The Jordan Canonical Form: Part 1

Let V be a finite-dimensional vector space over a field K and let T be a linear operator on V which satisfies a polynomial identity of the form

$$
\left(T-a_{1}\right)^{k_{1}}\left(T-a_{2}\right)^{k_{2}} \cdots\left(T-a_{m}\right)^{k_{m}}=0
$$

with $a_{1}, a_{2}, \ldots, a_{m}$ distinct scalars. Such an identity always exists if $K=\mathbb{C}$. In this and the following lecture we shall prove the following result
Theorem 1. There exists a basis of V such that the matrix of T is in block-diagonal form with Jordan blocks. If a is an eigenvalue of T, t the sequence $\left(t_{0}, t_{1}, \ldots, t_{n}, \ldots\right)$ with $t_{i}=\operatorname{dim} \operatorname{ker}(T-a)^{i}$ and

$$
\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)=-R(L-1)^{2}(t)
$$

where R, L are the left and right-shift operators on \mathbb{R}^{∞}, then s_{i} is the number of Jordan blocks of size i with eigenvalue a.

By way of an example, Let T be the linear operator on \mathbb{F}_{2}^{6} whose matrix with respect the standard basis of \mathbb{F}_{2}^{6} is

$$
A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We have

$$
A-1=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad(A-1)^{2}=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad(A-1)^{3}=0
$$

It follows that $(T-1)^{3}=0$ and 1 is the only eigenvalue of T. We also have $\operatorname{rank}(T-1)=3$, $\operatorname{rank}(\mathrm{T}-1)^{2}=1, \operatorname{rank}(\mathrm{~T}-1)^{3}=0$ so that

$$
t_{1}=\operatorname{dim} \operatorname{ker}(T-1)=3, t_{2}=\operatorname{dim} \operatorname{ker}(T-1)^{2}=5, t_{3}=\operatorname{dim} \operatorname{ker}(T-1)^{3}=6
$$

Hence t is the sequence $(0,3,5,6,6, \ldots, 6, \ldots)$. Now

$$
(L-1)(t)=(3,2,1,0,0, \ldots, 0, \ldots), \quad(L-1)^{2}(t)=(-1,-1,-1,0,0, \ldots, 0, \ldots)
$$

and so $-R(L-1)^{2}(t)=(0,1,1,1,0,0, \ldots, 0, \ldots)$ which, according to Theorem 1 , implies that there is one Jordan block of size 1 , one of size 2 and one of size 3 . Hence there is a basis of \mathbb{F}_{2}^{6} such that the matrix of T with respect to this basis is

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

If W is a T-invariant subspace of V and $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is a basis of W, the matrix (with respect to this basis) of the restriction of T to W is the Jordan matrix $J_{n}(a)$ iff

$$
T\left(f_{1}\right)=a f_{1}, T\left(f_{2}\right)=a f_{2}+f_{1}, \ldots, T\left(f_{i}\right)=a f_{i}+f_{i-1}, \ldots, T\left(f_{n}\right)=a f_{n}+f_{n-1}
$$

or, equivalently,

$$
(T-a)\left(f_{1}\right)=0,(T-a)\left(f_{2}\right)=f_{1}, \ldots,(T-a)\left(f_{i}\right)=f_{i-1}, \ldots,(T-a)\left(f_{n}\right)=f_{n-1}
$$

For such a basis we have $f_{i}=(T-a)^{n-i}\left(f_{n}\right)$ with $f_{n} \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{n}}\right)-\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{n}-1}\right)$. Conversely, if $g \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{n}}\right)-\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{n}-1}\right)$ the sequence

$$
g,(T-a)(g),(T-a)^{2}(g), \ldots,(T-a)^{n-1}(g)
$$

is a basis for a T-invariant subspace of V such that the matrix of this mapping with respect to the basis

$$
f_{1}=(T-a)^{n-1}(g), f_{2}=(T-a)^{n-2}(g), \ldots,(T-a)(g), g
$$

is the Jordan matrix $J_{n}(a)$. The vector g is called a cyclic vector of cycle length \mathbf{n} for the eigenvalue a. Each Jordan block corresponds a cyclic vector. The subspace generated by a cyclic vector g and its images under the powers of T is called the cyclic subspace generated by g.

We now illustrate how to find cyclic vectors that give a decomposition into a direct sum of cyclic subspaces in the case of Example 1. We first find bases for $\operatorname{ker}(T-1), \operatorname{ker}(T-1)^{2}, \operatorname{ker}(T-1)^{3}$:

$$
\begin{aligned}
\operatorname{Ker}(\mathrm{T}-1) & =\operatorname{Span}\left(\mathrm{e}_{1}, \mathrm{e}_{3}+\mathrm{e}_{4}, \mathrm{e}_{2}+\mathrm{e}_{3}+\mathrm{e}_{5}+\mathrm{e}_{6}\right), \\
\operatorname{Ker}\left((\mathrm{T}-1)^{2}\right) & =\operatorname{Span}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{3}+\mathrm{e}_{4}, \mathrm{e}_{3}+\mathrm{e}_{6}\right), \\
\operatorname{Ker}\left((\mathrm{T}-1)^{3}\right) & =\operatorname{Span}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}\right)
\end{aligned}
$$

The next step is to complete the basis of $\operatorname{Ker}(T-1)^{2}$ to a basis of $(T-1)^{3}$. We find that $g_{1}=e_{6}$ completes the given basis of $\operatorname{Ker}\left((T-1)^{2}\right)$ to a basis of $\operatorname{Ker}\left((T-1)^{3}\right)$. Now $(T-1)\left(e_{6}\right)=e_{2}+e_{3}+e_{4}$ is in the kernel of $(T-1)^{2}$ but not in the kernel of $T-1$. Thus

$$
e_{1}, e_{3}+e_{4}, e_{2}+e_{3}+e_{5}+e_{6}, e_{2}+e_{3}+e_{4}
$$

is linearly independent and we can complete this sequence to a basis of $\operatorname{Ker}\left((\mathrm{T}-1)^{2}\right)$ with the vector $g_{2}=e_{5}$. Now $(T-1)^{2}\left(g_{1}\right)=e_{1},(T-1)\left(g_{2}\right)=e_{3}+e_{4}$ are in the kernel of $T-1$ and are linearly independent. We complete these two vectors to a basis of $\operatorname{ker}(T-1)$ by means of the vector $g_{3}=e_{2}+e_{3}+e_{5}+e_{6}$. Now, the sequence of vectors

$$
\begin{gathered}
g_{1}=e_{6},(T-1)\left(g_{1}\right)=e_{2}+e_{3}+e_{4},(T-1)^{2}\left(g_{1}\right)=e_{1} \\
g_{2}=e_{5},(T-1)\left(g_{2}\right)=e_{3}+e_{4}, g_{3}=e_{2}+e_{3}+e_{5}+e_{6}
\end{gathered}
$$

is linearly independent and the basis

$$
f_{1}=g_{3}, f_{2}=(T-1)\left(g_{2}\right), f_{3}=g_{2}, f_{4}=(T-1)^{2}\left(g_{1}\right), f_{5}=(T-1)\left(g_{1}\right), f_{6}=g_{1}
$$

yields the above Jordan canonical form for T. If $v_{1}, v_{2}, \ldots, v_{n} \in V$ and W is a subspace of V, we say that the sequence $v_{1}, v_{2}, \ldots, v_{n}$ is linearly independent $\bmod W$ if

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \in W \Longrightarrow a_{1}=a_{2}=\ldots=a_{n}=0
$$

This is equivalent to saying the the images of the vectors v_{i} in the quotient space V / W form a linearly independent sequence. Similarly, we say that $v_{1}, v_{2}, \ldots, v_{n}$ generate $V \bmod W$ if every $v \in V$ can be written in the form $v=a_{1} v_{1}+a_{2} v_{n}+\cdots+a_{n} v_{n}$ with $w \in W$. This is equivalent to saying that the images of the vectors v_{i} in V / W span V / W.

Lemma 2. If $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)=\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right)$ then $\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right)=\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+2}\right)$.
Proof. Let $v \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{i}+2}\right)$. Then $(T-a)(v) \in \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right)=\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)$ which implies that $(T-a)^{i+1}(v)=(T-a)^{i}(T-a)(v)=0$ and hence that $v \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{i}+1}\right)$.

This lemma shows that, for an eigenvalue a of T, there is an integer $p>0$ such that

$$
0=t_{0}<t_{1}<\cdots<t_{p}=t_{p+1}=t_{p+2}=\cdots
$$

where $t_{i}=\operatorname{dim}(T-a)^{i}$.
Lemma 3. If $i \geq 2$ and $v \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{i}}\right)-\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)$ then

$$
(T-a)(v) \in \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)-\operatorname{ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-2}\right) .
$$

Proof. If $v \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{i}}\right)$ and $(T-a)(v) \in \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-2}\right)$ then

$$
(T-a)^{i-1}(v)=(T-a)^{i-2}(T-a)(v)=0
$$

which implies that $v \in \operatorname{Ker}\left((\mathrm{~T}-\mathrm{a})^{\mathrm{i}-1}\right)$.
This Lemma is simply the assertion that the linear mapping

$$
S_{i-1}: \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right) \rightarrow \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-2}\right)
$$

defined by $S_{i-1}\left(v+\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)=(\mathrm{T}-\mathrm{a})(\mathrm{v})+\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)\right.$ is injective. This yields the following result:

Lemma 4. If $i \geq 2$ and $v_{1}, v_{2}, \ldots, v_{n} \in \operatorname{Ker}(\mathrm{~T}-\mathrm{a})^{\mathrm{i}}$ is linearly independent $\bmod \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)$ then

$$
(T-a)\left(v_{1}\right),(T-a)\left(v_{2}\right), \ldots,(T-a)\left(v_{n}\right) \in \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)
$$

is a linearly independent sequence $\bmod \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-2}\right)$.
If $r=\left(r_{0}, r_{1}, \ldots, r_{i}, \ldots\right)=(L-1)(t)$ then
$r_{i}=\operatorname{dim}\left(\operatorname{Ker}(\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right)-\operatorname{dim}\left(\operatorname{Ker}(\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)=\operatorname{dim}\left(\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)\right.$.
Lemma 2 shows that r is a decreasing sequence of natural numbers which are zero for $i>p$, i.e,

$$
r_{0} \geq r_{1} \geq r_{2} \geq \cdots \geq r_{p}=r_{p+1}=r_{p+2}=\ldots=0
$$

Theorem 1 states that the number of Jordan blocks of size $i \geq 1$ is

$$
-\left(r_{i}-r_{i-1}\right)=r_{i-1}-r_{i}=\operatorname{dim}\left(\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}-1}\right)-\operatorname{dim}\left(\operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}+1}\right) / \operatorname{Ker}\left((\mathrm{T}-\mathrm{a})^{\mathrm{i}}\right)\right)\right.
$$

