
Inner Product Spaces: Part 3

Let V be a finite-dimensional inner product space and let T be a linear operator on V . If f is an
orthonormal basis of V , we let T ∗ be the linear operator on V such that [T ∗]f = [T ]∗f . Then, if g is
any other orthonormal basis of V , we have [T ∗]g = [T ]∗g and so the definition of T ∗ is independent
of the choice of orthonormal basis. The operator T ∗ is called the adjoint of T . Since

< T (u), v >= [T (u)]tf [v]f = ([T ]f [u]f )t[v]f = [u]tf [T ]∗f [u]
f

=< u, T ∗(v) >,

we have < T (u), v >=< u, T ∗(v) > for all u, v ∈ V . This property characterizes the adjoint. Indeed,
more generally, if T is a linear mapping from an inner product space V to an inner product space
W , there is at most one linear mapping S from W to V such that

< T (v), w >=< v, S(w) >

for all v ∈ V, w ∈ W . To see this, let S′ be another such operator. Then

< v, S(w) >=< v, S′(w) > =⇒ < v, (S − S′)(w) >= 0.

Taking v = (S−S′)(w), we get ||(S−S′)(v)||2 = 0 from which (S−S′)(w) = 0. Since w is arbitrary,
we get S = S′. When it exists, the operator S is called the adjoint of T and is denoted by T ∗. We
have

T ∗∗ = T, (T1T2)∗ = T ∗2 T ∗1 , (a1T1 + a2T2)∗ = a1T
∗
1 + a2T

∗
2 .

For example, the right shift operator R on `∞ is the adjoint of the left shift operator L since

< L(x), y >=
∑

i≥0

L(x)nyn =
∑

i≥0

xi+1yi =
∑

i≥1

xiyi−1 =
∑

i≥0

xiR(y)i =< x, R(y) > .

An operator T on a finite-dimensional inner product space V is said to be normal if T ∗T = TT ∗.

Theorem 1. (Spectral Theorem) Let T be a normal linear operator on a finite-dimensional complex
inner product space V . Then there are unique distinct scalars c1, . . . , cm and non-zero self-adjoint
operators E1, E2, . . . , Em on V such that

E2
i = E2, EiEj = 0 (i 6= j), 1V = E1 + E2 + · · ·+ Em,

T = c1E1 + c2E2 + · · ·+ cmEm.

Proof. It suffices to prove the uniqueness. Let Vi = Im(Ei). Then V = V1 ⊕ V2 ⊕ · · · ⊕ Vm and
TEi = ciEi shows that ci is an eigenvalue of A and that Vi is the eigenspace of T for the eigenvalue
ci. This shows that c1, ..., cm are the eigenvalues of T . If v ∈ V then v =

∑
vi with vi ∈ Vi,

Ei(v) = Eivi = vi and

< vi, vj >=< Ei(vi), Ej(vj) >=< vi, E
∗
i Ej(vj) >=< vi, EiEj(vj) >= 0 >

for i 6= j shows that Ei is the orthogonal projection of V on Vi.

The following is the spectral theorem for real inner product spaces.
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Theorem 2. Let T be a self-adjoint linear operator on a finite-dimensional real inner product
space V . Then there are unique distinct scalars c1, . . . , cm and non-zero self-adjoint operators
E1, E2, . . . , Em on V such that

E2
i = E2, EiEj = 0 (i 6= j), 1V = E1 + E2 + · · ·+ Em,

T = c1E1 + c2E2 + · · ·+ cmEm.

If T = c1E1 + · · · + cmTm is the spectral resolution of a normal operator T on the complex
finite-dimensional inner product space V then

T ∗ = c1E1 + c2E2 + · · ·+ cmEm

is the spectral resolution of T ∗. Hence T is self-adjoint if and only if its eigenvalues are all real. Let
f = (f1, ..., fn) be an orthonormal basis of V with T (fi) = λifi. If u ∈ V has coordinate vector
x1, x2, . . . , xn) with respect to the basis f , we have

T (u) = λ1f1 + λ2f2 + · · ·+ λnfn,

< T (u), u > = λ1|x1|2 + λ2|x2|2 + · · ·+ λn|xn|2.
Thus < T (u), u >= 0 for all u iff T = 0. The operator T is said to be positive (resp. positive
definite) if its eigenvalues are ≥ 0 (resp. > 0). Thus T is positive (resp. positive definite) iff
< T (u), u > ≥ 0 (resp. < T (u), u > > 0 for all u, v ∈ V .

If T is a positive definite self-adjoint operator on V then the function b : V × V → K, defined
by b(u, v) =< T (u), v >, is an inner product on V . This is an important source of inner products.

A positive self-adjoint operator T has a square root, namely,
√

T =
√

c1E1 +
√

c2E2 + · · ·+√
cmEm.

The operator T is the unique non-negative self-adjoint operator whose square is T . The proof
of uniqueness uses the fact that such an operator commutes with T and so leaves invariant the
eigenspaces of T . The restriction of this operator to the eigenspace Vi of T for the eigenvalue ci is
therefore equal to

√
ci times the identity mapping of Vi.

For any linear operator on T , the operator T ∗T is self-adjoint and positive since

< T ∗T (u), u >=< T (u), T (u) >;

it is positive definite if ker(T ) 6= {0}. It follows that a self-adjoint operator T is positive iff T = S∗S
for some operator S on V .

A normal operator T is invertible iff none of its eigenvalues are zero, in which case, T−1 is normal
with spectral resolution

T−1 = c−1
1 E1 + c−1

2 E2 + · · ·+ c−1
m Em.

Thus T ∗ = T−1 iff ci = c−1
i , i.e., |ci| = 1, for all i. An operator T on a complex inner product space

is called unitary if T ∗ = T−1. An operator T on a real inner product space V is called orthogonal
if T ∗ = T−1.

Theorem 3. Let T be a linear operator on a finite-dimensional inner product space V . Then the
following are equivalent:

(a) T is unitary (orthogonal); (b) ||T (u)|| = ||u|| for all u ∈ V ; (c) < T (u), T (v) >=< u, v > for

all u, v ∈ V .
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Proof. If T is unitary then < T (u), T (v) >=< u, T ∗T (v) >=< u, v > so that (a) implies (b). Now
(b) implies (a) by taking u = v. If (b) holds then < u, u >=< T (u), T (u) >=< T ∗Tu, u > which
implies that < S(u), u >= 0 for all u where S = T ∗T − 1, a self-adjoint operator. Hence S = 0
which implies (a).

Symmetric and Hermitian Forms

Let V be vector space over K = R or C. A function f : V × V → K satisfying

1. f(au + bv, w) = af(u,w) + bf(v, w);

2. f(w, au + bv) = af(w, u) + bf(w, v);

is called a sesqui-linear form. If K = R it is a bilinear form. If, in addition, we have

3. f(u, v) = f(v, u)

the form f is called a Hermitian (symmetric if K = C). The function q : V → R defined by
q(u) = f(u, u) is called the associated quadratic (Hermitian) form The Hermitian forms f, q are
said to be positive if q(u) = f(u, u) ≥ 0 and positive definite. if q(u) = f(u, u) ≥ 0 with equality
iff u = 0. The the following identities (polarization identities) show that f is uniquely determined
by q

(K = R) : f(u, v) =
1
2
(q(u + v)− q(u)− q(v));

(K = C) : f(u, v) =
1
4
(q(u + v)− q(u− v) + q(u + iv)− q(u− iv)).

The proofs are left as exercises. If f is a sesqui-linear form on a finite-dimensional vector space V
and e = (e1, ..., en) is a basis of V , there is a unique matrix A ∈ Kn× such that f(u, v) = [u]eA[v]e.
In fact A = [f(ei, ej)]. The matrix A is called the matrix of f or q with respect to the basis e and
is denoted by [f ]e. The form f is Hermitian iff A is Hermitian. If e′ = (e′1, ..., e

′
n) is an other basis

with transition matrix P = [1V ]e′,e, we have [f ]e′ = P t[f ]eP . The rank of f or q.
If V is an inner product space and T is a Hermitian operator on V then f(u, v) =< T (u), v >

defines a Hermitian form. Moreover, every Hermitian form on V arises in this way. More generally,
we have the following result:

Theorem 4. Let f be a sesqui-linear form on an finite-dimensional inner product space V . Then
there exists a unique linear operator Tf such that f(u, v) =< Tf (u), v > for all u, v ∈ V . Moreover,
f is Hermitian iff Tf is Hermitian.

Proof. Let e = (e1, ..., en) be an orthonormal basis of V and let X = [u]e, Y = [v]e, A = [f(ei, ej)].
Then

f(u, v) = XtAY = (AtX)tY =< Tf (u), v >,

where Tf is the linear operator on V with [Tf ]e = At. The uniqueness of Tf is left as an exercise.
Finally

f(u, v) = f(v, u) ⇐⇒ < Tf (u), v >= < Tf (v), u > =< u, Tf (v) > ⇐⇒ T ∗f = Tf .
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Corollary 5. If f is a Hermitian form on a finite-dimensional inner product space V , there is an
orthonormal basis e = (e1, ..., en) of V and real numbers λ1, . . . , λn such that

f(u, v) = λ1x1y1 + λ2x2y2 + · · ·+ λnxnyn

where (x1, . . . , xn), y1, . . . , yn are the coordinate vectors of u and v respectively.

Indeed, the formula holds iff e is an orthonormal basis of eigenvectors of Tf with Tf (ei) = λiei. The
number of positive eigenvalues greater than 0 minus the number of eigenvalues less than 0 is called
the signature of f or q.
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