The Jordan Canonical Form: Part 2

We now give the proof of the theorem on the Jordan canonical form.
Proof. Without loss of generality, we can assume that the minimal polynomial of T is

$$
\left(\lambda-a_{1}\right)^{k_{1}}\left(\lambda-a_{2}\right)^{k_{2}} \cdots\left(\lambda-a_{m}\right)^{k_{m}}=0
$$

By the primary decomposition theorem, V is a direct sum of the subspaces

$$
V\left(a_{i}\right)=\operatorname{Ker}\left(\left(\mathrm{T}-\mathrm{a}_{\mathrm{i}}\right)^{\mathrm{k}_{\mathrm{i}}}\right)
$$

with $\left\{a_{1}, \ldots, a_{m}\right\}$ being the set of eigenvalues of T. The integer k_{i} is the smallest integer >0 such that $\operatorname{Ker}\left(\left(T-a_{i}\right)^{k_{i}}\right)=\operatorname{Ker}\left(\left(T-a_{i}\right)^{k_{i}+1}\right)$ and so

$$
V\left(a_{i}\right)=\bigcup_{j \geq 0} \operatorname{ker}\left(T-a_{i}\right)^{j}
$$

This subspace is called the generalized eigenspace for the eigenvalue a_{i}.
Let a be any eigenvalue of T. If $t_{i}=\operatorname{dim} \operatorname{ker}(T-a)^{i}$ we have

$$
0=t_{0}<t_{1}<\ldots<t_{p}=t_{p+1}
$$

for a unique $p \geq 1$. We now give an algorithm for decomposing $V(a)$ into a direct sum of cyclic subspaces.
Step 1. Find a basis for $\operatorname{Ker}\left((T-a)^{p}\right) \bmod \operatorname{Ker}\left((T-a)^{p-1}\right)$, i.e., find a sequence of vectors in $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}}\right)$ which complete some basis of $\operatorname{ker}(T-a)^{p-1}$ to a basis of $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}}\right)$.
Step 2. If $p=1$ stop; if $p>1$ take the image, under $T-a$, of the basis of $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}}\right) \bmod$ $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}-1}\right)$ obtained in the previous step and complete it to a basis of $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}-1}\right) \bmod$ $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{p}-2}\right)$.
Step 3. Repeat step 2 with p replaced by $p-1$.
The vectors obtained in this way are a basis of $V(a)$ and the vectors which, for each $i \geq 1$ complete to a basis of $\operatorname{Ker}\left((T-a)^{\mathrm{i}}\right) \bmod \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)$ the image of the basis of $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right) \bmod$ $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)$ obtained in the previous step, are cyclic vectors of cycle length i. The number of these cyclic vectors is

$$
\operatorname{dim}\left(\operatorname{ker}\left((T-a)^{i}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)\right)-\operatorname{dim}\left(\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)\right)
$$

Moreover, V is the direct sum of the cyclic subspaces generated by the cyclic vectors so obtained.
Corollary 1. Let V be a finite-dimensional vector space over a field K and let T be a linear operator on V whose minimal polynomial is a product of linear factors. If $\operatorname{dim}(V)=n$, there are T-invariant subspaces

$$
\{0\}=V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n}=V
$$

with $\operatorname{dim}\left(V_{i}\right)=i$.
Corollary 2. . If A is an $n \times n$ matrix over a field K whose minimal polynomial is a product of linear factors then there is an invertible matrix $P \in K^{n \times n}$ such that $P^{-1} A P$ is upper triangular.

Corollary 3. (Cayley-Hamilton) If $\Delta_{A}(\lambda)$ is the characteristic polynomial of the matrix $A \in \mathbb{C}^{n \times n}$ then $\Delta_{A}(A)=0$.

Corollary 3 is true for a matrix A over any field K since it is posssible to find a field F, containing K as a subfield, such that the minimal polynomial of A is a product of linear factors $\lambda-c$ with $c \in F$.

Let $\left(\lambda-a_{1}\right)^{n_{1}}\left(\lambda-a_{2}\right)^{n_{2}} \cdots\left(\lambda-x_{\ell}\right)^{n_{\ell}}$ be the characteristic polynomial of a linear operator T on a finite-dimensional vector space V with $a_{1}, a_{2}, \ldots, a_{\ell}$ distinct. The integer n_{i} is called the algebraic multiplicity of the eigenvalue a_{i}. It is left as an execise for the reader to show that n_{i} is the dimension of the generalized eigenspace $V\left(a_{i}\right)$ for the eigenvalue a_{i}. The dimension of the eigenspace $\operatorname{Ker}\left(\left(\mathrm{T}-\mathrm{a}_{\mathrm{i}}\right)\right)$ is called the geometric multiplicity of the eigenvalue a_{i}. Thus T is diagonalizable if and only if the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity.

Problem 1 If $A \in \mathbb{C}^{5 \times 5}$ with characteristic polynomial

$$
\Delta(\lambda)=(\lambda-1)^{2}(\lambda-2)^{3}
$$

and minimal polynomial $m(\lambda)=(\lambda-1)(\lambda-2)^{2}$, what is the Jordan form for A.
Solution. The generalized eigenspace for the eigenvalue 2 has dimension 3 and there is a cyclic vector of cycle length 2. It follows that there one Jordan block of size 1 and one of size 2 . On the other hand the cyclic vectors for the eigenvalue 1 have cycle length 1 and so there must be 2 Jordan blocks of size 1 for the eigenvalue 1 since the generalized eigenspace for this eigenvalue has dimension 2. The Jordan form (up to order of the blocks) is therefore

$$
\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Problem 2. Find the possible Jordan normal forms for a complex 6×6 matrix with minimal polynomial λ^{3}. Show that two such matrices having the same nullity are similar.

Solution The only eigenvalue is 0 and there must be one Jordan block of size 3. It follows that there must be either (i) 2 Jordan blocks of size 3 or (ii) 1 of size 3 , one of size 2 and one of size 1 or (iii) one of size 3 and 3 of size 1 . The corresponding possible Jordan forms for A are
(i)

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\text { (ii) }\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\text { (iii) }\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Since the nullity of A is respectively $2,3,4$ in cases (i), (ii), (iii), we get that two such matrices with the same nullity are similar.

Problem 3. If N is an $n \times n$ matrix with $n \geq 2, N^{n}=0, N^{n-1} \neq 0$, show that there is no complex $n \times n$ matrix A with $A^{2}=N$.

Solution. Suppose that $A^{2}=N$ for some A. Then $A^{2 n}=N^{n}=0$ and so the characteristic polynomial of A must be λ^{n}. Hence $A^{n}=0$ which implies $N^{n-1}=A^{2 n-2}=0$ since $2 n-2 \geq n$. This contradicts the assumption that $N^{n-1} \neq 0$.

