The Jordan Canonical Form: Part 2

We now give the proof of the theorem on the Jordan canonical form.

Proof. Without loss of generality, we can assume that the minimal polynomial of T is

$$(\lambda - a_1)^{k_1} (\lambda - a_2)^{k_2} \cdots (\lambda - a_m)^{k_m} = 0.$$

By the primary decomposition theorem, V is a direct sum of the subspaces

$$V(a_i) = \operatorname{Ker}((\mathbf{T} - \mathbf{a}_i)^{\mathbf{k}_i})$$

with $\{a_1, \ldots, a_m\}$ being the set of eigenvalues of T. The integer k_i is the smallest integer > 0 such that $\operatorname{Ker}((T - a_i)^{k_i}) = \operatorname{Ker}((T - a_i)^{k_i+1})$ and so

$$V(a_i) = \bigcup_{j \ge 0} \ker(T - a_i)^j.$$

This subspace is called the **generalized eigenspace** for the eigenvalue a_i .

Let a be any eigenvalue of T. If $t_i = \dim \ker(T-a)^i$ we have

$$0 = t_0 < t_1 < \ldots < t_p = t_{p+1}$$

for a unique $p \ge 1$. We now give an algorithm for decomposing V(a) into a direct sum of cyclic subspaces.

Step 1. Find a basis for $\text{Ker}((T-a)^p) \mod \text{Ker}((T-a)^{p-1})$, i.e., find a sequence of vectors in $\text{Ker}((T-a)^p)$ which complete some basis of $\text{ker}((T-a)^{p-1})$ to a basis of $\text{Ker}((T-a)^p)$.

Step 2. If p = 1 stop; if p > 1 take the image, under T - a, of the basis of $\text{Ker}((T - a)^p) \mod \text{Ker}((T - a)^{p-1})$ obtained in the previous step and complete it to a basis of $\text{Ker}((T - a)^{p-1}) \mod \text{Ker}((T - a)^{p-2})$.

Step 3. Repeat step 2 with p replaced by p - 1.

The vectors obtained in this way are a basis of V(a) and the vectors which, for each $i \ge 1$ complete to a basis of $\operatorname{Ker}((T-a)^i) \mod \operatorname{Ker}((T-a)^{i-1})$ the image of the basis of $\operatorname{Ker}((T-a)^{i+1}) \mod \operatorname{Ker}((T-a)^i)$ obtained in the previous step, are cyclic vectors of cycle length i. The number of these cyclic vectors is

$$\dim(\ker((T-a)^{i})/\operatorname{Ker}((T-a)^{i-1})) - \dim(\operatorname{Ker}((T-a)^{i+1})/\operatorname{Ker}((T-a)^{i})))$$

Moreover, V is the direct sum of the cyclic subspaces generated by the cyclic vectors so obtained. \Box

Corollary 1. Let V be a finite-dimensional vector space over a field K and let T be a linear operator on V whose minimal polynomial is a product of linear factors. If $\dim(V) = n$, there are T-invariant subspaces

$$\{0\} = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$$

with $\dim(V_i) = i$.

Corollary 2. If A is an $n \times n$ matrix over a field K whose minimal polynomial is a product of linear factors then there is an invertible matrix $P \in K^{n \times n}$ such that $P^{-1}AP$ is upper triangular.

Corollary 3. (Cayley-Hamilton) If $\Delta_A(\lambda)$ is the characteristic polynomial of the matrix $A \in \mathbb{C}^{n \times n}$ then $\Delta_A(A) = 0$. Corollary 3 is true for a matrix A over any field K since it is possible to find a field F, containing K as a subfield, such that the minimal polynomial of A is a product of linear factors $\lambda - c$ with $c \in F$.

Let $(\lambda - a_1)^{n_1}(\lambda - a_2)^{n_2}\cdots(\lambda - x_\ell)^{n_\ell}$ be the characteristic polynomial of a linear operator T on a finite-dimensional vector space V with $a_1, a_2, ..., a_\ell$ distinct. The integer n_i is called the **algebraic multiplicity** of the eigenvalue a_i . It is left as an exercise for the reader to show that n_i is the dimension of the generalized eigenspace $V(a_i)$ for the eigenvalue a_i . The dimension of the eigenvalue a_i . The dimension of the eigenvalue a_i is called the **geometric multiplicity** of the eigenvalue a_i . Thus T is diagonalizable if and only if the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity.

Problem 1 If $A \in \mathbb{C}^{5 \times 5}$ with characteristic polynomial

$$\Delta(\lambda) = (\lambda - 1)^2 (\lambda - 2)^3$$

and minimal polynomial $m(\lambda) = (\lambda - 1)(\lambda - 2)^2$, what is the Jordan form for A.

Solution. The generalized eigenspace for the eigenvalue 2 has dimension 3 and there is a cyclic vector of cycle length 2. It follows that there one Jordan block of size 1 and one of size 2. On the other hand the cyclic vectors for the eigenvalue 1 have cycle length 1 and so there must be 2 Jordan blocks of size 1 for the eigenvalue 1 since the generalized eigenspace for this eigenvalue has dimension 2. The Jordan form (up to order of the blocks) is therefore

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 2. Find the possible Jordan normal forms for a complex 6×6 matrix with minimal polynomial λ^3 . Show that two such matrices having the same nullity are similar.

Solution The only eigenvalue is 0 and there must be one Jordan block of size 3. It follows that there must be either (i) 2 Jordan blocks of size 3 or (ii) 1 of size 3, one of size 2 and one of size 1 or (iii) one of size 3 and 3 of size 1. The corresponding possible Jordan forms for A are

$(i) \left \begin{array}{cccccccccccccccccccccccccccccccccccc$) 0) 0) 0) 0
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$) 0

Since the nullity of A is respectively 2, 3, 4 in cases (i), (ii), (iii), we get that two such matrices with the same nullity are similar.

Problem 3. If N is an $n \times n$ matrix with $n \ge 2$, $N^n = 0$, $N^{n-1} \ne 0$, show that there is no complex $n \times n$ matrix A with $A^2 = N$.

Solution. Suppose that $A^2 = N$ for some A. Then $A^{2n} = N^n = 0$ and so the characteristic polynomial of A must be λ^n . Hence $A^n = 0$ which implies $N^{n-1} = A^{2n-2} = 0$ since $2n - 2 \ge n$. This contradicts the assumption that $N^{n-1} \ne 0$.