Inner Product Spaces: Part 3

Let V be a finite-dimensional inner product space and let T be a linear operator on V. If f is an orthonormal basis of V, we let T^{*} be the linear operator on V such that $\left[T^{*}\right]_{f}=[T]_{f}^{*}$. Then, if g is any other orthonormal basis of V, we have $\left[T^{*}\right]_{g}=[T]_{g}^{*}$ and so the definition of T^{*} is independent of the choice of orthonormal basis. The operator T^{*} is called the adjoint of T. Since

$$
<T(u), v>=[T(u)]_{f}^{t} \overline{[v]}_{f}=\left([T]_{f}[u]_{f}\right)^{t} \overline{[v]}_{f}=[u]_{f}^{t}{\overline{[T]_{f}}{ }_{f}^{*}[u]}_{f}=<u, T^{*}(v)>
$$

we have $<T(u), v>=<u, T^{*}(v)>$ for all $u, v \in V$. This property characterizes the adjoint. Indeed, more generally, if T is a linear mapping from an inner product space V to an inner product space W, there is at most one linear mapping S from W to V such that

$$
<T(v), w>=<v, S(w)>
$$

for all $v \in V, w \in W$. To see this, let S^{\prime} be another such operator. Then

$$
<v, S(w)>=<v, S^{\prime}(w)>\Longrightarrow<v,\left(S-S^{\prime}\right)(w)>=0 .
$$

Taking $v=\left(S-S^{\prime}\right)(w)$, we get $\left\|\left(S-S^{\prime}\right)(v)\right\|^{2}=0$ from which $\left(S-S^{\prime}\right)(w)=0$. Since w is arbitrary, we get $S=S^{\prime}$. When it exists, the operator S is called the adjoint of T and is denoted by T^{*}. We have

$$
T^{* *}=T, \quad\left(T_{1} T_{2}\right)^{*}=T_{2}^{*} T_{1}^{*}, \quad\left(a_{1} T_{1}+a_{2} T_{2}\right)^{*}=\bar{a}_{1} T_{1}^{*}+\overline{a_{2}} T_{2}^{*}
$$

For example, the right shift operator R on ℓ^{∞} is the adjoint of the left shift operator L since

$$
<L(x), y>=\sum_{i \geq 0} L(x)_{n} \bar{y}_{n}=\sum_{i \geq 0} x_{i+1} \bar{y}_{i}=\sum_{i \geq 1} x_{i} \bar{y}_{i-1}=\sum_{i \geq 0} x_{i} \overline{R(y)}_{i}=<x, R(y)>
$$

An operator T on a finite-dimensional inner product space V is said to be normal if $T^{*} T=T T^{*}$.

Theorem 1. (Spectral Theorem) Let T be a normal linear operator on a finite-dimensional complex inner product space V. Then there are unique distinct scalars c_{1}, \ldots, c_{m} and non-zero self-adjoint operators $E_{1}, E_{2}, \ldots, E_{m}$ on V such that

$$
\begin{gathered}
E_{i}^{2}=E_{2}, E_{i} E_{j}=0(i \neq j), 1_{V}=E_{1}+E_{2}+\cdots+E_{m} \\
T=c_{1} E_{1}+c_{2} E_{2}+\cdots+c_{m} E_{m}
\end{gathered}
$$

Proof. It suffices to prove the uniqueness. Let $V_{i}=\operatorname{Im}\left(\mathrm{E}_{\mathrm{i}}\right)$. Then $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{m}$ and $T E_{i}=c_{i} E_{i}$ shows that c_{i} is an eigenvalue of A and that V_{i} is the eigenspace of T for the eigenvalue c_{i}. This shows that c_{1}, \ldots, c_{m} are the eigenvalues of T. If $v \in V$ then $v=\sum v_{i}$ with $v_{i} \in V_{i}$, $E_{i}(v)=E_{i} v_{i}=v_{i}$ and

$$
<v_{i}, v_{j}>=<E_{i}\left(v_{i}\right), E_{j}\left(v_{j}\right)>=<v_{i}, E_{i}^{*} E_{j}\left(v_{j}\right)>=<v_{i}, E_{i} E_{j}\left(v_{j}\right)>=0>
$$

for $i \neq j$ shows that E_{i} is the orthogonal projection of V on V_{i}.
The following is the spectral theorem for real inner product spaces.

Theorem 2. Let T be a self-adjoint linear operator on a finite-dimensional real inner product space V. Then there are unique distinct scalars c_{1}, \ldots, c_{m} and non-zero self-adjoint operators $E_{1}, E_{2}, \ldots, E_{m}$ on V such that

$$
\begin{gathered}
E_{i}^{2}=E_{2}, \quad E_{i} E_{j}=0(i \neq j), 1_{V}=E_{1}+E_{2}+\cdots+E_{m} \\
T=c_{1} E_{1}+c_{2} E_{2}+\cdots+c_{m} E_{m}
\end{gathered}
$$

If $T=c_{1} E_{1}+\cdots+c_{m} T_{m}$ is the spectral resolution of a normal operator T on the complex finite-dimensional inner product space V then

$$
T^{*}=\bar{c}_{1} E_{1}+\bar{c}_{2} E_{2}+\cdots+\bar{c}_{m} E_{m}
$$

is the spectral resolution of T^{*}. Hence T is self-adjoint if and only if its eigenvalues are all real. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be an orthonormal basis of V with $T\left(f_{i}\right)=\lambda_{i} f_{i}$. If $u \in V$ has coordinate vector $x_{1}, x_{2}, \ldots, x_{n}$) with respect to the basis f, we have

$$
\begin{aligned}
T(u) & =\lambda_{1} f_{1}+\lambda_{2} f_{2}+\cdots+\lambda_{n} f_{n} \\
<T(u), u> & =\lambda_{1}\left|x_{1}\right|^{2}+\lambda_{2}\left|x_{2}\right|^{2}+\cdots+\lambda_{n}\left|x_{n}\right|^{2}
\end{aligned}
$$

Thus $\langle T(u), u\rangle=0$ for all u iff $T=0$. The operator T is said to be positive (resp. positive definite) if its eigenvalues are ≥ 0 (resp. >0). Thus T is positive (resp. positive definite) iff $<T(u), u>\geq 0$ (resp. $<T(u), u \gg 0$ for all $u, v \in V$.

If T is a positive definite self-adjoint operator on V then the function $b: V \times V \rightarrow K$, defined by $b(u, v)=<T(u), v>$, is an inner product on V. This is an important source of inner products.

A positive self-adjoint operator T has a square root, namely,

$$
\sqrt{T}=\sqrt{c_{1}} E_{1}+\sqrt{c_{2}} E_{2}+\cdots+\sqrt{c_{m}} E_{m}
$$

The operator T is the unique non-negative self-adjoint operator whose square is T. The proof of uniqueness uses the fact that such an operator commutes with T and so leaves invariant the eigenspaces of T. The restriction of this operator to the eigenspace V_{i} of T for the eigenvalue c_{i} is therefore equal to $\sqrt{c_{i}}$ times the identity mapping of V_{i}.

For any linear operator on T, the operator $T^{*} T$ is self-adjoint and positive since

$$
<T^{*} T(u), u>=<T(u), T(u)>
$$

it is positive definite if $\operatorname{ker}(T) \neq\{0\}$. It follows that a self-adjoint operator T is positive iff $T=S^{*} S$ for some operator S on V.

A normal operator T is invertible iff none of its eigenvalues are zero, in which case, T^{-1} is normal with spectral resolution

$$
T^{-1}=c_{1}^{-1} E_{1}+c_{2}^{-1} E_{2}+\cdots+c_{m}^{-1} E_{m}
$$

Thus $T^{*}=T^{-1}$ iff $\bar{c}_{i}=c_{i}^{-1}$, i.e., $\left|c_{i}\right|=1$, for all i. An operator T on a complex inner product space is called unitary if $T^{*}=T^{-1}$. An operator T on a real inner product space V is called orthogonal if $T^{*}=T^{-1}$.

Theorem 3. Let T be a linear operator on a finite-dimensional inner product space V. Then the following are equivalent:
(a) T is unitary (orthogonal); (b) $\|T(u)\|=\|u\|$ for all $u \in V$; (c) $<T(u), T(v)>=<u, v>$ for all $u, v \in V$.

Proof. If T is unitary then $<T(u), T(v)>=<u, T^{*} T(v)>=<u, v>$ so that (a) implies (b). Now (b) implies (a) by taking $u=v$. If (b) holds then $<u, u>=<T(u), T(u)>=<T^{*} T u, u>$ which implies that $<S(u), u>=0$ for all u where $S=T^{*} T-1$, a self-adjoint operator. Hence $S=0$ which implies (a).

Symmetric and Hermitian Forms
Let V be vector space over $K=\mathbb{R}$ or \mathbb{C}. A function $f: V \times V \rightarrow K$ satisfying

1. $f(a u+b v, w)=a f(u, w)+b f(v, w)$;
2. $f(w, a u+b v)=\bar{a} f(w, u)+\bar{b} f(w, v)$;
is called a sesqui-linear form. If $K=\mathbb{R}$ it is a bilinear form. If, in addition, we have
3. $f(u, v)=\overline{f(v, u)}$
the form f is called a Hermitian (symmetric if $K=\mathbb{C}$). The function $q: V \rightarrow \mathbb{R}$ defined by $q(u)=f(u, u)$ is called the associated quadratic (Hermitian) form The Hermitian forms f, q are said to be positive if $q(u)=f(u, u) \geq 0$ and positive definite. if $q(u)=f(u, u) \geq 0$ with equality iff $u=0$. The the following identities (polarization identities) show that f is uniquely determined by q

$$
\begin{array}{ll}
(K=\mathbb{R}): & f(u, v)=\frac{1}{2}(q(u+v)-q(u)-q(v)) \\
(K=\mathbb{C}): & f(u, v)=\frac{1}{4}(q(u+v)-q(u-v)+q(u+i v)-q(u-i v))
\end{array}
$$

The proofs are left as exercises. If f is a sesqui-linear form on a finite-dimensional vector space V and $e=\left(e_{1}, \ldots, e_{n}\right)$ is a basis of V, there is a unique matrix $A \in K^{n \times}$ such that $f(u, v)=[u]_{e} A[v]_{e}$. In fact $A=\left[f\left(e_{i}, e_{j}\right)\right]$. The matrix A is called the matrix of f or q with respect to the basis e and is denoted by $[f]_{e}$. The form f is Hermitian iff A is Hermitian. If $e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ is an other basis with transition matrix $P=\left[1_{V}\right]_{e^{\prime}, e}$, we have $[f]_{e^{\prime}}=P^{t}[f]_{e} \bar{P}$. The rank of f or q.

If V is an inner product space and T is a Hermitian operator on V then $f(u, v)=<T(u), v>$ defines a Hermitian form. Moreover, every Hermitian form on V arises in this way. More generally, we have the following result:

Theorem 4. Let f be a sesqui-linear form on an finite-dimensional inner product space V. Then there exists a unique linear operator T_{f} such that $f(u, v)=<T_{f}(u), v>$ for all $u, v \in V$. Moreover, f is Hermitian iff T_{f} is Hermitian.

Proof. Let $e=\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of V and let $X=[u]_{e}, Y=[v]_{e}, A=\left[f\left(e_{i}, e_{j}\right)\right]$. Then

$$
f(u, v)=X^{t} A \bar{Y}=\left(A^{t} X\right)^{t} \bar{Y}=<T_{f}(u), v>
$$

where T_{f} is the linear operator on V with $\left[T_{f}\right]_{e}=A^{t}$. The uniqueness of T_{f} is left as an exercise. Finally

$$
f(u, v)=\overline{f(v, u)} \Longleftrightarrow<T_{f}(u), v>=\overline{<T_{f}(v), u>}=<u, T_{f}(v)>\Longleftrightarrow T_{f}^{*}=T_{f}
$$

Corollary 5. If f is a Hermitian form on a finite-dimensional inner product space V, there is an orthonormal basis $e=\left(e_{1}, \ldots, e_{n}\right)$ of V and real numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
f(u, v)=\lambda_{1} x_{1} \bar{y}_{1}+\lambda_{2} x_{2} \bar{y}_{2}+\cdots+\lambda_{n} x_{n} \bar{y}_{n}
$$

where $\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{n}$ are the coordinate vectors of u and v respectively.
Indeed, the formula holds iff e is an orthonormal basis of eigenvectors of T_{f} with $T_{f}\left(e_{i}\right)=\lambda_{i} e_{i}$. The number of positive eigenvalues greater than 0 minus the number of eigenvalues less than 0 is called the signature of f or q.

