Now let $T_{0}: \operatorname{Ker}(\mathrm{ST}) \rightarrow \mathrm{W}$ be the linear mapping defined by restriction of T to $\operatorname{Ker}(\mathrm{ST})$. Then $\operatorname{Ker}\left(\mathrm{T}_{0}\right)=\operatorname{Ker}(\mathrm{T})$ and $\operatorname{Im}\left(\mathrm{T}_{0}\right)=\operatorname{Ker}(\mathrm{S}) \cap \operatorname{Im}(\mathrm{T})$ which yields the result.

Corollary 3. $\operatorname{dim}(\operatorname{Ker}(\mathrm{ST})) \leq \operatorname{dim}(\operatorname{Ker}(\mathrm{S}))+\operatorname{dim}(\operatorname{Ker}(\mathrm{T}))$ with equality if $\operatorname{Ker}(\mathrm{S}) \subseteq \operatorname{Im}(\mathrm{T})$, in particular, if T is surjective.

Theorem 4. Let T be a linear operator on a vector space V and let $a_{1}, a_{2}, \ldots, a_{k}$ be distinct scalars such that $\operatorname{dim}\left(\operatorname{Ker}\left(\mathrm{T}-\mathrm{a}_{\mathrm{i}}\right)^{\mathrm{n}_{\mathrm{i}}}\right)$ is finite-dimensional for $1 \leq i \leq k$. Then

$$
\operatorname{Ker}\left(\left(\mathrm{T}-\mathrm{a}_{1}\right)^{\mathrm{n}_{1}}\left(\mathrm{~T}-\mathrm{a}_{2}\right)^{\mathrm{n}_{2}} \cdots\left(\mathrm{~T}-\mathrm{a}_{\mathrm{k}}\right)^{\mathrm{n}_{\mathrm{k}}}\right)=\operatorname{Ker}\left(\mathrm{T}-\mathrm{a}_{1}\right)^{\mathrm{n}_{1}} \oplus \operatorname{Ker}\left(\mathrm{~T}-\mathrm{a}_{2}\right)^{\mathrm{n}_{2}} \oplus \cdots \oplus \operatorname{Ker}\left(\mathrm{~T}-\mathrm{a}_{\mathrm{k}}\right)^{\mathrm{n}_{\mathrm{k}}}
$$

Proof. Let $U=\operatorname{Ker}\left(\left(\mathrm{T}-\mathrm{a}_{1}\right)^{\mathrm{n}_{1}}\left(\mathrm{~T}-\mathrm{a}_{2}\right)^{\mathrm{n}_{2}} \cdots\left(\mathrm{~T}-\mathrm{a}_{\mathrm{k}}\right)_{\mathrm{k}}^{\mathrm{n}}\right)$, let $W_{i}=\operatorname{Ker}\left(\mathrm{T}-\mathrm{a}_{\mathrm{i}}\right)^{\mathrm{n}_{\mathrm{i}}}$ and let $W=$ $W_{1}+\cdots+W_{k}$. We first prove that $W=W_{1} \oplus \cdots \oplus W_{k}$. For this is suffices to prove that if $w_{i} \in W_{k}$ with $w_{1}+w_{2}+\cdots w_{k}=0$ then $w_{1}=w_{2}=\cdots w_{k}=0$. Let S_{i} be the product of the operators
$\left(T-a_{j}\right)^{n_{j}}$ with $j \neq i$. Then, applying S_{i} to both sides of $w_{1}+\cdots w_{k}=0$, we get $S_{i}\left(w_{i}\right)=0$ since $S_{i}\left(w_{j}\right)=0$ for $j \neq i$. Since $S_{i}\left(W_{i}\right) \subseteq W_{i}$, the restriction of S_{i} to W_{i} is a linear operator on W_{i} and $S_{i}=\prod_{j \neq i}\left(T_{j}-a_{j}\right)^{n_{j}}$, where T_{j} is the restriction of T to W_{j}. That $w_{i}=0$ follows from the following Lemma.

Lemma 5. If S is a linear operator on a vector space W and a is a scalar such that $(S-a)^{n}=0$ then $S-b$ is invertible for every $b \neq a$.

Proof. We first prove this in the case $a=0, b=1$. Then $S^{n}=0$ so that

$$
(1-S)\left(1+S+S^{2}+\cdots+S^{n-1}=1+S+S^{2}+\cdots S^{n-1}-S-S^{2}-\cdots-S^{k-1}=1\right.
$$

Since two polynomials in S commute we get that $1-S$ is invertible with inverse $1+S+S^{2}+\ldots+S^{k-1}$. Since $S-1=-(S-1)$ we see that $S-1$ is also invertible. The general case follows from the identity $S-b=(a-b)\left(1-(b-a)^{-1}(S-a)\right)$.

Returning to the proof of Theorem 4, we have $W \subseteq U$ since $W_{i} \subseteq U$ for $1 \leq i \leq k$. This implies that $\operatorname{dim} W \leq \operatorname{dim} U$. But, by Corollary 3 ,

$$
\operatorname{dim} U \leq \operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\cdots+\operatorname{dim} W_{k}=\operatorname{dim} W
$$

so that $\operatorname{dim} U=\operatorname{dim} W$ and hence that $U=W$.
Corollary 6. If T is a linear operator on a finite-dimensional vector space, then T is diagonalizable if and only if there are distinct scalars $a_{1}, a_{2}, \ldots a_{k}$ such that $\left(T-a_{1}\right)\left(T-a_{2}\right) \cdots\left(T-a_{k}\right)=0$.

We now apply these results to the case of the differential operator D and the left-shift operator L. Since $(D-a)\left(x^{i+1} e^{a x}\right)=x^{i} e^{a x}$, we see that $\operatorname{Span}\left(\mathrm{e}^{\mathrm{ax}}, \mathrm{xe}^{\mathrm{ax}}, \ldots, \mathrm{x}^{\mathrm{k}-1} \mathrm{e}^{\mathrm{ax}}\right) \subseteq \operatorname{Ker}(\mathrm{D}-\mathrm{a})^{\mathrm{k}}$. But the functions $e^{a x}, x e^{a x}, \ldots, x^{k-1} e^{a x}$ are linearly independent and so, since $\operatorname{dim} \operatorname{ker}(D-a)^{k} \leq k$, they are a basis for $\operatorname{ker}(D-a)^{k}$. Hence, for example, $\operatorname{Ker}(\mathrm{D}-1)(\mathrm{D}-2)^{2} \operatorname{Ker}(\mathrm{D}-3)^{3}$ is 5 -dimensional with basis $e^{x}, e^{2 x}, x e^{2 x}, e^{3} x, x e^{3 x}, x^{2} e^{3 x}$.

In the case of the left-shift operator L we have, in the case $a \neq 0$,

$$
(L-a)\left(n^{i+1} a^{n}\right) \in \operatorname{Span}\left(\left(\mathrm{a}^{\mathrm{n}}\right),\left(\mathrm{na}^{\mathrm{n}}\right), \cdots,\left(\mathrm{n}^{\mathrm{i}} \mathrm{a}^{\mathrm{n}}\right)\right)
$$

so that $\operatorname{Span}\left(\left(a^{n}\right),\left(n a^{n}\right), \ldots,\left(n^{k-1} a^{n}\right) \subseteq \operatorname{Ker}(L-a)^{k}\right.$. But these sequences are linearly independent and so are a basis of $\operatorname{Ker}(L-a)^{k}$ since $\operatorname{dim} \operatorname{Ker}(L-a)^{k} \leq k$. Hence, for example,

$$
\operatorname{dim}\left(\operatorname{Ker}(L-1)(L-2)^{2}(L-3)^{3}=5\right.
$$

with basis $(1),\left(2^{n}\right),\left(n 2^{n}\right),\left(3^{n}\right),\left(n 3^{n}\right),\left(n^{2} 3^{n}\right)$.
As another example, consider the problem of finding a formula for $s_{n}=1^{3}+2^{3}+\cdots+n^{3}$. Let $s=\left(s_{n}\right)$. Then $(L-1)(s)=\left((n+1)^{3}-n^{3}\right)=3\left(n^{2}\right)+3(n)+(1)$ which is in the kernel of $(L-1)^{3}$. Hence s is in the kernel of $(L-1)^{4}$ so that there are constants A, B, C, D such that $s_{n}=A+B n+C n^{2}+D n^{3}$. The constants A, B, C, D can be found by solving the system of equations obtained by setting $n=0,1,2,3$.

Particular solutions to non-homogeneous difference and recurrence equations can be sometimes found by transforming the non-homgeneous equation into a homogeneous one. For example, the equation $(L-1)(L-2) x=(1)$ can be transformed into a homogeneous one by applying the operator $L-1$ to both sides of the equation obtaining $(L-1)^{2}(L-2) x=0$. The operator $L-1$ was chosen to kill the right-hand side of the equation. Thus $x_{n}=a+b n+c 2^{n}$. The term $a+c 2^{n}$ can be omitted as it is in the kernel of $(L-1)(L-2)$. We thus look for a particular solution of the form $x_{n}=b n$. The constant b can be found by substitution in the given non-homogeneous equation. A similar procedure applies to differential equations.

