Inner Product Spaces: Part 3

Let V be a finite-dimensional inner product space and let T be a linear operator on V. If f is an orthonormal basis of V, we let T^* be the linear operator on V such that $[T^*]_f = [T]_f^*$. Then, if g is any other orthonormal basis of V, we have $[T^*]_g = [T]_g^*$ and so the definition of T^* is independent of the choice of orthonormal basis. The operator T^* is called the **adjoint of** T. Since

$$< T(u), v >= [T(u)]_{f}^{t} \overline{[v]}_{f} = ([T]_{f} [u]_{f})^{t} \overline{[v]}_{f} = [u]_{f}^{t} \overline{[T]_{f}^{*} [u]}_{f} = < u, T^{*}(v) > 0$$

we have $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ for all $u, v \in V$. This property characterizes the adjoint. Indeed, more generally, if T is a linear mapping from an inner product space V to an inner product space W, there is at most one linear mapping S from W to V such that

$$\langle T(v), w \rangle = \langle v, S(w) \rangle$$

for all $v \in V$, $w \in W$. To see this, let S' be another such operator. Then

$$\langle v, S(w) \rangle = \langle v, S'(w) \rangle \Longrightarrow \langle v, (S - S')(w) \rangle = 0.$$

Taking v = (S - S')(w), we get $||(S - S')(v)||^2 = 0$ from which (S - S')(w) = 0. Since w is arbitrary, we get S = S'. When it exists, the operator S is called the **adjoint** of T and is denoted by T^* . We have

$$T^{**} = T, \quad (T_1T_2)^* = T_2^*T_1^*, \quad (a_1T_1 + a_2T_2)^* = \overline{a}_1T_1^* + \overline{a_2}T_2^*$$

For example, the right shift operator R on ℓ^{∞} is the adjoint of the left shift operator L since

$$< L(x), y> = \sum_{i \geq 0} L(x)_n \overline{y}_n = \sum_{i \geq 0} x_{i+1} \overline{y}_i = \sum_{i \geq 1} x_i \overline{y}_{i-1} = \sum_{i \geq 0} x_i \overline{R(y)}_i = < x, R(y) > .$$

An operator T on a finite-dimensional inner product space V is said to be **normal** if $T^*T = TT^*$.

Theorem 1. (Spectral Theorem) Let T be a normal linear operator on a finite-dimensional complex inner product space V. Then there are unique distinct scalars c_1, \ldots, c_m and non-zero self-adjoint operators E_1, E_2, \ldots, E_m on V such that

$$E_i^2 = E_2, \ E_i E_j = 0 \ (i \neq j), \ 1_V = E_1 + E_2 + \dots + E_m,$$

 $T = c_1 E_1 + c_2 E_2 + \dots + c_m E_m.$

Proof. It suffices to prove the uniqueness. Let $V_i = \text{Im}(E_i)$. Then $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$ and $TE_i = c_i E_i$ shows that c_i is an eigenvalue of A and that V_i is the eigenspace of T for the eigenvalue c_i . This shows that $c_1, ..., c_m$ are the eigenvalues of T. If $v \in V$ then $v = \sum v_i$ with $v_i \in V_i$, $E_i(v) = E_i v_i = v_i$ and

$$\langle v_i, v_j \rangle = \langle E_i(v_i), E_j(v_j) \rangle = \langle v_i, E_i^* E_j(v_j) \rangle = \langle v_i, E_i E_j(v_j) \rangle = 0 \rangle$$

for $i \neq j$ shows that E_i is the orthogonal projection of V on V_i .

The following is the spectral theorem for real inner product spaces.

Theorem 2. Let T be a self-adjoint linear operator on a finite-dimensional real inner product space V. Then there are unique distinct scalars c_1, \ldots, c_m and non-zero self-adjoint operators E_1, E_2, \ldots, E_m on V such that

$$E_i^2 = E_2, \ E_i E_j = 0 \ (i \neq j), \ 1_V = E_1 + E_2 + \dots + E_m,$$

 $T = c_1 E_1 + c_2 E_2 + \dots + c_m E_m.$

If $T = c_1 E_1 + \cdots + c_m T_m$ is the spectral resolution of a normal operator T on the complex finite-dimensional inner product space V then

$$T^* = \overline{c}_1 E_1 + \overline{c}_2 E_2 + \dots + \overline{c}_m E_m$$

is the spectral resolution of T^* . Hence T is self-adjoint if and only if its eigenvalues are all real. Let $f = (f_1, ..., f_n)$ be an orthonormal basis of V with $T(f_i) = \lambda_i f_i$. If $u \in V$ has coordinate vector $x_1, x_2, ..., x_n$ with respect to the basis f, we have

$$T(u) = \lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_n f_n,$$

$$< T(u), u > = \lambda_1 |x_1|^2 + \lambda_2 |x_2|^2 + \dots + \lambda_n |x_n|^2.$$

Thus $\langle T(u), u \rangle = 0$ for all u iff T = 0. The operator T is said to be **positive** (resp. **positive definite**) if its eigenvalues are ≥ 0 (resp. > 0). Thus T is positive (resp. positive definite) iff $\langle T(u), u \rangle \geq 0$ (resp. $\langle T(u), u \rangle > 0$ for all $u, v \in V$.

If T is a positive definite self-adjoint operator on V then the function $b: V \times V \to K$, defined by $b(u,v) = \langle T(u), v \rangle$, is an inner product on V. This is an important source of inner products.

A positive self-adjoint operator T has a square root, namely,

$$\sqrt{T} = \sqrt{c_1}E_1 + \sqrt{c_2}E_2 + \dots + \sqrt{c_m}E_m.$$

The operator T is the unique non-negative self-adjoint operator whose square is T. The proof of uniqueness uses the fact that such an operator commutes with T and so leaves invariant the eigenspaces of T. The restriction of this operator to the eigenspace V_i of T for the eigenvalue c_i is therefore equal to $\sqrt{c_i}$ times the identity mapping of V_i .

For any linear operator on T, the operator T^*T is self-adjoint and positive since

$$< T^*T(u), u > = < T(u), T(u) >;$$

it is positive definite if $\ker(T) \neq \{0\}$. It follows that a self-adjoint operator T is positive iff $T = S^*S$ for some operator S on V.

A normal operator T is invertible iff none of its eigenvalues are zero, in which case, T^{-1} is normal with spectral resolution

$$T^{-1} = c_1^{-1} E_1 + c_2^{-1} E_2 + \dots + c_m^{-1} E_m.$$

Thus $T^* = T^{-1}$ iff $\bar{c}_i = c_i^{-1}$, i.e., $|c_i| = 1$, for all *i*. An operator *T* on a complex inner product space is called **unitary** if $T^* = T^{-1}$. An operator *T* on a real inner product space *V* is called **orthogonal** if $T^* = T^{-1}$.

Theorem 3. Let T be a linear operator on a finite-dimensional inner product space V. Then the following are equivalent:

(a) T is unitary (orthogonal); (b) ||T(u)|| = ||u|| for all $u \in V$; (c) $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for

all $u, v \in V$.

Proof. If T is unitary then $\langle T(u), T(v) \rangle = \langle u, T^*T(v) \rangle = \langle u, v \rangle$ so that (a) implies (b). Now (b) implies (a) by taking u = v. If (b) holds then $\langle u, u \rangle = \langle T(u), T(u) \rangle = \langle T^*Tu, u \rangle$ which implies that $\langle S(u), u \rangle = 0$ for all u where $S = T^*T - 1$, a self-adjoint operator. Hence S = 0 which implies (a).

Symmetric and Hermitian Forms

Let V be vector space over $K = \mathbb{R}$ or \mathbb{C} . A function $f: V \times V \to K$ satisfying

- 1. f(au + bv, w) = af(u, w) + bf(v, w);
- 2. $f(w, au + bv) = \overline{a}f(w, u) + \overline{b}f(w, v);$

is called a sesqui-linear form. If $K = \mathbb{R}$ it is a bilinear form. If, in addition, we have

3. $f(u,v) = \overline{f(v,u)}$

the form f is called a **Hermitian** (symmetric if $K = \mathbb{C}$). The function $q: V \to \mathbb{R}$ defined by q(u) = f(u, u) is called the associated quadratic (Hermitian) form The Hermitian forms f, q are said to be **positive** if $q(u) = f(u, u) \ge 0$ and **positive definite**. if $q(u) = f(u, u) \ge 0$ with equality iff u = 0. The the following identities (*polarization identities*) show that f is uniquely determined by q

$$(K = \mathbb{R}): \quad f(u, v) = \frac{1}{2}(q(u + v) - q(u) - q(v));$$

(K = C):
$$f(u, v) = \frac{1}{4}(q(u + v) - q(u - v) + q(u + iv) - q(u - iv)).$$

The proofs are left as exercises. If f is a sesqui-linear form on a finite-dimensional vector space Vand $e = (e_1, ..., e_n)$ is a basis of V, there is a unique matrix $A \in K^{n \times}$ such that $f(u, v) = [u]_e A[v]_e$. In fact $A = [f(e_i, e_j)]$. The matrix A is called the matrix of f or q with respect to the basis e and is denoted by $[f]_e$. The form f is Hermitian iff A is Hermitian. If $e' = (e'_1, ..., e'_n)$ is an other basis with transition matrix $P = [1_V]_{e',e}$, we have $[f]_{e'} = P^t[f]_e \overline{P}$. The **rank** of f or q.

If V is an inner product space and T is a Hermitian operator on V then $f(u, v) = \langle T(u), v \rangle$ defines a Hermitian form. Moreover, every Hermitian form on V arises in this way. More generally, we have the following result:

Theorem 4. Let f be a sesqui-linear form on an finite-dimensional inner product space V. Then there exists a unique linear operator T_f such that $f(u, v) = \langle T_f(u), v \rangle$ for all $u, v \in V$. Moreover, f is Hermitian iff T_f is Hermitian.

Proof. Let $e = (e_1, ..., e_n)$ be an orthonormal basis of V and let $X = [u]_e$, $Y = [v]_e$, $A = [f(e_i, e_j)]$. Then

$$f(u,v) = X^t A \overline{Y} = (A^t X)^t \overline{Y} = \langle T_f(u), v \rangle_{\mathcal{H}}$$

where T_f is the linear operator on V with $[T_f]_e = A^t$. The uniqueness of T_f is left as an exercise. Finally

$$f(u,v) = \overline{f(v,u)} \iff \langle T_f(u), v \rangle = \overline{\langle T_f(v), u \rangle} = \langle u, T_f(v) \rangle \iff T_f^* = T_f.$$

Corollary 5. If f is a Hermitian form on a finite-dimensional inner product space V, there is an orthonormal basis $e = (e_1, ..., e_n)$ of V and real numbers $\lambda_1, ..., \lambda_n$ such that

$$f(u,v) = \lambda_1 x_1 \overline{y}_1 + \lambda_2 x_2 \overline{y}_2 + \dots + \lambda_n x_n \overline{y}_n$$

where (x_1, \ldots, x_n) , y_1, \ldots, y_n are the coordinate vectors of u and v respectively.

Indeed, the formula holds iff e is an orthonormal basis of eigenvectors of T_f with $T_f(e_i) = \lambda_i e_i$. The number of positive eigenvalues greater than 0 minus the number of eigenvalues less than 0 is called the **signature** of f or q.